用户名: 密码: 验证码:
瘦素在日本血吸虫病肝纤维化中的作用及分子机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分小鼠日本血吸虫病肝纤维化实验模型的构建
     目的:构建稳定的、类似人类日本血吸虫病肝纤维化自然病程的小鼠日本血吸虫病肝纤维化模型,观察小鼠日本血吸虫病肝纤维化形成的动态过程,为探讨日本血吸虫病肝纤维化发病机制和干预性实验用药时机的选择及疗效观察提供实验依据。
     方法:血吸虫尾蚴敷贴法感染小鼠,模型组分别于感染日本血吸虫尾蚴后2 wk、4 wk、6 wk、8 wk、12 wk、16 wk、20 wk、24 wk,采用常规HE染色及透射电子显微镜检查对肝组织进行病理组织学检查,常规Van Gieson染色观察感染不同时期肝脏胶原分布部位和含量以及肝纤维化程度的动态变化。
     结果:HE和VG染色显示小鼠日本血吸虫病肝纤维化模型建立成功,病理证实小鼠日本血吸虫感染成功率100%,完成实验的动物肝纤维化成功率100%。日本血吸虫感染后第6 wk,急性虫卵肉芽肿形成,第8 wk时肉芽肿达到高峰,电镜下,肉芽肿周围的肝细胞内有脂滴形成,发生变性、坏死。之后大部分被吸收而变为具有增殖活性的假结核性虫卵肉芽肿,体积逐渐减小,至感染后第20~24 wk,呈现血吸虫病特有的干线型肝纤维化。日本血吸虫感染第8 wk后,在肝脏虫卵肉肿内及周围可见少量胶原纤维分布;随后,肝脏组织胶原含量和肝纤维化程度随病程发展呈进行性增多或加重。
     结论:日本血吸虫尾蚴感染的小鼠日本血吸虫病肝纤维化模型成功再现了人类日本血吸虫病肝纤维化发病的自然进程,为进一步探讨日本血吸虫病肝纤维化发病机制和抗肝纤维化治疗奠定了实验基础。
     第二部分瘦素受体在小鼠日本血吸虫病肝纤维化组织中的动态表达及作用的实验研究
     目的:观察小鼠感染日本血吸虫后不同时期肝脏瘦素长受体(OB-Rb)mRNA和蛋白动态表达,探讨瘦素及其受体在日本血吸虫病肝纤维化发生发展中的作用。
     方法:日本血吸虫尾蚴皮肤敷贴法感染小鼠构建日本血吸虫病肝纤维化模型,于感染后不同时间取肝脏标本。HE和VG染色对肝组织进行病理学检查,免疫组织化学SP法动态观察OB-Rb及肝星状细胞(HSC)标记物α-平滑肌动蛋白(α-SMA)表达;逆转录-聚合酶链反应(RT-PCR)检测OB-Rb mRNA动态表达。
     结果:α-SMA和OB-Rb蛋白阳性表达随病程进展进行性增加,二者共表达于胶原纤维沉积处;模型组OB-Rb mRNA在感染4 wk开始表达,随病程进展逐渐增高,持续至24 wk。相关分析表明,α-SMA蛋白表达与胶原含量(r=0.956, P<0.01)及肝纤维化程度(r=0.804, P<0.01)均呈正相关;OB-Rb蛋白和mRNA表达与胶原含量(r=0.965, P<0.01;r=0.945, P<0.01)及肝纤维化程度(r=0.823, P<0.01; r=0.880, P<0.01)均呈正相关。
     结论:瘦素、HSC和日本血吸虫病肝纤维化之间有着极为密切的关系,HSC是日本血吸虫病肝纤维化发生发展过程中的关键细胞,而瘦素可能是日本血吸虫病肝纤维化形成过程中一个新的促肝纤维化因子。
     第三部分瘦素在小鼠日本血吸虫病肝纤维化作用的分子机制的实验研究
     目的:观察小鼠感染日本血吸虫后不同时期肝脏瘦素和磷脂酰肌醇-3激酶(PI3K)蛋白及α1(I)型前胶原mRNA在日本血吸虫病肝纤维化形成过程中的动态表达,研究PI3K通路在瘦素促进日本血吸虫病肝纤维化过程中的作用,初步阐明瘦素致日本血吸虫病肝纤维化的分子机制。
     方法:日本血吸虫尾蚴皮肤敷贴法感染小鼠构建日本血吸虫病肝纤维化模型,于感染后不同时间取肝脏标本。HE和VG染色对肝组织进行病理学检查,免疫组织化学SP法动态观察瘦素和PI3K蛋白表达;Western Blot法分析PI3K蛋白的动态表达; RT-PCR检测α1(I)型前胶原mRNA动态表达。
     结果:瘦素和PI3K蛋白阳性表达随病程进展进行性增加,二者共表达于胶原纤维沉积处;模型组PI3K在感染4 wk开始表达,随病程进展逐渐增高,持续至24 wk。相关分析表明,瘦素蛋白表达与肝脏胶原含量(r=0.758,P<0.01)、α1(I)型前胶原mRNA(r=0.832 ,P<0.01)及肝纤维化程度均呈正相关(r=0.823,P<0.01);PI3K蛋白表达与瘦素蛋白(r=0.882,P<0.01)、肝脏胶原含量(r=0.889,P<0.01)、α1(I)型前胶原mRNA(r=0.708,P<0.01)及肝纤维化程度(r=0.807,P<0.01)均呈正相关;α1(I)型前胶原mRNA与胶原含量(r=0.824,P<0.01)、肝纤维化程度均呈正相关(r=0.612,P<0.01)。
     结论:瘦素通过增强PI3K磷酸化,而促进α1(I)型前胶原mRNA表达和胶原合成,进而促进日本血吸虫病肝纤维化的形成,PI3K通路在该过程中发挥重要作用。
     第四部分维生素E对小鼠日本血吸虫病肝纤维化的治疗作用及其机制的实验研究
     目的:观察维生素E(VitE)对α-SMA、瘦素和PI3K蛋白以及α1(I)型前胶原基因表达的影响,探讨VitE抗小鼠日本血吸虫病肝纤维化作用及其机制。
     方法:日本血吸虫尾蚴皮肤敷贴法感染小鼠构建日本血吸虫病肝纤维化模型,以肝纤维化达Ⅱ级或Ⅱ级以上作为开始治疗的标志。随机分5组:正常对照组、模型组以及VitE高、中、低剂量组(150 mg/kg、50 mg/kg、5 mg/kg)。于第8 wk末处死动物,HE和VG染色以及透射电子显微镜对肝组织进行病理学检查,应用分光光度法检测肝组织丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性,采用免疫组织化学SP法检测HSC标记物α-SMA和瘦素蛋白表达情况,Western Blot方法分析PI3K蛋白表达情况,RT-PCR方法检测肝脏α1(I)型前胶原基因表达。
     结果:VitE降低模型组肝组织MDA含量(P<0.01),提高SOD活性(P<0.01);减少α-SMA和瘦素阳性表达细胞数(P<0.01);降低肝脏PI3K蛋白表达(P<0.01)、胶原含量(P<0.01)和α1(I)型前胶原基因表达(P<0.01),均呈剂量效应关系。
     结论:VitE具有抗小鼠日本血吸虫病肝纤维化作用,其机制与VitE抗脂质过氧化作用、抑制HSC活化和增殖、抑制瘦素表达、阻断PI3K通路、降低α1(I)型前胶原基因表达和胶原合成有关。
Part I Construction and identification of liver fibrosis of mice with Schistosoma Japonica
     Objective: To construct mice models with Schistosoma Japonica, reliable and resemble to human liver fibrosis,and to observe the progress of liver fibrosis, and to provide for further investigation on pathogenesy and treatment of liver fibrosis of Schistosomiasis Japonica. Methods: Mice were infected with Schistosoma Japonicum cercariae percutaneously, and liver biopsies were done at different time point after infection(2 wk、4 wk、6 wk、8 wk、12 wk、16 wk、20 wk、24 wk). Liver lesions were evaluated using HE staining and transmission electron microscopy. The dynamic changes of liver collagen location and content as well as liver fibrosis degree at different time point after infection were evaluated by Van Gieson staining.
     Results: All Mice infected with Schistosoma Japonica were confirmed by HE and VG staining, and all animals had been constructed for models of hepatic fibrosis. Granulomae were found in liver at 6 weeks after infection, and achieved the peak of the quantity and size at 8 weeks after infection, and fewer and smaller because of transforming to tubercle-like node from then on. During 20 to 24 weeks after infection, the typical argilla-pipe hepatic fibrosis was observed. A small quantity of liver collagen was detected in and around granulomae. From then on, collagen content and degree of liver fibrosis increased or aggravated progressively with course of diseases.
     Conclusion: Hepatic fibrosis models of mice with Schistosoma Japonica can show reliably the progress of human hepatic fibrosis of Schistosomiasis Japonica, which lays the foundation for further study on pathogenesy and treatment of liver fibrosis of Schistosomiasis Japonica.
     PartⅡThe experimental studies on dynamic changes of OB-Rb mRNA and protein expression and their significance in liver fibrosis of mice with Schistosoma Japonica
     Objective: To observe the dynamic changes in the long form of leptin receptor(OB-Rb) mRNA and protein expression in mice liver by Schistosoma Japonica infection at different period, and to investigate the roles of leptin and its receptor in liver fibrosis of mice with Schistosoma Japonicum.
     Methods: Mice infected with Schistosoma Japonica cercariae percutaneously were served as animal models of liver fibrosis, and liver biopsies were done at different time point after infection. Liver lesions were evaluated using HE and VG staining. Immunohistochemistry for OB-Rb andα-smooth muscle actin(α-SMA) as an activated hepatic stellate cell(HSC) marker was performed to observe their dynamic changes by SP technique. OB-Rb mRNA dynamic expression was measured by RT-PCR.
     Results:Theα-SMA and OB-Rb positive cells increased gradually with course of diseases. Co-localization of OB-Rb andα-SMA in activated HSCs was in the localization of collagen fibers. OB-Rb mRNA expression in model group began at the 4th week after infection and increased progressively and persisted at the 24th week after infection. There was a positive correlation betweenα-SMA protein expression and collagen content(r=0.956, P<0.01) or degree of liver fibrosis(r=0.804, P<0.01). Similarly, there was a positive correlation between OB-Rb protein or mRNA expression and collagen content(r=0.965, P<0.01; r=0.945, P<0.01) or degree of liver fibrosis(r=0.823, P<0.01; r=0.880, P<0.01).
     Conclusion: The close relationships exist between leptin, HSC and liver fibrosis by Schistosomiasis Japonica. HSC is a key cell and leptin is a novel profibrogenic cytokine in the development of liver fibrosis by Schistosomiasis Japonica.
     PartⅢThe experimental studies on the molecular mechanisms of leptin in liver fibrosis of mice with Schistosoma Japonica
     Objective: To observe the dynamic changes in leptin and phosphatidylinositol 3-kinase(PI3K) protein expression as well asα1(I) procollagen mRNA expression in mice liver by Schistosoma Japonica infection at different period, and to investigate the roles of PI3K pathway in liver fibrosis of mice with Schistosomiasis Japonica by leptin. Methods: Mice infected with Schistosoma Japonica cercariae percutaneously were served as animal models of liver fibrosis, and liver biopsies were done at different time point after infection. Liver lesions were evaluated using HE and VG staining. Immunohistochemistry for leptin and PI3K was performed to observe their dynamic changes by SP technique. PI3K protein dynamic expression was detected by Western Blot, andα1(I) procollagen mRNA dynamic expression was measured by RT-PCR.
     Results:The leptin and PI3K positive cells increased gradually with course of diseases. Co-localization of leptin and PI3K in activated HSCs was in the localization of collagen fibers. PI3K protein expression began at the 4th week after infection and increased progressively and persisted at the 24th week after infection. There was a positive correlation between leptin protein expression and collagen content(r=0.758, P<0.01) orα1(I) procollagen mRNA(r=0.832, P<0.01) or degree of liver fibrosis(r=0.823, P<0.01). Similarly, there was a positive correlation between PI3K protein and leptin(r=0.882, P<0.01) or collagen content(r=0.889, P<0.01) orα1(I) procollagen mRNA(r=0.708, P<0.01) or degree of liver fibrosis(r=0.807, P<0.01). There was a positive correlation betweenα1(I) procollagen mRNA and collagen content(r=0.824, P<0.01) or degree of liver fibrosis(r=0.612, P<0.01).
     Conclusion: Leptin promotedα1(I) procollagen mRNA expression and protein production by stimulating PI3K phosphorylation in the progress of liver fibrogenesis of mice with Schistosomiasis Japonica, and PI3K pathway has an important effect in the process.
     PartⅣThe experimental studies on therapeutic effect of vitamin E and its mechanisms on liver fibrosis of mice with Schistosoma Japonica
     Objective: To observe the effect of vitamin E(VitE) onα-SMA, leptin and PI3K protein expression as well asα1(I) procollagen mRNA expression, and to investigate the therapeutic roles of VitE and its mechanisms in liver fibrosis of mice with Schistosoma Japonica. Methods: Mice were infected with Schistosoma Japonicum cercariae percutaneously. That liver fibrosis reached gradeⅡor above was considered to be a marker of therapeutic start.
     Mice were randomly divided into five groups: normal control group, model group, and intervention groups which were treated with three different doses of VitE, including 150 mg/kg, 50 mg/kg, and 5 mg/kg. The mice were killed at the end of the eighth week. Liver lesions were evaluated using HE and VG staining as well as transmission electron microscopy. The malondialdehyde(MDA) content and superoxide dismutase(SOD) activity in liver tissue were determined by spectrophotometric method. Immunohistochemistry forα-SMA as an HSC marker and leptin was performed by SP technique. PI3K protein expression was detected by Western Blot, and theα1(I) procollagen mRNA expression was measured by RT-PCR.
     Results:VitE reduced MDA content(P<0.01) and increased SOD activity(P<0.01) in the liver in model group in a dose-dependent manner. Besides, VitE decreased the number ofα-SMA(P<0.01) and leptin(P<0.01) positive cells in a dose-dependent manner. Further, VitE diminished increased PI3K protein expression(P<0.01), collagen content(P<0.01) and inhibited increasedα1(I) procollagen mRNA expression(P<0.01) in the liver in model group in a dose-dependent manner.
     Conclusion: VitE has evident therapeutic effects on liver fibrosis produced in mice by Schistosoma Japonicum infection, and the mechanisms are associated with VitE opposing lipid peroxidation, inhibiting HSC activation and proliferation, inhibiting leptin protein expression, blocking PI3K pathway, and reducingα1(I) procollagen mRNA expression and collagen production.
引文
1. World Health Organization(1996) WHO Fact Sheet on Schistosomiasis, May, 1996.
    2. Tropical Disease Research Progress 1975-94 Highlights 1993-94, Twelfth Programme Report of the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Disease(TDR),P77.
    3.郑江.我国血吸虫病的流行与防治研究进展.中国寄生虫学与寄生虫病杂志, 2002, 17: 260-263.
    4.孔宪涛,高锋.肝纤维化的实验与临床研究.第二军医大学学报, 1996, 17: 1- 5.
    5. Hector JH, Yong W, Nia T, et al. Expression of classⅡ, but not classⅡ, major histocomplatibility complex molecules is required for granuloma formation in infection with Schistosoma mansoni. Eur J Immunol, 1997, 27: 1170.
    6. Boros DL, Pelley RP, and Warren KS. Spontaneous modulation of granulomatous hypersensitivity in schistosomiasis mansoni. J Immunol, 1975, 114: 1473-1441.
    7.汪溥软编,猪寄生虫病,福州:福建科学技术出版社, 1983, 118-120.
    8. Reeves HL and Friedman SL. Activation of hepatic stellate cells—a key issue in liver fibrosis. Front Biosci 2002, 7: d806-826.
    9. Wiest PM, Wu G, Zhang S, et al. Morbidity due to Schistosomiasis Japonica in the People Republic of China. Trans R Soc Trop Med Hyg, 1992, 86: 47-50.
    10. Cheever AW, Xu Y, Sher A, et al. Schistosoma Japonicum-infected mice show reduced hepatic fibrosis and eosinophilia and selective inhibition of interleukin-5 secretion by CD4+ cells after treatment with anti-interleukin-2 antibodies. Infect Immun, 1993, 61, 1288-1292.
    11.王雪莉,张玲敏,唐福星等.小鼠血吸虫病肝纤维化的超微结构动态观察.中国寄生虫学与寄生虫病杂志, 2002, 20: 216-219.
    12.翁红雷,蔡卫民,杨艳红.日本血吸虫感染兔I型和Ⅲ型胶原动态变化及干扰素-γ对其的作用.中国寄生虫学与寄生虫病杂志, 2001, 19: 26 - 29.
    13. Zhang L , Mi J , Yu Y, et al. IFN-gamma gene therapy by intrasplenic hepatocyte transplantation: a noval strategy for reversing hepatic fibrosis in Schistosoma japonicum-infected mice. Parasite Immunol, 2001, 23: 11-17.
    14. Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-ominated inflammatory response. J Clin Invest, 1999, 104: 777 -785.
    15. Khalil HM, Abdel Baki MH, Abdel Mawla MM, et al. Interleukin-4, immunoglobulin E and immumoglobulin A and resistance to reinfection with Schistosoma haematobium before and after chemotherapy. J Egypt Soc Parasitol, 1999, 29: 395 - 408.
    16. Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med, 1993, 328:1828-1835.
    1. Reeves HL and Friedman SL. Activation of hepatic stellate cells—a key issue in liver fibrosis. Front Biosci, 2002, 7: d806-826.
    2. Burt AD. Pathobiology of hepatic stellate cells. J Gastroenterol, 1999, 34: 299-304.
    3. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular responseto tissue injury. J Biol Chem, 2000, 275: 2247-2250.
    4. Zhang Y, Proenca R, Maffei m, et al. Positional cloning of the mouse obese and its human homologue. Nature, 1994, 372: 425-432.
    5. Halaas JL, Gajiwala KS, Maffei M, et al. Weight—reducing effects of the plasma protein encoded by the obese gene. Science, 1995, 269: 543-546.
    6. Friedman JM and Halaas JL. Leptin and the regulation of body weight in mammals. Nature, 1998, 395: 763-770.
    7. Crespo J, Rivero M, Fabrega E, et al. Plasma leptin and TNF-αlevels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig Dis Sci, 2002, 47: 1604-1610.
    8. Leclercq IA, Farrell GC, Schriemer R, et al. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol, 2002, 37:206-213.
    9. Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology, 2002, 36: 12-21.
    10. Siegmund B, Lear-Kaul KC, Faggioni R, et al. Leptin deficiency, not obesity, protects mice from ConA-induced hepatitis. Eur J Immunol, 2002, 32: 552-560.
    11. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology, 2001, 34: 288-297.
    12. Potter JJ, Womack L, Mezey E et al. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun, 1998, 244: 178-182.
    13. Ikejima K, Honda H, Takei Y,et al. Hepatic stellate cells produce leptin during the progression of liver fibrosis. Hepatology, 1999, 30: 492A.
    14. Saxena N, Ikeda K, Rockey DC, et al. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology, 2002, 35: 762-771.
    15. Saxena N, Saliba G, Floyd JJ, et al. Leptin induces increased alpha2(I) collagen geneexpression in cultured rat hepatic stellate cells. J Cell Biochem 2003, 89: 311-320.
    16. Tang M, Potter JJ, Mezey E. Leptin enhances the effect of transforming growth factor beta in increasing type I collagen formation. Biochem Biophys Res Commun 2002, 297: 906-911.
    17. Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloprotein-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependent MAPK pathways. J Biol Chem, 2004, 279: 4292-4304.
    18. Ding XK, Saxena NK, Lin SB, et al. The Roles of Leptin and Adiponectin: A Novel Paradigm in Adipocytokine Regulation of Liver Fibrosis and Stellate Cell Biology. Am J Pathol, 2005, 166: 1655-1669.
    19. Potter JJ, Rennie-Tankesley L, Mezey E. Influence of Leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol, 2003, 38: 281-288.
    20.王雪莉,张玲敏,唐福星等.小鼠血吸虫病肝纤维化的超微结构动态观察.中国寄生虫学与寄生虫病杂, 2002, 20: 216-219.
    21. Chang D, Ramalho LN, Ramalho FS, et al. Hepatic stellate cells in human schistosomiasis mansoni: a comparative immunohistochemical study with liver cirrhosis. Acta Trop, 2006, 97: 318-323.
    22. Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology, 2002, 122: 1529-1532.
    23. Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 2005, 42: 1339-1348.
    24. Hoggard N, Mercer JG, Rayner DV, et al. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun, 1997, 232: 383-387.
    25. Ikejima K, Takei Y, Honda H, et al. Leptin receptor—mediated signaling regulateshepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology, 2002, 122: 1399-1410.
    26. Zhao AZ, Shinohara MM, Huang D, et al. Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes. J Biol Chem, 2000, 275: 11348-11354.
    27. Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med, 1993, 328:1828-1835.
    28. Saxena, NK, Titus MA, Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J, 2004, 18:1612-1614.
    1 Friedman SL, Maher JJ, Bissell DM. Mechanisms and therapy of hepatic fibrosis: report of the AASLD single topic basic research conference. Hepatology, 2000, 32: 1403-1408.
    2 Friedman SL, Maher JJ, Bissell DM. Mechanisms and therapy of hepatic fibrosis: report of the AASLD single topic basic research conference. Hepatology, 2000, 32: 1403-1408.
    3 Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis, 1999, 19: 397-410.
    4 Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology, 2002, 122: 1529-1532.
    5 Valius M, Kazlauskas A. Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell, 1993, 73: 321-334.
    6 Kundra V, Escobedo JA, Kazlauskas A, et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature, 1994, 367: 474-476.
    7 Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 1995, 267: 2003-2006.
    8 Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem, 1999, 68: 965-1014.
    9 Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NF B in human endothelial cells. J Biol Chem, 2000, 275: 15458-15463.
    10 Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol, 1997, 17: 1595-1606.
    11 Lang T, Ikejima K, Yoshikawa M, et al. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor. Biochem Biophys Res Commun, 2004, 323: 1091-1095.
    12 Runyan CE, Schnaper HW, and Poncelet A-C. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transformng growth factor-β1. J Biol Chem, 2004, 279: 2632-2639.
    13 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278: 8083-8090.
    14 McCarroll JA, Phillips PA, Kumar RK, et al. Pancreatic stellate cell migration: role of the phosphatidylinositol 3-kinase(PI3-kinase) pathway. Biochem Pharmacol, 2004, 67: 1215-1225.
    15 Marra F, GentiCini A, Pinzani M, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology, 1997, 112: 1297-1306.
    16 Ricupero DA, Poliks CF, Rishikof DC, et al. Phosphatidylinositol 3-kinase-dependent stabilization ofα1(I) collagen mRNA in human lung fibroblasts. Am J Physiol Cell Physiol, 2001, 281: C99-105.
    17 Reif S, Lang A, Lindquist JN, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278: 8083-8090.
    18 Cohen B, Novick, D, Rubinstein M. Modulation of insulin activities by leptin. Science, 1996, 274: 1185-1188.
    19 Sweeney G, Niu W, Kanani R, et al. Regulation of the Na,K-pump by leptin in 3T3-L1fibroblasts. Endocrinology, 2000, 141: 1277-1280.
    20 Martin-Romero C, Sanchez-Margalet V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68. Cell Immunol, 2001, 212: 83-91.
    21 Zhao AZ, Shinohara MM, Huang D, et al. Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes. J Biol Chem, 2000, 275: 11348-11354.
    22 Choudhurya J, Mirshahia F, Murthya KS, et al. Physiologic concentrations of leptin increase collagen production by non-immortalized human hepatic stellate cells. Metabolism Clinical and Experimental, 2006, 55: 1317–1322.
    23 Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology, 2001, 34: 288-297.
    24 Potter JJ, Rennie-Tankesley L, Mezey E. Influence of Leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol, 2003, 38: 281-288.
    25 Loffreda S, Yang SQ, Lin HZ, et al. Leptin regulates proinflammatory immune responses. FASEB J, 1998, 12: 57-65.
    26 Ikejima K, Takei Y, Honda H, et al. Leptin receptor—mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology, 2002, 122: 1399-1410.
    27 Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloprotein-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependent MAPK pathways. J Biol Chem, 2004, 279: 4292-4304.
    28 Cao Q, Mak KM, and Lieber CS. Leptin enhances alpha1(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways. J cell Biochem, 2006, 97: 188-197.
    29 Marra F, Pinzani M, DeFranco R, et al. Involvement of phosphatidylinositol 3-kinase in the activation of extracellular signal-regulated kinase by PDGF in hepatic stellate cells. FEBS Lett, 1995, 376: 141- 145.
    30 Potter JJ, Womack L, Mezey E et al. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun, 1998, 244:178-182.
    31 Ikejima K, Honda H, Takei Y,et al. Hepatic stellate cells produce leptin during the progression of liver fibrosis. Hepatology, 1999, 30: 492A.
    32 Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med, 1993, 328:1828-1835.
    33 Saxena, NK, Titus MA, Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J, 2004, 18: 1612-1614.
    34 Bruno A, Conus S, Schmid I, et al. Apoptotic Pathways Are Inhibited by Leptin Receptor Activation in Neutrophils. The Journal of Immunology, 2005, 174: 8090-8096.
    35 Conus S, Bruno A, and Simon H-U. Leptin is an eosinophil survival factor. J Allergy Clin Immunol. 2005, 116:1228-1234.
    36 Pierce RA, Glaug MR, Greco RS, et al. Increased procollogen mRNA levels in carbon tetrachloride-induced liver fibrosis in rats. J Biol Chem, 1987, 262: 1652-1658.
    37 Brenner DA, Veloz L, Vaenisch R, et al. Stimulation of the collagenα1(Ⅰ) endogenous gene and transgene in carbon tetrachloride-induced hepatic fibrosis. Hepatology, 1993, 17: 287-292.
    38 Weiner FR, Czaja MJ, Giambrone MH, et al. Transcriptional and posttranscriptional effects of dexamethasone on albumine and procollagen messenger RNAs in murine schistosomiasis. Bioche mistry, 1987, 26: 1557-1562.
    39陈峰,蔡卫民,陈智,等.日本血吸虫病兔肝纤维化胶原合成与降解转录水平的研究.中国寄生虫学与寄生虫病杂志, 2001, 19: 76-79.
    1. Parola M and Robino G. Oxidative stress-related molecules and liver fibrosis. J Heptol, 2001, 35: 297-306.
    2. El-Sokkary GH, Omar HM, Hassanein A-FMM, et al. Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni. Free Radic Biol Med, 2002, 32: 319-332.
    3. Gharib B, Abdallahi OMS, Dessein H,et al. Development of eosinophil peroxidase activity and concomitant alteration of the antioxidant defenses in the liver of mice infected with Schistosoma mansoni. J Hepatol, 1999, 30: 594-602.
    4. Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem, 1989, 58: 79-110.
    5. Kaplowitz N. Mechanisms of liver cell injury. J Hepatol, 2000, 32(Suppl 1): 39-47.
    6. Abdallahi OM, Hanna S, Reggi MD, et al. Visualization of oxygen radical production in mouse liver in response to infection with Schistosoma mansoni. Liver, 1999, 19: 495-500.
    7. Parola M, Leonarduzzi G, Biasi F, et al. Vitamin E dietary supplementation protects against carbon tetrachloride-induced chronic liver damage and cirrhosis. Hepatology, 1992, 16: 1014-1021.
    8. Houglum K, Venkataramani A, Lyche K, et al. A pilot study of the effects of d-alpha-tocopherol on hepatic stellate cell activation in chronic hepatitis C. Gastroenterology, 1997, 113: 1069-1073.
    9.孙军,丁虹,沈志祥.维生素E对小鼠慢性乙醇性肝损害的保护作用.胃肠病学和肝病学杂志, 2001, 10: 47-49.
    10. Brown KE, John EP, Lin LI, et al. Effect of vitamin E supplementation on hepatic fibrogenesis in chronic dietary iron overload. Am J Physiol, 1997, 272: G116-123.
    11. Pietrangelo A, Gualdi R, Casalgrandi G, et al. Molecular and cellular aspects of iron-induced hepatic cirrhosis in rodents. J Clin Invest 1995, 95: 1824-1831.
    12. Houglum K, Bedossa P, Chojkier M. TGFa and collagen a1(I) gene expression are increased in hepatic acinar zone I of rats with iron overload. Am J Physiol, 1994, 267: G908-G913.
    13. Niemela O, Parkkila S, Yla-Herttuala S, Villanueva J, Ruebner B, Halsted CH. Sequential acetaldehyde production, lipid peroxidation and fibrogenesis in micropig model of alcohol induced disease. Hepatology, 1995, 22: 1208-1214.
    14. Montosi G, Garuti C, Martinelli S, Pietrangelo A. Hepatic stellate cells are not subjected to oxidant stress during iron-induced fibrogenesis in rodents. Hepatology, 1998, 27: 1611-1622.
    15. Parola M, Pinzani M, Casini A, et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen a1(I) gene expression in human liver fat-storing cells. Biochem Biophys Res Commun, 1993, 194: 1044-1050.
    16. Casini A, Ceni E, Salzano R, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology, 1997, 25: 361-367.
    17. Svegliati-Baroni G, Di Sario A, Casini A, et al. The Na1/H1 exchanger modulates the fibrogenic effect of oxidative stress in rat hepatic stellate cells. J Hepatol, 1999, 30: 868-875.
    18.廖力,张愉快,刘彦等.维生素E抑制家兔肝脏日本血吸虫虫卵肉芽肿的实验研究.中国人兽共患杂志, 1999, 15: 67-68.
    19.宗道明,冯韵琴,赵晓贡.维生素E治疗血吸虫病肝纤维化的临床研究.中国寄生虫防治杂志, 2005, 18: 212-213.
    20. Bataller R and Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Sem in Liver Dis, 2001, 21: 437-451.
    21. Beljaars L, Meijer DK, Poelstra K. Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis. Front Biosci, 2002, 7: 214-222.
    22. Reeves HL and Friedman SL. Activation of hepatic stellate cells—a key issue in liverfibrosis. Front Biosci, 2002, 7: d806-826.
    23. Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med, 1993, 328: 1828-1835.
    24. Lee KS, Buck M, Houglum K, et al. Activation of hepatic Stellate cells by TGFαand collagenⅠtype is mediated by oxidative stress through c-myb expression. J Clin Invest, 1995, 96: 2461-2468.
    25. Parola M, Pinzani M, Casini A, et al. Induction of procollagen type I gene expression and synthesis in human hepatic stellate cells by 4-hydroxy-2,3-nonenal and other 4-hydroxy-2,3-alkenalks is related to their molecular structure. Biochem Biophys Res Commun, 1996, 222: 261-264.
    26. McCormick ML, Metwali A, Railsback MA, et al. Eosinophils from schistosome-induced hepatic granulomas produce superoxide and hydroxyl radical. J Immunol, 1996, 157: 5009-5015.
    27. Kanno T, Utsumi T, Kobuchi H, et al. Inhibition of stimulus-specific neutrophil superoxide generation by alpha- tocopherol. Free Radic Res, 1995, 22: 431-440.
    28. Cachia O, Benna JE, Pedruzzi E, et al.α-tocopherol inhibits the respiratory burst in human monocytes. Attenuation of P47phox membrane translocation and phosphorylation. J Biol Chem, 1998, 273: 32801-32805.
    29. Yoshikawa T, Yoshida N, Manabe H, et al.α-tocopherol protects against expression of adhesion molecules on neutrophils and endothelial cells. Biofactors, 1998, 7: 15-19.
    30. Marra F, De Franco R, Grappone C, et al. Expression of monocyte chemotactic protein 1 precedes monocyte recruitment in a rat model of acute liver injury, and is modulated by vitamin E. J Invest Med, 1999, 47: 66-75.
    31. Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloprotein-1 in human hepatic stellate cells:respective roles of the JAK/STAT and JAK-mediated H2O2-dependent MAPK pathways. J Biol Chem, 2004, 279: 4292-4304.
    32. Baroni GS, D’Ambrosio L, Ferretti G, et al. Fibrogenic effect of oxidative stress on rathepatic stellate cells. Hepatology, 1998, 27: 720-726.
    33. L.O’Rourke, S.J. Yeaman, P.R. Shepherd. Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways, Diabetes, 2001, 50: 955–961.
    34. Zhao T, Hou M, Xia M, er al. Globular adiponectin decreases leptin-induced tumor necrosis factor-_ expression by murine macrophages: Involvement of cAMP-PKA and MAPK pathways. Cellular Immunology, 2005, 238: 19–30.
    35. Shen J, Sakaida, I, Uchida K, et al. Leptin enhances TNF-a production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sciences, 2005, 77: 1502–1515
    36. Tsukamoto H, Rippe R, Niemelao, et al. Roles of oxidative stress in activation of Kuppfer and Ito cells in liver fibrogenesis. J Gastroenterol Hepatol, 1995, 10(Suppl 1): S50-S53.
    37. Marra F, Valente AJ, Pinzani M, et al. Cultured Human Liver Fat-storing Cells Produce Monocyte Chemotactic Protein-I. Regulation by Proinflammatory Cytokines J. Clin. Invest. 1993, 92:1674-1680.
    38. Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 2005, 42: 1339-1348.
    39. Brown KE, John EP, LIN LI, et al. Effect of vitamin E supplementation on hepatic fibrogenesis in chronic dietary iron overload. Am J Physiol, 1997, 272: G116-123.
    40. Efsen E, Bonacchi A, Pastacaldi S, et al. Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxylation metabolites in hepatic stellate cells. Hepatology, 2001, 33: 713-721.
    41. Chojkier M, Houglum K, Lee KS, et al. Long- and short-term D-α-tocopherol supplementation inhibits liver collagenα1(Ⅰ) gene expression. Am J Physiol Gastrointest Liver Physiol, 1998, 275: G1480-G1485.
    42. Garcia-Trevijano E, Iraburu MJ, Fontana L, et al. Transforming growth factor b1induces the expression of a1(I) procollagen mRNA by a hydrogen peroxide-C/EBPb-dependent mechanism in rat hepatic stellate cells. Hepatology, 1999, 29: 960-970.
    43. Maher JJ, Tzagarakis C, Gimenez A. Malondialdehyde stimulates collagen production by hepatic lipocytes only upon activation in primary culture. Alcohol Alcohol, 1994, 29: 605-610.
    44. Bedossa P, Houglum K, Trautwein C, et al. Stimulation of collagenα1(Ⅰ) gene expression is associated with lipid peroxidation in hepatocellular injury: A link to tissue fibrosis? Hepatology, 1994, 19: 1262-1271.
    45. Boros DL, Pelley RP, Warren KS. Spontaneous modulation of granulomatous hypersensitivity in schistosomiasis mansoni. J Immunol, 1975, 114: 1473-1441.
    1. Zhang Y, Proenca R, Maffei m, et al. Positional cloning of the mouse obese and its human homologue. Nature, 1994, 372: 425-432.
    2. Halaas JL, Gajiwala KS, Maffei M, et al. Weight—reducing effects of the plasma protein encoded by the obese gene. Science, 1995, 269: 543-546.
    3. Masuzaki H, Ogawa Y, Sagawa N, et al. Nonadipose tissue production of leptin: leptin as a novel placenta—derived hormone in humans. Nat Med, 1997, 3: 1029-1033.
    4. Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature, 1998, 394: 790-793.
    5. Wang Y, Kuropatwinski KK, White DW, et al. Leptin receptor action in hepatic cells. J Biol Chem, 1997, 272: 16216-16223.
    6. Auaria FA. Leptin,liver and obese mice—fibrosis in the fat lane. Hepatology, 2002, 36: 246-248.
    7. Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology, 2002, 122: 1529-1532.
    8. Isse N, Ogawa Y, Tamura N, et al. Structural organization and chromosomal assignment of the human obese gene. J Biol Chem, 1995, 270: 27728-27733.
    9. Ogawa Y,Masuzaki H,Isse N,et al. Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty(fa/fa) rats. J Clin Invest,1996, 96: 1647-1652.
    10. Collins S,Kuhn CM,Petro AE, et al. Role of leptin in fat regulation. Nature,1996, 380:677.
    11. Wang MY, Zhou YT, Newgard CB, et al. A novel leptin receptor isoform in rat. FEBS Lett, 1996, 392: 87-90.
    12. Ahima RS, ELIer JS. Leptin. Annu Rev Phsiol, 2000, 62: 413-437.
    13. Votani S, Bjorback C, Tomoe J, et al. Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes, 1999, 48: 279-286.
    14. Hynes GR, Jones PJ. Leptin and its role in lipid metabolism. Curr Opin Lipidol, 2001 Jun, 12: 321-327.
    15. Serin E, Ozer B, Gumurdulu Y et al. Serum leptin level can be a negative maker of hepatocyte damage in nonalcoholic fatty liver. J. Gastroenterol, 2003, 38: 471-476.
    16. Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloprotein-1 in human hepatic stellate cells:respective roles of the JAK/STAT and JAK—mediated H2O2—dependent MAPK pathways. J Biol Chem, 2004, 279: 4292-4304.
    17. Choudhurya J, Mirshahia F, Murthya KS, et al. Physiologic concentrations of leptin increase collagen production by non-immortalized human hepatic stellate cells. Metabolism Clinical and Experimental, 2006, 55: 1317–1322.
    18. Crespo J, Rivero M, Fabrega E, et al. Plasma leptin and TNF-αlevels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig Dis Sci, 2002, 47: 1604-1610.
    19. Zwirska-korczala K, Dziambor AP, Wiczkowski A, et al. Hepatocytes growth factor(HGF), Leptin, neopterin serum concentrations in patients with chronic hepatitis C. Przegl Epidemiol, 2001, 55 Suppl 3: 164-169.
    20. Giannini E,Ceppa P, Botta F, et al. Leptin has no role in determining severity of steatosis and fibrosis in patients with chronic hepatitis C. Am J Gastroenterol, 2000, 95:3211-3217.
    21. Ben-Ari Z, Schafer Z, Sulkes J, et al. Alterations in serum leptin in chronic liver disease. Dig Dis Sci, 2002, 47:183-189.
    22. Garcia-Suarez C, Crespo J, Fernandez-Gil PL et al. Plasm Leptin levels in patients with primary biliary cirrhosis and their relationship with degree of fibrosis. Gastroenterol Hepatol, 2004, 27: 47-50.
    23. Nakamuta M, Tada S, Uchimura K, et al. Serum Leptin levels in patients with nonalcoholic chronic liver disease. cirrhotics and 27 matched control subjects. 21: Hepatogastroenterology, 2001, 48: 527-532.
    24.俞红,谢青,周霞秋,等.慢性乙型肝炎,肝硬化患者血清瘦素测定及临床意义.诊断学理论与实践, 2004 ,1: 30-31.
    25. Leclercq IA, Farrell GC, Schriemer R, et al. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol, 2002, 37: 206-213.
    26. Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology, 2002, 36 : 12-21.
    27. Siegmund B, Lear-Kaul KC, Faggioni R, et al. Leptin deficiency, not obesity, protects mice from ConA-induced hepatitis. Eur J Immunol, 2002, 32: 552-560.
    28. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology, 2001, 34: 288-297.
    29. Potter JJ, Rennie-Tankesley L, Mezey E. Influence of Leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol, 2003, 38 :281-288.
    30. Potter JJ, Womack L, Mezey E et al. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun, 1998, 244: 178-182.
    31. Ikejima K, Honda H, Takei Y,et al. Hepatic stellate cells produce leptin during the progression of liver fibrosis. Hepatology ,1999 ,30: 492A.
    32. Shimizu H, Kakizaki S, Tsuchiya T, et al. An increase of circulating leptin in patients with liver cirrhosis. Int J Obes Relat Metab Disord, 1998, 22: 1234-1238.
    33. Henriksen JH, Holst JJ, Moller S, et al. Increased circulating leptin in alcoholic cirrhosis: relation to release and disposal. Hepatology, 1999, 29:1818-1824.
    34. Mc Cullough AJ, Bugianesi E, Marchesini G,et al. Gender-dependent alterations in serum leptin in aicoholic cirrhosis. Gastroenterology, 1998, 115: 947-953.
    35. Cumin F, Baun HP, Levens N, et al. Int J obesity, 1996, 20: 1170查
    36. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell, 1995, 83: 1263-1271.
    37. Saxena NK, Ikeda K, Rockey DC, et al. Leotin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology, 2002, 35: 762-771.
    38. Tang M, Potter JJ, Mezey E. Leptin enhances the effect of transforming growth factor beta in increasing type I collagen formation. Biochem Biophys Res Commum, 2002, 297: 906-911.
    39. Ikejima K, Honda H, Hirose M, et al. Leptin augments profibrogenic response in the liver through upregulation of TGF—beta. Hepatology, 2000, 32: 301A.
    40. Ikejima K, Takei Y, Honda H, et al. Leptin receptor—mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology, 2002, 122: 1399-1410.
    41. Isao Sakaida, Shen Jinhua, Koichi Uchida, et al. Leptin receptor-deficient Zucker (fa/fa) rat retards the development of pig serum-induced liver fibrosis with Kupffer cell dysfunction. Life Science. 2003, 19: 2491-2501.
    42. Knittel T, Janneck T, Muller L, et al. Transforming growth factor beta1-regulated gene expression of Ito cells. Hepatology, 1996, 24: 352-360.
    43. Tang M, Potter JJ, Mezey E. Activation of the human alpha(I) collagen promoter by leptin is not mediated by transforming growth factor beta responsive elements.Biochem Biophys Res Commun, 2003, 312: 629-633.
    44. Poulos JE, Baldssaere JJ, Bacon BR. Fibronectin and cytokines increase JNK, ERK, AP-1 activity, and transin gene expression in rat hepatic stellate cells. Am J Physiol1997, 273: 804-811.
    45. Hernandez-Munoz I, De La Torre P, Sanchez -Alcazar JA, et al. Tumor necrosis factor alpha inhibits collagen I gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 1997, 113: 625-640.
    46. Faggioni R, Jones-Crson J, Reed DA, et al. Leptin-deficient(ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18 . Proc Natl Acad Sci USA, 2000, 97: 2367-2372.
    47. Shih Yi Lin, Wen Yin Chenc, Yung Tsung Chiuc, et al. Different tumor necrosis factor-α-associated leptin expression in rats with dimethylnitrosamine and bile duct ligation-induced liver cirrhosis. Metabolism, 2005, 4: 445-452.
    48. Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptorγtranscriptional activation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology, 2000, 31: 101-108.
    49. Oben JA,Roskams T,Yang S,et al. Norepinephrine induces hepatic fibrogensis in leptin deficient ob/ob mice. Biochem Biophys Res Commun, 2003, 308: 284-292.
    50.丁百静,朴云峰,李传凤,等.肝硬化患者血清瘦素测定及其临床意义的探讨.临床肝胆病杂志, 2003, 2: 72-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700