用户名: 密码: 验证码:
混沌和异步布尔网络中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂性科学作为系统学发展的新阶段,是当代科技发展的前沿领域之一。混沌系统和基因调控网络作为具有代表性的复杂系统是复杂性科学重要的研究领域和热点。本文利用理论分析和计算机仿真模拟相结合的方法对混沌系统的动力学特性、同步及在数字保密通信中的应用进行了讨论;并且,在逻辑系统线性化的基础上,对基因调控网络的量化模型——布尔网络的动力学特性以及布尔控制网络的可控性进行了研究。全文主要工作包括:
     (1)将分数阶混沌系统从实数空间扩展到复数空间,提出了一类新的混沌模型——分数阶复混沌系统。利用相图、最大Lyapunov指数及分岔图等研究工具对分数阶复Lorenz系统和分数阶复Chen系统的动力学特性分别进行了详细讨论。通过改变系统参数和系统阶次,在参数空间选取几条代表性的路径,对新系统“通向混沌的道路”进行了研究,发现模型可通过Pomeau-Mannevilla途径、倍周期分岔等不同方式通向混沌,并观察到周期窗口和各类分岔现象等丰富的动力学行为。在对分数阶复混沌系统动力学研究基础上,将该模型应用于混沌保密通信领域,利用其混沌性强和信息携带量大的特点,分别提出了基于同步和异步两类数字保密通信方案。在同步方案中,使用耦合分数阶复Chen系统的交叉同步,实现了混沌数字键控保密通信,在不损失安全性的同时,有效简化系统设计的复杂性。在异步方案中,实现了可自纠错的信息保密传输,通过仿真实验验证,当传输过程中出现数据错误时,利用该方案可高概率的实时侦测及纠正。
     (2)修正函数投影同步在混沌同步领域中具有高度的广义性,在本文中,分别对分数阶混沌系统、复混沌系统和不同维混沌系统间的修正函数投影同步进行了讨论,利用Lyapunov稳定性理论设计了自适应控制器,为增加方案的普适性,在同步过程中考虑了时滞、参数辨识以及参数干扰等因素。并且,本文提出了在复混沌系统的模空间和相空间同时实现两类不同方式的同步行为,即在模空间实现修正投影同步,在相空间实现反同步。该方案适用于只能采集到信号模和相数值的应用领域。
     (3)利用矩阵半张量积,实现了广义异步布尔/多值网络的线性化表示,提出了系统网络状态转移矩阵的统一公式。在逻辑系统线性化基础上,对广义异步布尔/多值网络的动力学特性进行详细讨论,给出了判定任意长度吸引子的充要条件,并提出了在状态空间搜索全部吸引子和对应吸引域的具体算法。在线性化的基础上,对异步布尔控制网络的可控性进行研究。首先,对异步控制网络中状态可确定性控制的充要条件进行讨论;其次,基于三种不同控制方法,分别给出了系统概率可达状态集合的表达形式以及概率最大目标状态的控制路径等,从而对异步布尔控制网络的可控性进行了较全面的讨论。
In recent years, complexity science has been one of the front research fileds. Chaotic systems and gene regulatory newtorks as typical complex systems are the important and hot research fields of complexity science. In this dissertation, by using theoretical analysis and numerical simuliations, some problems in chaotic systems, such as the dynamics, synchronization and applications in secure commnucation have been discussed. Furthermore, based on linear representations of logical systems, the dynamics of asynchronous Boolean networks and controllability of asynchronous Boolean control networks have been studied. The main work of this paper is as follows:
     (1) The fractional-order complex chaotic systems are first proposed, which extend the chaotic systems from real space into complex space. By utilizing phase portraits, the largest Lyapunov exponents and the bifurcation diagrams, dynamical behaviors of fractional-order complex Lorenz system and Chen system are studied, respectively. Chaotic regions and periodic windows are explored as well as different types of motions such as tangent bifurcations, flip bifurcations and chaotic crisis shown along the routes to chaos. By means of the fractional-order complex chaotic systems, two kinds of digital secure communication schemes have been achevied based on synchronous and asynchronous methods. In the synchronous scheme, an improved switch-modulated digital secure communication system is designed, which is based on a hybrid synchronization in coupled fractional-order complex Chen systems. And in the asynchronous scheme, an error-correcting secure communication is discussed, which has the ability of error checking and correcting in real time and high probability against the errors existing in transmitted signals. Numerical simuliations show the feasibility of the proposed schemes.
     (2) Modified function projective synchronization (MFPS) is a kind of generalized synchronization scheme, and some other chaotic synchronizations, such as complete synchronization, anti-synchronization, projective synchronization and function projective synchronization, can be seen as the special cases of MFPS. Here, MFPS in frational-order chaotic systems, complex chaotic systems and different dimensions chaotic systems have been discussed, respectively. Based on Lyapunov stability theory, the adaptive controllers have been achieved. Theoretical proof and numerical simulations demonstrate the effectiveness of the proposed schemes. A hybrid modulus-phase synchronization in coupled complex systems is first proposed, which means different synchronization schemes can be achieved simultaneously in modulus and phase spaces of complex systems. A general controller is designed to implement modified projective synchronization in modulus space and anti-synchronization in phase space. And the theoretical proof is given based on the Lyapunov stability theory. This proposed scheme is suitable for some real cases that only modulus and phase of complex state variables are measurable.
     (3) By using the semi-tensor product, the linear representations of generalized asynchronous Boolean networks (GABNs) and generalized asynchronous mutilple-valued networks (GAMVNs) are achevied. The dynamical behaviors of GABNs and GAMVNs are investigated analytically. Some results about the fixed points and loose attractors are provided and algorithms to find all of attractors and basins of attrations are given. Based on the algebraic representation, controllability of asynchronous Boolean control networks (ABCNs) is discussed. Firstly, deterministic controllability in ABCNs is discussed. Secondly, via three different kinds of controls, controllability of ABCNs is analytically discussed by revealing the reachable sets, respectively. Examples are shown to demonstrate the feasibility of the related discussions.
引文
[1]郝柏林.从抛物线谈起—混沌动力学引论[M].上海:上海科技教育出版社,1993.
    [2]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [3]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003.
    [4]洛仑兹著.刘式达,刘式适,严中伟译.混沌的本质[M].北京:气象出版社,1997.
    [5]格里博格C.,约克J.A著.杨立,刘巨斌译.混沌对科学和社会的冲击.长沙:湖南科学技术出版社,2001.
    [6]Poincare J. H.著.李醒民译.科学的价值.北京:商务印书馆,2007.
    [7]Kolmogorov A. N. Preservation of conditionally periodic movements with small change in the Hamilton function [J]. Dokl.Akad.Nauk SSSR,1954,98:527-530.
    [8]Lorenz E. N. Deterministic non-periodic flow [J]. Journal of Atmospheric Sciences, 1963,20(5):130-141.
    [9]Ruelle D., Takens F. On the nature of turbulence [J]. Communications in Mathematical Physics,1971,20(3):167-192.
    [10]Li T. Y., Yorke J. Period three implies chaos [J]. American Mathematical Month, 1975,82(10):985-992.
    [11]May R. M. Simple mathematical models with very complicated dynamics [J]. Nature, 1976,261:459-467.
    [12]Felgenbaum M. J. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics,1978,19(1):25-52.
    [13]Packard N. H., Crutehfield J. P., Farmer J. D., et al. Geometry from a time series [J]. Physical Review Letters,1980,45(9):712-716.
    [14]Takens F. Detecting strange attractors in turbulence [J]. Lect. Notes in Math.,1981, 898:366-381.
    [15]Wolf A., Swift J.B., Swinney H. L., et al. Determining Lyapunov exponents from a time series [J]. Physica D,1985,16(3):285-317.
    [16]Linsay P. S. Period doubling and chaotic behavior in a driven anharmonic oscillator [J]. Physical Review Letters,1981,47(19):1349-1352.
    [17]Matsumoto T. A chaotic attractor from chua's circuit [J]. IEEE Transactions on Circuits and Systems,1981,31(12):1055-1058.
    [18]Ott E., Grebogi C., Yorke J. A. Controlling chaos [J]. Physical Review Letters, 1990,64(11):1196-1199.
    [19]Pecora L.M., Carroll T. L. Synchronization in chaotic systems [J]. Physical Review Letters,1990,64(8):821-827.
    [20]Devaney R. L. An introduction to chaotic dynamical systems [M].New York:Addison-Wesley,1989.
    [21]李月,杨宝俊.混沌振子检测引论[M].北京:电子工业出版社,2004.
    [22]关新平,范正平,陈彩莲等.混沌控制及其在保密通信中的应用[M].北京:国防工业出版社,2002
    [23]Eckmann J. P. Roads to turbulence in dissipative dynamics system [J]. Reviews of Modern Physics,1981,53(4):643-654.
    [24]Zhou P., Ding R. Chaotic synchronization between different fractional-order chaotic systems [J]. Journal of the Franklin Institute,2011,348(10):2839-2848.
    [25]Xiao Y. Z., Xu W., Tang S. F., et al. Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch [J].Applied Mathematics and Computation,2009, 213(2):538-547.
    [26]Vaidyanathan S., Sampath S. Anti-synchronization of four-wing chaotic systems via sliding mode control [J]. International Journal of Automation and Computing,2012, 9(3):274-279.
    [27]Zhou X. B., Kong B., Ding H. Y. Synchronization and anti-synchronization of a new hyperchaotic Lu system with uncertain parameters via the passive control technique [J]. Physics Scripts,2012,85(6):065004.
    [28]Mateos J. L., Alatriste F.R. Phases synchronization in tilted inertial ratchets as chaotic rotators [J]. Chaos,2008,18(4):043125.
    [29]Erjaee G. H. On analytical justification of phase synchronization in different chaotic systems [J]. Chaos Solitons & Fractals,2009,39(3):1195-1202.
    [30]Rosenblum M. G., Pikovsky A.S., Kurths J. From phase to lag synchronization in coupled chaotic oscillators [J]. Physical Review Letters,1997,78(22): 4193-4196.
    [31]Shahverdiev E. M., Sivaprakasam S., Shore K. A. Lag synchronization in time-delayed systems [J]. Physics Letter A,2002,292(6):320-324.
    [32]Feng C. F. Projective synchronization between two different time-delayed chaotic systems using active control approach [J]. Nonlinear Dynamics,2010,62(1-2): 453-459.
    [33]孟娟,王兴元.基于模糊观测器的Chua混沌系统投影同步[J].物理学报,2009,58(2):819-823.
    [34]Yuan Z. L., Xu Z. Y., Guo L. X. Generalized synchronization of two bidirectionally coupled discrete dynamical systems [J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(2):992-1002.
    [35]He W. L., Cao J. D. Generalized synchronization of chaotic systems:An auxiliary system approach via matrix measure [J]. Chaos,2009,19(1):013118.
    [36]Du H. Y., Zeng Q. S., Wang C. H. Function projective synchronization in coupled chaotic systems [J]. Nonlinear Analysis:Real World Application,2010,11(2): 705-712.
    [37]Du H. Y., Li F., Meng G. S. Robust function projective synchronization of two different chaotic systems with unknown parameters [J]. Journal of the Franklin Institute,2011,348(10):2782-2794.
    [38]Du H. Y., Zeng Q. S., Lu N. A general method for modified function projective lag synchronization in chaotic systems [J]. Physics Letter A,2010,374(13-14): 1493-1496
    [39]Yu Y. G., Li H. X., Adaptive generalized function projective synchronization of uncertain chaotic systems [J]. Nonlinear Analysis:Real World Applications,2010, 11(4):2456-2464
    [40]罗晓曙.混沌控制、同步的理论与方法及其应用[M].桂林:广西师范大学出版社,2007.
    [41]Kolcarev L., Parlitz U. General approach for chaotic synchronization with application to communication [J]. Physical Review Letters,1995,5(25):5028-5031.
    [42]Hidde de Jong, Modeling and simulation of genetic regulatory system:a literature review [J]. Journal of Computational Biology,2002,9(1):67-103.
    [43]McAdams H.H., Shapiro L. Circuit simulation of genetic networks [J]. Science, 1995,269(5224):650-656.
    [44]Waidrop M.M.著,陈玲译.复杂[M].北京:三联书店,1997.
    [45]Kauffman S. A. Metabolic stability and epigenesis in randomly constructed genetic nets [J]. Journal of Theoretical Biology,1969,22(3):437-467.
    [46]Li F. T., Long T., Lu Y., Ouyang Q., Tang C. The yeast cell-cycle network is robustly designed [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(14):4781-4786.
    [47]Hu J., Qin K. R., Xiang C., et al. Modeling of hysteresis in gene regulatory networks [J]. Bulletin of mathematical biology,2012,74(8):1727-1753.
    [48]Lynch V.J., Leclerc R.D., May G., et al. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals [J]. Nature genetics,2011,43(11):1154-1159.
    [49]Dubrova E., Teslenko M. Compositional properties of random Boolean networks [J]. Physical Review E,2005,71(5):056116.
    [50]Chen S. T., Tseng H. C., Wang S. C. Investigation of the dynamics of critical k=2 Kauffman networks using second-order loops [J]. Journal of the Physical Society of Japan,2008,77(9):094002.
    [51]Lloyd-Price J., Gupta A., Ribeiro A. S. Robustness and information propagation in attractors of Random Boolean Networks [J]. PLOS ONE,2012,7(7):e42018.
    [52]Akutsu T., Kosub S., Melkman A. A., et al. Finding a periodic attractor of a Boolean network [J]. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2012,9(5):1410-1421.
    [53]Klemm K., Bornholdt S. Stable and unstable attractors in Boolean networks [J]. Physical Review E,2005,72(5):055101.
    [54]Aldana M. Boolean dynamics of networks with scale-free topology [J]. Physica D, 2003,185(1):45-66.
    [55]Krawitz P., Shmulevichl. Basin entropy in Boolean network ensembles [J]. Physical Review Letters,2007,98(15):158701.
    [56]Moeller M., Drossel B. Scaling laws in critical random Boolean networks with general in-and out-degree distributions [J]. Physical Review E,2013, 87(5):052106.
    [57]Moeller M., Drossel B. The formation of the frozen core in critical Boolean networks [J]. New Journal of Physics,2012,14(2):023051.
    [58]Drossel B., Greil F. Critical Boolean networks with scale-free in-degree distribution [J]. Physical Review E,2009,80(2):026102.
    [59]Kaufman V., Drossel B. Relevant components in critical random Boolean networks [J]. New Journal of Physics,2006,8:228.
    [60]Samuelsson B., Troein C. Superpolynomial growth in the number of attractors in Kauffman networks [J]. Physical Review Letters,2003,90(9):098701.
    [61]Kaufman V., Mihaljev T., Drossel B. Scaling in critical random Boolean networks [J]. Physical Review E,2005,72(4):046124.
    [62]Shmulevich I., Kauffman S. A. Activities and sensitivities in Boolean network models [J]. Physical Review Letters,2004,93(4):08701.
    [63]程代展,齐洪胜,赵寅.布尔网络的分析与控制:矩阵半张量积方法[J].自动化学报,2011,37(5):529-540.
    [64]Cheng D., Qi H. Controllability and observability of Boolean control networks [J]. Automatica,2009,45(7):1659-1667.
    [65]Cheng D., Li Z. Q., Qi H. Realization of Boolean control networks [J]. Automatica, 2010,46(1):62-69.
    [66]Cheng D., Qi H., Li Z. Analysis and control of Boolean networks:A Semi-Tensor Product Approach [M]. London:Springer-Verlag,2011.
    [67]Laschov D., Margaliot M. A maximum principle for single-input Boolean control networks [J]. IEEE Transactions on Automatic Control,2001,56(4):913-917.
    [68]Xue A., Mei S. A new transient stability margin based on dynamic security region and its applications [J]. Science in China, Series E:Technological Sciences,2008, 51 (6):750-760.
    [69]Li F. F., Sun J. T., Wu Q. D. Observability of Boolean control networks with state time delays [J]. IEEE Trans. Neural Networks,22(6):948-954.
    [70]程代展,齐洪胜,赵寅.矩阵的半张量积—理论与应用[M].北京:科学出版社,2011.
    [71]Vinagre B. M., Feliu V. Modeling and control of dynamic system using fractional calculus:Application to electrochemical processes and flexible structures [C].Proc.41st IEEE Conf. Decision and Control,2002,1:214-239.
    [72]Magin R. L. Fractional calculus in bioengineering [M]. Redding:Begell House,2006.
    [73]Ross B. Fractional calculus and its applications:proceedings of the international conference held at the University of New Haven, June,1974 [M]. Springer,1975.
    [74]Stratton J.A. Electromagnetic theory [M]. Wiley.com,2007.
    [75]Bagley R. L., Calico R.A. Fractional order state equations for the control of viscoelasticallydamped structures [J]. Journal of Guidance, Control, and Dynamics, 1991,14(2):304-311.
    [76]Hartley T. T., Lorenzo C. F., Killory Qammer H. Chaos in a fractional order Chua's system [J]. IEEE Transactions on Circuits and Systems I,1995,42(8):485-490.
    [77]Arena P, Caponetto R, Fortuna L, et al. Chaos in a fractional order Duffing system [C]. Proceedings ECCTD, Budapest.1997:1259-1262.
    [78]Ahmad W. M., Sprott J. C. Chaos in fractional-order autonomous nonlinear systems [J]. Chaos, Solitons & Fractals,2003,16(2):339-351.
    [79]Li C., Chen G. Chaos in the fractional order Chen system and its control [J]. Chaos, Solitons & Fractals,2004,22(3):549-554.
    [80]Zhang W., Zhou S., Li H., et al. Chaos in a fractional-order Rossler system [J]. Chaos, Solitons & Fractals,2009,42(3):1684-1691.
    [81]Sun K., Wang X., Sprott J. C. Bifurcations and chaos in fractional-order simplified Lorenz system [J]. International Journal of Bifurcation and Chaos,2010,20(04): 1209-1219.
    [82]Rolddn E., De Valcarcel G. J., Vilaseca R., et al. Single-mode-laser phase dynamics [J]. Physical Review A,1993,48(1):591.
    [83]Ning C., Haken H.. Detuned lasers and the complex Lorenz equations:Subcritical and supercritical Hopf bifurcations [J]. Physical Review A,1990,41(7):3826.
    [84]Toronov V. Y., Derbov V. L. Boundedness of attractors in the complex Lorenz model [J]. Physical Review E,1997,55(3):3689-3692.
    [85]Mahmoud G. M., Al-Kashif M. A., Aly S. A. Basic properties and chaotic synchronization of complex Lorenz systems [J]. International Journal of Modern Physics C,2007,18(2):253-265.
    [86]Mahmoud G. M., Bountis T., Mahmoud E. E. Active control and global synchronization of the complex Chen and Lu systems [J]. International Journal of Bifurcation and Chaos,2007,12(17):4295-4308.
    [87]Mahmoud E. E. Dynamics and synchronization of new hyperchaotic complex Lorenz system [J]. Mathematical and Computer Modelling,2012,55(7):1951-1962.
    [88]Fowler A. C., Gibbon J. D., McGuinness M. J. The complex Lorenz equations [J]. Physica D,1982,4(2):139-163.
    [89]Oldham K. B., Spanier J. The fractional calculus [M]. New York:Academic press, 1974.
    [90]Podlubny I. Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications [M]. Access Online via Elsevier,1998.
    [91]Diethelm K., Ford N. J., Freed A. D. A predictor-corrector approach for the numerical solution of fractional differential equations [J]. Nonlinear Dynamics,2002, 29(1-4):3-22.
    [92]Zhou X, Wu Y, Li Y, et al. Hopf bifurcation analysis of the Liu system [J]. Chaos, Solitons & Fractals,2008,36(5):1385-1391.
    [93]Marsden J. E., McCracken M. The Hopf bifurcation and its applications [M]. Springer-Verlag,1976.
    [94]Chen G., Ueta T. Yet another chaotic attractor [J]. International Journal of Bifurcation and Chaos,1999,9(07):1465-1466.
    [95]Podlubny I. Geometric and physical interpretation of fractional integral and fractional derivatives [J]. Fractional Calculus & Applied Analysis,2002, 5 (4):367-386.
    [96]Adda F B. Geometric interpretation of the fractional derivative [J]. Journal of Fractional Calculus,1997,11:21-52.
    [97]Hilfer R. Fractional time evolution [J]. Applications of fractional calculus in physics,2000:87-130.
    [98]Kiani-B. A., Fallahi.K., Pariz. N., et al. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(3): 863-879.
    [99]Li R., Xu W., Li S. Adaptive generalized projective synchronization in different chaotic systems based on parameter identification [J]. Physics Letters A,2007, 367(3):199-206.
    [100]Xin L., Yong C. Generalized projective synchronization between Rossler system and new unified chaotic system [J]. Communications in Theoretical Physics,2007, 48(1):132.
    [101]Park J. H. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter [J]. Chaos, Solitons & Fractals,2007,34(5): 1552-1559.
    [102]Min F. H., Wang Z. Q. Generalized projective synchronization of two four-dimensional chaotic systems [J]. Acta Physica Sinica,2007,56 (11):6238-6244.
    [103]Li N., Li J. F. Generalized projective synchronization of chaotic system based on a single driving variable and its application in secure communication [J]. Acta Physica Sinica,2008,57(10):6093-6098.
    [104]Peng G., Jiang Y., Chen F. Generalized projective synchronization of fractional order chaotic systems [J]. Physica A,2008,387(14):3738-3746.
    [105]Cai N., Jing Y., Zhang S. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(6):1613-1620.
    [106]Wang X.Y., Wang M. J. Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems [J]. Nonlinear Dynamics,2010,62(3):567-571.
    [107]Wang X. Y., Li X. G. Projective synchronization of a class of chaotic systems based on observer [J]. International Journal of Modern Physics B,2011,25(28):3765-3771.
    [108]Du H., Zeng Q., Wang C. Function projective synchronization of different chaotic systems with uncertain parameters [J]. Physics Letters A,2008,372(33):5402-5410.
    [109]Sebastian K. S., Sabir M. Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system [J]. Physics Letter A,2011, 375(8):1176-1178
    [110]Zheng S., Dong G., Bi Q. Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(11):3547-3556.
    [111]Yu Y., Li H. X. Adaptive generalized function projective synchronization of uncertain chaotic systems [J]. Nonlinear Analysis:Real World Applications,2010, 11(4):2456-2464.
    [112]Wu R., Cao D. Function projective synchronization of chaotic systems via nonlinear adaptive-impulsive control [J]. International Journal of Modern Physics C,2011, 22(11):1281-1291.
    [113]Ho M. C., Hung Y. C., Liu Z. Y., et al. Reduced-order synchronization of chaotic systems with parameters unknown [J]. Physics Letters A,2006,348(3):251-259.
    [114]Kakmeni F. M., Bowong S., Tchawoua C. Reduced-order synchronization of uncertain chaotic systems via adaptive control [J]. Communications in Nonlinear Science and Numerical Simulation,2006,11 (7):810-830.
    [115]Sudheer K. S., Sabir M. Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters [J]. Physics Letters A,2009,373(41):3743-3748.
    [116]RosslerO. E. An equation for continuous chaos [J]. Physics Letters A,1976,57(5): 397-398.
    [117]Li H., Liao X., Luo M. A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation [J]. Nonlinear Dynamics,2012,68(1-2):137-149.
    [118]Pan L., Zhou W., Fang J., et al. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control [J]. Communications in Nonlinear Science and Numerical Simulation, 2010,15(12):3754-3762.
    [119]Wang X. Y., Hu Z. W. Projective synchronization of fractional order chaotic systems based on state observer [J]. International Journal of Modern Physics B,2012, 26(30):1250176.
    [120]Wang X. Y., Wang M. Dynamic analysis of the fractional-order Liu system and its synchronization [J]. Chaos,2007,17(3):033106.
    [121]Wang D. F., Zhang J. Y., Wang X. Y. Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller [J]. Chinese Physics B,2013,22(4):0507.
    [122]Liu J. G. A novel study on the impulsive synchronization of fractional-order chaotic systems [J]. Chinese Physics B,2013,22(6):060510.
    [123]Charef A., Sun H. H., Tsao Y. Y., et al. Fractal system as represented by singularity function [J]. IEEE Transactions on Automatic Control,1992,37(9):1465-1470.
    [124]Ahmad W.M., Harb A.M. On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J]. Chaos, Solitons & Fractals,2003,18(4): 693-701.
    [125]Liu P., Liu S. T. Anti-synchronization between different chaotic complex systems [J]. Physica Scripta,2011,83(6):065006.
    [126]Liu P., Liu S. T., Li X. Adaptive modified function projective synchronization of general uncertain chaotic complex systems [J]. Physica Scripta,2012,85(3): 035005.
    [127]Mahmoud G. M., Mahmoud E. E., Ahmed M. E. A hyperchaotic complex Chen system and its dynamics [J]. International Journal of Applied Mathematics and Statistics, 2007,12(D07):90-100.
    [128]Mahmoud G. M., Mahmoud E. E., Ahmed M. E. On the hyperchaotic complex Lu system [J]. Nonlinear Dynamics,2009,58(4):725-738.
    [129]Mahmoud G. M., Mahmoud E. E. Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems [J]. Nonlinear Dynamics,2010,61(1-2): 141-152.
    [130]Nian F., Wang X., Niu Y., et al. Module-phase synchronization in complex dynamic system [J]. Applied Mathematics and Computation,2010,217(6):2481-2489.
    [131]Mahmoud E. E. Dynamics and synchronization of new hyperchaotic complex Lorenz system [J]. Mathematical and Computer Modelling,2012,55(7):1951-1962.
    [132]Drossel B. Random Boolean Networks [J]. Reviews of nonlinear dynamics and complexity,2008,1:69.
    [133]Kauffman S. The origins of order:Self organization and selection in evolution [M]. New York:Oxford University Press,1993.
    [134]Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities [J]. Proceedings of the national academy of sciences,1982, 79(8):2554-2558.
    [135]Dellaert F., Beer R. D. Toward an evolvable model of development for autonomous agent synthesis [C]. Artificial Life IV, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems. Cambridge, USA,1994: 246-257.
    [136]Harvey I., Bossomaier T. Time out of joint:Attractors in asynchronous random boolean networks [C]. Proceedings of the Fourth European Conference on Artificial Life. MIT Press, Cambridge,1997:67-75.
    [137]Di Paolo E. A. Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks [J]. BioSystems,2001,59(3):185-195.
    [138]Garg A., Xenarios I., Mendoza L, et al. An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments [C].11th Annual International Conference on Research in Computational Molecular Biology. Oakland, CA,2007:62-76.
    [139]Bertrand M., Christof T. Critical values in asynchronous random Boolean networks [C].7th European Conference on Artifical Life, Dortmund, Germany,2003:367-376.
    [140]Shreim A., Berdahl A., Greil F., et al. Attractor and basin entropies of random Boolean networks under asynchronous stochastic update [J]. Physical Review E,2010, 82(3):035102.
    [141]Skodawessely T., Klemm K. Finding attractors in asynchronous Boolean dynamics [J]. Advances in Complex Systems,2011,14(3):439-449.
    [142]Hallinan J., Wiles J. Asynchronous dynamics of an artificial genetic regulatory network [C].9th International Conference on the Simulation and Synthesis of Artificial Life. Boston, MA,2004:399-403.
    [143]Greil F, Drossel B. Dynamics of critical Kauffman networks under asynchronous stochastic update [J]. Physical Review Letters,2005,95(4):048701.
    [144]Deng X., Geng H., Matache M. T. Dynamics of asynchronous random Boolean networks with asynchrony generated by stochastic processes [J]. Biosystems,2007,88(1): 16-34.
    [145]Greil F., Drossel B., Sattler J. Critical Kauffman networks under deterministic asynchronous update [J]. New Journal of Physics,2007,9(10):373.
    [146]Gershenson C. Classification of random boolean networks [J]. Artificial Life, 2003,8:1-8.
    [147]Cheng D., Qi H. A linear representation of dynamics of Boolean networks [J]. IEEE Transactions on Automatic Control,2010,55(10):2251-2258.
    [148]Li F. F., Sun J. T. Controllability of probabilistic Boolean control networks [J]. Automatica,2011,47(12):2765-2771.
    [149]Yang M., Li R., Chu T. G. Controller design for disturbance decoupling of Boolean control networks[J]. Automatica,2013,49(1):273-277.
    [150]Gonze D., Goldbeter A. A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks [J]. Journal of theoretical biology,2001,210(2):167-186.
    [151]Heidel J., Maloney J., Farrow C., et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems [J]. International Journal of Bifurcation and Chaos,2003,13(3):535-552.
    [152]Goldbeter A. Modelling Biochemical oscillations and cellular rhythms [J]. Current Science,1997,73(11):933-939.
    [153]Aubry L., Firtel R. Integration of signaling networks that regulate Dictyostelium differentiation [J]. Annual review of cell and developmental biology,1999,15(1): 469-517.
    [154]Aldana M., Coppersmith S., Kadanoff L. P. Boolean dynamics with random couplings [M]. Perspectives and Problems in Nonlinear Science. New York:Springer, 2003:23-89.
    [155]Dubrova E. Random multiple-valued networks:Theory and applications[C].36th International Symposium on Multiple-Valued Logic, Singapore,2006:159-164.
    [156]Steggles L. J. Abstracting asynchronous multi-Valued networks:An initial investigation [J]. arXiv preprint, arXiv:1108.3433,2011.
    [157]Clarke E. M, Grumberg O., Long D. E. Model checking and abstraction [J]. ACM Transactions on Programming Languages and Systems (TOPLAS),1994,16(5): 1512-1542.
    [158]Banks R., Steggles L. J. A high-level Petri net gramework for genetic regulatory networks [J]. Journal of Integrative Bioinformatics,2007,4(3):60.
    [159]Dubrova E., Teslenko M., Ming L. Finding attractors in synchronous multiple-valued networks using SAT-based bounded model checking [C].40th IEEE International Symposium on Multiple-Valued Logic, Barcelona, Spain,2010: 144-149.
    [160]Garg A., Mendoza L., Xenarios I., et al. Modeling of multiple valued gene regulatory networks [C].29th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, Lyon, France,2007:1398-1404.
    [161]Naldi A., Thieffry D., Chaouiya C. Decision diagrams for the representation and analysis of logical models of genetic networks[C].5th International Conference on Computational Methods in Systems Biology. Edinburgh, Scotland,2007:233-247.
    [162]Farrow C., Heidel J., Maloney J, et al. Scalar equations for synchronous Boolean networks with biological applications [J]. IEEE Transactions on Neural Networks, 2004,15(2):348-354.
    [163]Akutsu T., Hayashida M., Ching W. K., et al. Control of Boolean networks:hardness results and algorithms for tree structured networks [J]. Journal of Theoretical Biology,2007,244(4):670-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700