用户名: 密码: 验证码:
超级稻协优9308根系相关性状QTLs的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上最重要的粮食作物之一,水稻根系具有固定植株、吸收水分和养分、合成运输有机物质等众多重要功能,根系形态改变会影响到植株的生长和发育,间接地影响着水稻产量、品质、抗性等性状的表现。因此,有必要对水稻根系形态建成的遗传规律有个全面深入认识,才有望将根系研究应用于超高产育种中。本研究以恢复系R9308为受体亲本,保持系协青早B为供体亲本,建立染色体片段代换系、协优9308重组自交系及重组自交系与R9308的回交群体为试验材料,在水培条件下对水稻抽穗期株高、根长、根干重和地上部干重等性状进行了QTL定位,并对根长、根表面积、根直径、根体积和根尖数等性状主效QTLs进行了分离鉴定与精细定位,主要研究结果如下:
     1.以超级稻协优9308的恢复系R9308为受体亲本,保持系协青早B为供体亲本,通过多代回交与分子标记辅助选择的方法,初步建立了包含68个株系的染色体片段代换系群体。68个株系中有14个在BC3F2中获得,54个在BC4F2中获得。除去目标导入片段外,68个株系共包含49个杂合导入区段,每个株系除目标导入片段外含有的杂合片段为0~3个,其中28个株系为单片段代换系,30个株系含有1个杂合片段,9个株系含有2个杂合片段,1个株系含有3个杂合片段,平均每个株系含有0.72个杂合片段。除第3染色体标记RM3278与Indel51间,以及每条染色体的两端稍有缺失外,代换片段覆盖水稻全基因组的绝大部分区域,覆盖长度超过水稻全基因组全长90%。这些染色体代换系的代换片段包含了水稻基因组丰富的等位基因变异信息,将在基因(QTL)的定位、克隆、功能分析及水稻分子育种中发挥重要作用。
     2.以超级稻协优9308衍生RIL与轮回亲本R9308配制的BC1F1群体(150个株系)为材料,采用水上种稻技术,于抽穗期对株高、根长、根干重以及地上部植株干重等4个性状进行QTL定位。4个性状共检测到9个QTLs,分布于第6、7、8、10和11染色体上,其中株高3个,根长2个,根干重2个,地上部植株干重2个,单个QTL可解释的表型贡献率介于7.92%~21.49%之间。其中qRL7的贡献率达到18.14%,结合本研究小组之前的定位结果,所以选择qRL7进行精细定位。
     3.从构建染色体片段代换系的高代回交群体中结合分子标记辅助选择筛选2个BC3F2群体为材料,对根长主效QTL-qRL7进行精细定位。两个群体共筛选到358个隐性单株,利用具有多态性的9个Indel分子标记进行定位,最后将qRL7定位在标记Indelll与Indel17间,两者之间的物理距离为657.35kb,依据Rice Annotation Project (RAP3)数据库http://rapdb.dna.affrc.go.jp/),在此区间qRL7有96个候选基因,需进一步开展精确预测qRL7的候选基因工作。
     4.从高代回交群体内挑选株系为试验材料,采用水稻种稻技术,结合根系扫描方法,对根系4个相关性状主效QTLs进行了分离鉴定与精细定位。将控制根系表面积主效QTL-qRSA7定位在第七染色体分子标记InDell-15与InDell-27之间,两个标记间的物理距离为1578.4kb,候选基因超过100个;根直径主效QTL-qRD7定位在第七染色体InDel2-13与InDel2-25之间,两个标记间的物理距离为185.5kb,该区域包含25个基因;根体积主效QTL-qRV8定位在第八染色体InDel3-11与InDel3-20之间,两个标记间的物理距离较大,包含的基因超过100个;根尖数主效QTL-qRT7定位在第七染色体InDe14-17与InDel4-29之间,两个标记间的物理距离为972.1kb,候选基因超过100个。
     5.以超级稻协优9308衍生重组自交系RILs(174个株系)、亲本和F1为材料,分别于2010年夏季种植于中国水稻所富阳试验基地和2011年春季种植于中国水稻所海南陵水南繁试验基地,通过考察抽穗期表型,结合分子遗传连锁图谱,利用winQTL Cart3.0软件对数据进行分析。共检测到12个显著影响抽穗期的QTL,分布于第1、2、4、5、6、7、8、10等8条染色体上,单个QTL可解释的表型贡献率介于4.25%-15.12%之间。其中qHD7-1两年都能够稳定检测到,且贡献率较大,分别达到了15.12%和13.31%,加性效应来自母本协青早B。
     6.依据RILs初定位结果,结合分子标记辅助选择,从高代回交群体内挑选8个代换区段包含qHD7-1所在区间的BC3F3株系为试验材料,对qHD7-1进行分离鉴定与精细定位。最后将qHD7-1定位在第七染色体分子标记InDe123与InDe143之间,两个标记间的物理距离为418kb,包含61个基因。因为qHD7-1的形态学特性和生理特征还不清楚,qHD7-1的候选基因需进一步分析。
Rice is one of the major food sources in the world; roots play multiple roles in anchorage of the whole plant, absorbing soil moisture and nutrient, synthetic transportation of amino acids, plant hormones and other bioactive substances during course of the growth and development of plant, and indirectly determined the grain yields, grain quality and lodging resistance et al. Therefore, it is necessary to understand the inheritance of rice root traits, and it is possible to make root studies benefit to rice super high yield breeding. Identification of rice root traits key genes is important for understanding the development of root, and it is great important for creating new rice ideotype. In this study, chromosome segment substitution lines (CSSLs) derived from a cross between R9308(the recurrent parent) and XB (the donor parent) of Xieyou9308, QTLs of plant height, root length, dry weight of root and dry weight of shoots were investigated at heading stage, identification and fine mapping QTLs of root length, root superficial area, root diameter, root volume and number of root tips. The main results were as follows.
     1. A novel population consisted of sixty eight chromosome segment substitution lines (CSSLs) were developed from advanced backcrosses between R9308(the recurrent parent) and XB (the donor parent) of a super hybrid rice Xieyou9308by molecular marker-assisted selection (MAS). Fourteen strains of CSSLs were selected in BC3F2, and the other fifty four were selected in BC4F2. There were redundant forty nine segments among sixty eight CSSLs except for these target segments, each line carried0-3redundant segments. Twenty eight strains were single segment substitution lines and carried no redundant segments; one redundant segment was carried in each line of these thirty lines, two redundant segment were carried in each line of these nine lines, and three redundant segment were carried in one line, each line carried an average of0.72segments. The CSSLs totally represented the whole genome of nipponbare except for RM3278and Inde151on chromosome3and some deletion in both end of every chromosome, the whole length of substitution segments was more than90%to the whole genome of nipponbare. There were a lot of messages of allelic variations in these CSSLs, and it will play an important role in the study of functional genomics and molecular breeding in rice.
     2. A total of150BC1F1lines were developed from a cross between R9308and RILs (derived from single-seed-descent method), application of floating culture methods on natural waters to investigate QTLs associated with plant height, root length, dry weight of root and dry weight of shoots of rice in heading stage. A whole of nine QTLs of four traits were detected, they were distributed on chromosome6,7,8,10and11. Three QTLs associated with plant height, two QTLs for root length, dry weight of root and dry weight respectively, and each QTL could explain phenotypic variation was7.92%to21.49%. One major QTL was detected for root length and explained18.14%of the root length phenotypic variation, designated as qRL7. Comparative analysis the QTLs mapping result in early, qRL7was selected for further study.
     3. Two BC3F2lines in which recombination had occurred within the region containing the target QTL were selected to fine mapping the major QTL of qRL7. There were358recessive individuals in these two populations, nine Indel markers which showed a polymorphism between XB and R9308when assayed by gel electrophoresis were used to fine mapping qRL7. The qRL7was finally mapped to a657.35kb region between markers InDel11and InDel17, The Rice Annotation Project RAP3database (http://rapdb.dna.affrc.go.jp/) predicts96genes in the candidate region for qRL7. It is difficult to predict the candidate gene for qRL7, because of candidate gene was too many.
     4. Many BC3F3lines in which recombination had occurred within the region containing the target QTLs were selected and application of floating culture methods on natural waters to identify and fine mapping QTLs associated with these root traits. The major QTL-qRSA7associated with root superficial area was located between markers InDell-15and InDell-27, the candidate genomic region of qRSA7spans1578.4kb in the Nipponbare genome, and candidate genes were more than one hundred. The major QTL-qRD7of root diameter was mapped between markers InDel2-13and InDel2-25, there were twenty five genes in this region. The major QTL-qRV8associated with root volume was located between markers InDel3-11and InDel3-20on chromosome8, the candidate genomic region of qRV8spans a large region in the Nipponbare genome, and candidate genes were more than one hundred. The major QTL of qRT7associated with number of root tips was located between markers InDel4-17and InDe14-29, the physical distance between these two markers was972.1kb, the candidate genes was more than one hundred.
     5. A RILs population (174lines) was developed from a cross between R9308and XB, the parents and F1were planted in Zhejing Fuyang and Hainan Lingshui in rice-growing season of2011, phenotype of heading date at the two environments with molecular genetic linkage map, used winQTL Cart3.0software, was developed for mapping and analyzing the QTLs. A total of12QTL significantly affect heading date were located in chromosome1,2,4,5,6,7, 8and10, the detected QTL individually accounted for4.25%-15.12%of the phenotypic variation. qHD7-1relatively stable expression, had been detected at two environments of trials in Fuyang and Lingshui, accounted for the phenotypic variation ranged from15.12%to13.31%, which positive allele came from the parent of XB.
     6. Comparative analysis the QTLs mapping results from RILs in early, eight BC3F2lines in which recombination had occurred within the region containing the target QTL with marker assisted selection (MAS) were selected to identify and fine mapping the major QTL of qHD7-1. The qHD7-1was finally mapped to a418kb region between markers InDe123and InDe143, The Rice Annotation Project RAP3database (http://rapdb.dna.affrc.go.jp/) predicts61genes in the candidate region for qHD7-1. It is difficult to predict the accurate candidate gene for qHD7-1, because morphological properties and physiological characteristics of qHD7-1were not understood well. The next work was to narrow the qHD7-1candidate region by using CSSLs until to find this gene, and transgenic function confirmation should be investigated.
引文
[1]常学秀,段昌群,王焕校.根分泌作用与植物对金属毒害的抗性.应用生态学报,2000,11(2):315-320.
    [2]陈冬梅,林文雄.水稻化感作用研究现状与展望.福建农业大学学报,2000,29(3):281-285.
    [3]陈温福,徐正进,张文忠,等.水稻新株型创造与超高产育种.作物学报,2001,27(5):665-672.
    [4]程式华,廖西元,闵绍楷.中国超级稻研究:背景目标和有关问题的思考.中国稻米,1998,1:3-5.
    [5]程式华,李健.2007.现代中国水稻.北京:金盾出版社.
    [6]程式华,庄杰云,曹立勇,等.2004.超级杂交稻分子育种研究.中国水稻科学,18(5):377-383.
    [7]丁颖.1957.中国栽培稻种起源及其演变.农业学报,8(3):243-260.
    [8]段留生,韩碧文,何钟佩.器官间关系对叶片衰老的影响.植物学通报,1998,15(1):43-49.
    [9]冯跃,曹立勇,吴伟明等.2010.水稻苗期不同阶段与低氮耐性相关的QTL分析.植物营养与肥料学报,16(4):880-886.
    [10]方福平,程式华.2009.论中国水稻生产能力.中国水稻科学,23:559-566.
    [11]何风华,席章营,曾瑞珍等.2005.利用高代回交和分子标记辅助选择建立水稻单片段代换系.遗传学报,32(8):825-8531.
    [12]黄益峰.2006.水稻粒形和粒重QTL的鉴定、聚合和上位性分析.广州:华南农业大学.
    [13]黄荣峰,王学臣.气孔运动机理研究进展.应用与环境生物学报,1996,2(3):320-325.
    [14]川田信一郎.申廷秀,刘执钧,彭望瑗,译.水稻的根系.北京:农业出版社,1984.
    [15]江铃,曹雅君,王春明等.2003.利用RIL和CSSL群体检测水稻种子休眠性QTL.遗传学报,30(5):453-458.
    [16]刘芷宇.根际微域环境的研究.土壤,1993,(5):225-230.
    [17]刘冠明,李文涛,曾瑞珍等.2003.水稻亚种间单片段代换系的建立.中国水稻科学,17(3):201-204.
    [18]毛传澡,程式华.1999.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,7(4):386-394.
    [19]欧阳恋.2006.基于SSSL的水稻品质基因的鉴定、定位和聚合.广州:华南农业大学.
    [20]潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20.
    [21]全国野生稻资源考察协作组.1984.我国野生稻资源的普查和考察.中国农业科学,6:27-34.
    [22]沈希宏,曹立勇,陈深广等.2009.超级杂交稻协优9308重组自交系群体的穗部性状QTL分析.中国水稻科学,23(4):354-362.
    [23]沈希宏,曹立勇,邵国胜等.2008.水稻籽粒中5种微量元素含量的QT L定位.分子植物育种,6(6):1061-1067.
    [24]石庆华.大穗型水稻根系生长特性与产量形成的研究.江西农业大学学报,1988,10:52-62.
    [25]孙静文,陈温福,藏春明等.水稻根系研究进展.沈阳农业大学学报,2002,33(6):466-470.
    [26]滕胜,曾大力,钱前等.水稻根系活力的遗传分析.中国水稻科学,2002,16(2):119-122.
    [27]万建林,翟虎渠,万建民等.2003.利用粳稻染色体片段置换系检测水稻抗亚铁毒胁迫有关性状QTL.遗传学报,30(10):593-595.
    [28]万向元,刘世家,王春明等.2004.利用CSSLs群体研究稻米粒型QTL的表达稳定性.遗传学报,31(11):1275-1253.
    [29]王恒彬,张蜀秋,王学臣等.乙酰胆碱在植物根冠间信息传递中的作用.科学通报,2003,48(7):691-693.
    [30]王立秋,赵永锋,薛亚东等.2007.玉米衔接式片段导入系群体的构建和评价.作物学报,33(4):663-668.
    [31]王象坤,程佩声.1987.亚州栽培稻起源演化中两个重要稻种类型的研究.遗传学报,14(4):262-270.
    [32]翁建峰,万向元,吴秀菊等.2006.利用染色体片段置换系群体研究稻米Ac和Pc相关QTL表达稳定性.作物学报,32(1):14-19.
    [33]吴伟明,宋祥甫,邹国燕.2000.利用水上栽培方法研究水稻根系.中国水稻科学,14(3):189-192.
    [34]席章营,吴建宇.2006.作物次级群体的研究进展.农业生物技术学报,14(1):128-134.
    [35]邢永忠,徐才国,华金平等.2001.水稻株高和抽穗期基因的定位和分离.植物学报,43(7):721-726.
    [36]徐华山.2006.以优良恢复系9311为背景的重叠导入系的构建及导入效应的研究.[硕士学位论文].武汉:华中农业大学图书馆.
    [37]徐吉臣,邹亮星.利用相关性分析鉴定与水稻根系性状表达相关的分子标记.遗传学报,2002,29(3):245-249.
    [38]严长杰,顾铭洪.2000.高代回交QTL分析与水稻育种.遗传,22(6):419-422.
    [39]杨守仁,张龙步,陈温福等.水稻超高产育种的理论与方法.作物学报,1996,22(3):295-304.
    [40]杨仁崔.IRRI超级稻研究进展.世界农业,2000,249(1):26-27.
    [41]于振文.2003.作物栽培学各论.北京:中国农业出版社,141.
    [42]余传元,万建民,翟虎渠等.2005.利用染色体片段置换系研究水稻釉粳亚种间产量性状的杂种优势.科学通报,50(1):32-37.
    [43]余四斌,穆俊祥,赵胜杰等.2005.以珍汕97B和9311为背景的导入系构建及其筛选鉴定.分子植物育种,3(5):629-636.
    [44]曾瑞珍,施军琼,黄朝锋等.2006.籼稻背景的单片段代换系群体构建.作物学报,32(1):88-95.
    [45]张书红,2007.玉米单片段代换系群体的构建和玉米矮花叶病抗病基因的定位.硕士学位论文. 河南农业大学.
    [46]赵全志,李梦琴,刘慧超等.粳稻品质与株型的关系研究.河南农业大学学报,2003,37(1):13-17.
    [47]赵芳明,张贵权,曾瑞珍等.2009.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应.作物学报,35(1):46-56.
    [48]周季维.1981.长江中下游发掘出土稻谷考察报告.云南农业科技.第6期.
    [49]朱军.遗传学.第三版.北京:中国农业出版社,2002.
    [50]周红菊.2009.籼粳亚种间染色体片段代换系的构建及其产量性状杂种优势效应研究.博士学位论文.武汉:华中农业大学图书馆.
    [51]Aida Y, H. Tsunematsu, K. Doi, et al.1997. Development of a series of introgression lines of japonica in the background of indica rice. Rice Genet Newsl,14:41-43.
    [52]Armenta-soto J.1982. A new method of studying root system. IRR Newsletter,7:28.
    [53]Baum S. F, J. G. Dubrovsky, T. L. Rost.2002. Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Ann Bot,89:908-20.
    [54]Berruyer R, H. Adreit, J. Milazzo, S. Gaillard, A. Berger, W. Dion, M. H. Lebrun and D. Tharreau. 2003. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics,107:1139-1147
    [55]Boerjan W, M. T. Cervera, M. Delarue, T. Beeckman, W. Dewitte, C. Bellini, et al.1995. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell,7:1405-1419.
    [56]Bohm W.1979. Methods of studying root system. Berlin:Springer.
    [57]Bughio N, Yamaguchi H, Naoko K, et al. Cloning an iron-regulated metal transporter from rice. J Exp Bot,2002,53:1677-1682.
    [58]Chaw S. M, C. C. Chang, H. L. Chen and W. H. Li.2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. Mol Evol,58:424-441.
    [59]Chhun T, S. Takeda, S. Tsurumi and M. Ichii.2003. The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrtl of rice (Oryza sativa L.). Plant Growth Regul 39:161-170.
    [60]Choi H, A. Kieinhofs and G. An.1989. Nucleotide sequence of rice nitrate reductase genes. Plant Molecular Biology,13:731-733.
    [61]Clowes F. A. L.1994. Origin of the epidermis in root meristems. New Phytol,127:335-347.
    [62]Clowes F. A. L.2000. Pattern of root meristem development in angiosperms. New Phytol,146: 83-94.
    [63]Conte M. G, S. Gaillard, G. Droc and C. Perin.2008a. Phylogenomics of plant genomes:a methodology for genome-wide searches for orthologs in plants. BMC Genom,9:183.
    [64]Conte M. G, S. Gaillard, N. Lanau, M. Rouard and C. Perin.2008b. Green-Phy1DB:a database for plant comparative genomics. Nucleic Acids Res,36:991-998.
    [65]Cui H, M. P. Levesque, T. Vernoux, J. W. Jung, A. J. Paquette, K. L. Gallagher, et al.2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science,316:421-425.
    [66]Davies W J, Zhang J. Root aigaals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Physiol Plant Mol Biol,1991,42:55-76.
    [67]De D. S, B. Forster, L. Pages, A. Price, R. Tuberosa and X. Draye.2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci,12:474-481.
    [68]Debi R. B, J. Mushika, S. Takeda, A. Miyao, H. Hirochika and M. Ichii.2003. Isolation and characterization of a short lateral root mutant in rice (Oryza sativa L.). Plant Sci,165:895-903.
    [69]Demidchik V, P. A. Essah and M. Tester.2004. Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta,219:167-175.
    [70]Di L. L, D. J. Wysocka, J. E. Malamy, L. Pysh, Y. Helariutta, G. Freshour, et al.2004. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell,86:423-33.
    [71]Doi K, N. Iwata and A. Yoshimura.1997. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (Oryza sativa L.). Rice Gene Newsl,14:39-41
    [72]Doi K, A. Yoshimura and N. Iwata.1998. RFLP mapping and QTL analysis of heading date and pollen sterility using backcross population between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci, 48:395-399.
    [73]Droc G, M. Ruiz, P. Larmande, A. Pereira, P. Piffanelli, J. B. Morel, et al.2006. OryGenesDB:a database for rice reverse genetics. Nucleic Acids Res,34:736-740.
    [74]Dubrovsky J. G, T. L. Rost, A. Colon-Carmona and P. Doerner.2001. Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta,214:30-36.
    [75]Ebitani T, Y. Takeuehi, Y. Nonoue, et al.2005. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar "Kasalath" in a genetic background of japonica elite cultivar "Koshihikari". Breed Sci,55:65-73
    [76]Eckardt N. A.2002. Foolish seedlings and DELLA regulators:the functions of rice SLR1 and Arabidopsis RGL1 in GA signal transduction. Plant Cell,14:1-5.
    [77]Eshed Y. and D. Zamir.1994. Agenomic library of Lycopersicon pennellii in L.esculentum: a tool for fine mapping of genes. EuPhytica,79:175-179
    [78]Eshed Y. and D. Zamir.1995. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Geneties,141: 1147-1162
    [79]Evans A. and E. David.2004. Aerenchyma formation. New Phytol,161:35-49.
    [80]Falasca G, D. Zaghi, M. Possenti and M. M. Altamura.2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep,23:17-25.
    [81]Feng Y, L. Y. Cao, W. M. Wu, X. H. Shen, X. D. Zhan, R. R. Zhai, R. C. Wang, D. B. Chen, S. H. Cheng.2010. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.) Plant Breeding,129:652-656.
    [82]Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science,2004,305:1786-1789.
    [83]Fujii Y.1961. Studies on the regularity of root growth in rice and wheat plants. Agri Bull Saga Univ, 12:111-117.
    [84]Fujino K:J. and H. S. Sekiguchi. 2005. Identification-of QTLs Conferring Genetic Variation for Heading Date among Rice Varieties at the Northern-limit of Rice Cultivation. Breeding Science,55: 141-146.
    [85]Fukaki H, Y. Nakao, Y. Okushima, A. Theologis and M. Tasaka.2005. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J, 44:382-395.
    [86]Fustuhara Y. and H. Kitano.1985. Inheritance of a root-growth inhibiting mutant in rice. Rice Genet Newslett,2:70-81.
    [87]Galway M. E, J. D. Masucci, A. M. Lloyd, V. Walbot, R. W. Davis and J. W. Schiefelbein.1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol,166:740-754.
    [88]Gong X. P, Z. L. Yang, F. M. Zhao et al.2007. Genetic Analysis and Molecular Mapping of a Dominant Heading Period Gene Hd(t).ActaAgron Sin,33(11):1906-1909.
    [89]Grierson C. and J. Schiefelbein Root hairs. In: Meyerowitz E, editor.2002. The Arabidopsis book. Rockville:American Society of Plant Biologists.
    [90]Gur A. and D. Zamir.2004. Unused natural variation can lift yield barriers in Plant breeding. PLoS Biol,2(10):e245
    [91]Hao Z. and M. Ichii.1999. A mutant RM109 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Crop Sci,68:245-252.
    [92]Helariutta Y, H. Fukaki, J. Wysocka-Diller, K. Nakajima, J. Jung, G. Sena, et al.2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101:555-567.
    [93]Hittalmani S, H. E. Shashidhar, P. G. Bagali, N. Huang, J. S. Sidhu, V. P. Singh and G. S. Khush.2002. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica,125:207-214
    [94]Hochholdinger F, W. J. Park, M. Sauer and K. Woll.2004a. From weeds to crops:genetic analysis of root development in cereals. Trends Plant Sci,9:42-48.
    [95]Hochholdinger F, K. Woll, M. Sauer and D. Dembinsky.2004b. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot,93:359-368.
    [96]Hong S. W, T. Aoki, H. Kitano, H. Satoh and Y. Nagato.1995. Phenotypic diversity of 188 rice embryo mutants. Dev Genet,16:298-310.
    [97]Hong D L, Ichii M. Genetic analysis of short root in rice. Chinese J Rice Sci,1994,8 (4):200-204.
    [98]Huang X. H, Q. Feng, A. Q. Qi, et al.2009. High-throughput genotyping by whole genome resequencing. Genome Res,19(6):1068-1076.
    [99]Ichii M. and M. Ishikawa.1997. Genetic analysis of newly induced short-root mutants in rice (Oryza sativa L.). Breed Sci,47:121-135.
    [100]Ichitani K, Y. Okumoto and T. Tanisaka.1998. Genetic analyses of low photoperiod sensitivity of rice cultivars from the northernmost regions of Japan. Plant Bre,117:543-547.
    [101]Inukai Y, M. Miwa, Y. Nagato, H. Kitano and A. Yamauchi.2001a. Characterization-of rice mutants deficient in the formation of crown roots. Breed Sci,51:123-129.
    [102]Inukai Y, M. Miwa, Y. Nagato, H. Kitano and A. Yamauchi.2001b. RRL1, RRL2 and CRL2 loci regulating root elongation in rice. Breed Sci,51:231-239.
    [103]Inukai Y, T. Sakamoto, M. Ueguchi-Tanaka, Y. Shibata, K. Gomi, I. Umemura, et al.2005. Crown rootless 1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell,17:1387-1396.
    [104]Inukai Y, M. Miwa, Y. Nagato, H. Kitano and A. Yamauchi.2003. Mechanical stimulus-sensitive mutation, Rrl3, affects the cell production process in the root meristematic zone in rice. Crop Sci, 6:265-27.
    [105]Ismail, A.M., S. Heuer, M.J. Thomson and M. Wissuwa (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol.65:547-570.
    [106]Itoh J, K. Nonomura, K. Ikeda, S. Yamaki, Y. Inukai, H. Yamagishi, et al.2005. Rice plant development: from zygote to spikelet. Plant Cell Physiol,46:23-47.
    [107]Jia L, B. Zhang, C. Mao, P. Wu and Z. Wu.2008. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta,228:51-59.
    [108]Jiang H, S. Wang, L. Dang, S. Wang, H. Chen, Y. R. Wu, et al.2005. A novel short-root gene encodes a glucosamine acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol,
    138:232-242.
    [109]Jiang L, M. M. Xun and J. K. Wang.2007. QTL analysis of cold tolerance at seedling stage in rice (OryzasativaL.) using recombination inbred lines. Joumal of Cereal Sci,6:1-7.
    [110]Johan D. P. and J. R. Voort.2003. Breeding by design. Trends in Plant Sci,8:330-334.
    [111]Johnson A. A, J. M. Hibberd, C. Gay, P. A. Essah, J. Haseloff, M. Tester, et al.2005. Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J, 41:779-789.
    [112]Joong, H., G.Y. Rico, D. Cheryl, B. Masdiar, P. Joko, M. Sugiono, W. Matthias and H. Sigrid (2011) Developing rice with high yield under phosphorus deficiency:Pupl sequence to application. Plant. Physiol.156:1202-1216.
    [113]Kamiya N, J. Itoh, A. Morikami, Y. Nagato and M. Matsuoka.2003a. The SCARECROW gene's role in asymmetric cell divisions in rice plants. Plant J,36:45-54.
    [114]Kamiya N, H. Nagasaki, A. Morikami, Y. Sato and M. Matsuoka.2003b. Isolation and characterization of a rice WUSCHEL-type homeo-box gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J,35:429-441.
    [115]Kamoshita A, J. Wade, L. Ali, S. Pathan, J. Zhang, S. Sarkarung, et al.2002a. Mapping QTLs for root morphology of a rice population adapted to rain fed lowland conditions. Theor Appl Genet, 104:880-893.
    [116]Kamoshita A, J. Zhang, J. Siopongco, S. Sarkarung, H. T. Nguyen, L. J. Wade.2002b. Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci,42:255-265.
    [117]Kawata S. and H. Ishihara.1959. Studies on the root hairs in rice plants. Crop Sci,27:341-348.
    [118]Kawata S. and K. C. Lai.1964. On the meristematic state of the endodermis in the crown roots of rice plants. Crop Sci,34:210-216.
    [119]Kawata S. and K. Matsui.1977. On the cortex formation in the apical meristems of the elongating crown roots of rice plants. Crop Sci,46:403-413.
    [120]Kawata S. and H. Shibayama.1965. On the lateral root primordia formation in the crown roots of rice plants. Crop Sci,33:423-431.
    [121]Kawata S. and M. Soejima.1974. On superficial root formation in rice plants. Crop Sci,43:354-374.
    [122]Kawata S, K. Yamazaki, H. Ishihara, H. Shibayama, K. C. Lai.1963. Studies on root system formation in rice plants in a paddy field: an example of its relationship with the growth stage. Crop Sci, 33:168-180.
    [123]Kawata S, K. Nishimaki and K. Yamazaki.1977. The apical structure of crown roots in rice plants. Crop Sci,46:393-402.
    [124]Kawata S, S. Suzuki and K. Yamazaki.1979. The detachment of the "primary root caps" in rice plants. Crop Sci,48:303-310.
    [125]Kijne J W, Bauchrowtz M A, Diaz C L. Root lectins and rhizobia. Plant Physiol,1997,115:869-873.
    [126]Kim D. W, S. H. Lee, S. B. Choi, S. K. Won, Y. K. Heo, M. Cho, et al.2006. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell,18:2958-2970.
    [127]Kinoshita T.1998. Report of the committee on gene symbolization, nomenclature and linkage groups. II. Linkage mapping using mutant genes in rice. Rice Genet,15:13-74.
    [128]Kirk, G.J.D., T. George, B. Courtois and D. Senadhira (1998) Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems. Field Crops Res.56:73-92.
    [129]Koester R.P, P. H. Sisco and C. W. Stuber.1993. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci,33:1209-1216
    [130]Kubo T, Y. Aida, K. Nakamura, et al.2002. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice(Oryza sativa L.). Breed Sci,52:319-325
    [131]Kurakazu T, K. Sobrizal, P. L. Ikeda, et al.2001. Oryza meridionalis chromosomal segment introgression lines in cultivated rice, O. sativa L.Rice Genet Newsl,18:81-82
    [132]Kwak K S, Iijima M, Yamauchi A, et al. Changes with aging of endogenous abscisic acid and zeatin riboside in the root system of rice. Jpn J Crop Sci,1996,65(4):686-692.
    [133]Laplaze L, B. Parizot, A. Baker, L. Ricaud, A. Martiniere, F. Auguy, et al.2005. GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Exp Bot, 56:2433-2442.
    [134]Lee M. M. and J. Schiefelbein.1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell,99:473-483.
    [135]Lehman V. G. and M. G. Engelke.1991. Heritability estinates of creeping bentgrass root systems grown in flexible tubes. Crop Sci,31:1680-1684.
    [136]Li Z., S. R. M. Pinson, J. W. Stansel, and W. D. Park.1995. Identification of two major genes and quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet,91:374-381.
    [137]Li Z, P. Mu, C. Li, H. Zhang, Z. Li, Y. Gao, et al.2005. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet,110:1244-1252.
    [138]Li W. T, R. Z. Zeng, Z. M. Zhang and G. Q. Zhang.2002. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Botanica Sinica,44(2):463-467.
    [139]Li M, P. L. Sun, H. J. Zhou, S. Chen and S. b. Yu.2011. Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice(Oryza sativa L.). Theor Appl Genet,123:411-420.
    [140]Liang Z. and M. Ichii.1995. Morphological characterization of the seedling of short-root mutant LM10 selected from rice(Oryza sativa L., IR8). Crop Sci,65:473-478.
    [141]Liang Y. S.201 la. Genetic Research on Roots of Populations Derived from Super Rice(Oryza sativa L.) Xieyou9308. Chinese Academy of Agricultural Sciences Dissertation (in chinese)
    [142]Liang Y. S, X. D. Zhan, Z. Q. Gao, Z. C. Lin, Z. L. Yang, Y. X. Zhang, X. H. Shen, L. Y. Cao and S. H. Cheng.2011b. Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308. Euphytica,184:1-13.
    [143]Liang Z. W. and M. Ichii.1996. Inheritance of a short-root mutant LMN35 in rice(Oryza sativa L.). Breeding Sci,46:277-281.
    [144]Lin H. X, T. Yamamoto, T. Sasaki and M. Yano.2000. Characterization and detection of epistatic interactions of 3 QTLs, Hdl, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theo Appl Genetics,101(7):1021-1028.
    [145]Lin H. X, M. Ashikari, U. Yamanouchi, T. Sasaki and M. Yano.2002. Identification and Characterization of a Quantitative Trait Locus, Hd9, Controlling Heading Date in Rice. Breeding Sci, 52:35-41.
    [146]Lin H. X, Z. W. Liang, T. Sasaki and M. Yano.2003. Fine Mapping and Characterization of Quantitative Trait Loci Hd4 and Hd5 Controlling Heading Date in Rice. Breeding Sci,53:51-59.
    [147]Lin S.Y, T. Sasaki and M. Yano.1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet,96:997-1003.
    [148]Liu H, S. Wang, X. Yu, J. Yu, X. He, S. Zhang, et al.2005. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J,43:47-56.
    [149]Liu L. L, X. Y. Yan, L. Jiang, et al.2008. Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties. Genome,51:104-112.
    [150]Liu W, Z. H. Xu, D. Luo and H. W..Xue.2003. Roles of OsCKH1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J,36:189-202.
    [151]Ma J. F, S. Goto, K. Tamai and M. Ichii.2001, Role of root hairs and lateral roots in silicon uptake by rice. Plant physiol,127:1773-1780.
    [152]Ma J. F, K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata and M. Yano.2006. A silicon transporter in rice. Nature,440:688-691.
    [1.53]Masucci J. D, W. G Rerie, D. R. Foreman, M. Zhang, M. E. Galway, M. D. Marks, et al.1996. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development,122:1253-1260.
    [154]Mccouch S. R. and R. W. Doerge.1995. QTL mapping in rice. Genet,11:482-487.
    [155]Mei H. W, L. J. Luo, C. S. Ying, Y. Wang, X. Q. Yu, L. B. Guo, A. H. Paterson and Z. K. Li 2003. Geneactions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet,107:89-101.
    [156]Meijer A. H, E. Scarpella, E. L. Van Dijk, L. Qin, A. J. Taal, S. Rueb, et al.1997. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J,11:263-276.
    [157]Mergemann H. and M. Sauter.2000. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol,124:609-614.
    [158]Miki N, N. Yabe, T. Ichikawa, Y. Yamamoto, T. Yoshizumi, K. Hasunuma and M. Matsui.2001. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant J., 25(2):213-221.
    [159]Mitsuhiro, O., W. Tamura, T. Ebitani, M. Yano, T. Sato and T. Yamaya (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theor. Appl. Genet.121:535-547.
    [160]Monforte A. J. and S. D. Tanksley.2000. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background:A tool for gene mapping and gene discovery. Genome,43:803-813.
    [161]Monna L, H. X. Lin, S. Kojima, T. Sasaki and M. Yano.2002. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet,104:772-778
    [162]Murai H, Z. Hashimoto, P. N. Sharma, T. Shimizu, K. Murata, S. Takumi, N. Mori, S. Kawasaki and C. Nakamura.2001. Construction of a high-resolution linkage map of a rice brown plant hopper (Nilaparvata lugensstal) resistance gene bph2. Theor Appli Genet,103:526-532.
    [163]Morita S. and K. Nemoto.1995. Morphology and anatomy of rice roots with special reference to coordination in organo-and histogenesis. In: Baluska F, et al, editor. Structure and function of roots. Dordrecht:Kluwer Academic; p.75-86.
    [164]Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants. Jpn J Crop Sci,1996,55:520-525.
    [165]Naimatullah B, Y. Hirotaka, N. K. Nishizawa, N. Hiromi and M. Satoshi.2002. Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany,53:1677-1682.
    [166]Naoki Y. and J. F. Ma.2007. Spatial Distribution and Temporal Variation of the Rice Silicon Transporter Lsil. Plant Physiol,143(3):1306-1313.
    [167]Okushima Y, P. J. Overvoorde, K. Arima, J. M. Alonso, A. Chan, C. Chang, et al.2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell,17:444-463.
    [168]Paquette A. J. and P. N. Benfey.2005. Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT. Plant Physiol,138:636-640.
    [169]Peleman J D, Wye C, Zethof J, Sorensen A P, Verbakel H, Oeveren J, Greats T, Voort R V. Quantitative trait loci (QTL) isogenic recombinant analysis:A method for high-resolution mapping of QTL within a single population. Genetics,2005,171:1341-1352.
    [170]Price A H, Toms A D. Genetic dissection of root growth in rice. I. A hydrophonic screen. Theor Appl Genet,1997,95:132-142.
    [171]Qu Y, P. Mu, H. Zhang, C. Y. Chen, Y. Gao, Y. Tian, et al.2008. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica,133:187-200.
    [172]Ray J D, Yu L, McCouch S R, et al. Mapping quantitative trait loci associated with root penetration ability in rice. Theor Appl Genet,1996,92:627-636.
    [173]Russell R S. Plant Root Systems-Their Function and Interaction with the Soil. Maidenhead: McGRAW-HILL,1982.
    [174]Sakamoto A, M. Ogawa, T. Masumura, S. Daisuke, G. Takeba, K. Tanaka and F. Shoji.1989. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L. Plant Molecular Biol,13:611-614.
    [175]Sakamoto T, K. Miura, H. Itoh, T. Tatsumi, M. Ueguchi-Tanaka, K. Ishiyama, et al.2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 134:1642-1653.
    [176]Sasaki O, K. Yamazaki and S. Kawata.1984. The relationship between the diameters and the structures of lateral roots in rice plants. Crop Sci,53:169-175.
    [177]Scarpella E, S. Rueb, K. J. Boot, J. H. Hoge, A. H. Meijer.2000. A role for the rice homeobox gene Oshoxl in provascular cell fate commitment. Development,127:3655-3669.
    [178]Scarpella E, S. Rueb and A. H. Meijer.2003. The RADICLELESS1 gene is required for vascular pattern formation in rice. Development,130:645-658.
    [179]Scheres B, P. Benfey and L. Dolan.2002. Root development. In:Meyerowitz E, editor. The Arabidopsis book. Rockville:American Society of Plant Biologists.
    [180]Sergeeva L. I, J. J. Keurentjes, L. Bentsink, J. Vonk, L. H. Van der Plas, M. Koornneef, et al.2006. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant
    analysis. Proc Natl Acad Sci,103:2994-2999.
    [181]Shuai B, C. G. Reynaga-Pena and P. S. Springer.2002. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol,129:747-761.
    [182]Shuman L M, Wang J. Effect of rice variety on zinc, cadmium, iron and manganese contents in rhizosphere and non-rhizospheresoil fractions. Comm Soil Sci Plant Ahal, 1997,28:23-3.
    [183]Smit A. L, A. G. Bengough, C. Engels, M. Noordwijkvan, S. Pellerin and S. C. Geijnvan.2000. Root methods:a handbook. Springer Verlag, New York. p.601.
    [184]Sobrizal K, K. Ikeda, P. L. Sanehez, et al.1999. Development of Oryza glumaepatula introgression lines in rice, O. sativa L.Rice Genet Newsl,16:107-108.
    [185]Sorin C, J. D. Bussell, I. Camus, K. L. jung, M. Kowalczyk, G. Geiss, et al.2005. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell,17:1343-1359.
    [186]Steele K. A, A. H. Price, H. E. Shashidhar and J. R. Witcombe.2006. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet,112: 208-221.
    [187]Steele, K.A., A.H. Price, J.R. Witcombe, R. Shrestha, B.N. Singh, J.M. Gibbons and D.S. Virk (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor. Appl. Genet.126:101-108.
    [188]Steffens B. and M. Sauter.2005. Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol,139:713-721.
    [189]Subbaiah C. C. and M. M. Sachs.2003. Molecular and cellular adaptations of maize to flooding stress. Ann Bot,91:119-127.
    [190]Suzuki N, S. Takeda and M. Ichii.2003. Morphological and physiological characteristics of a root-hairless mutant in rice (Oryza sativa L.). Plant Soil,255:9-17.
    [191]Szalma S. J, B. M. Hostert, J. R. LeDeaux, et al.2007. QTL mapping with near-isogenic lines in maize. Theor Appl Genet,114:1211-1228.
    [192]Takai T, Y. Nonoue, S. Yamamoto, et al.2007. Development of chromosome segment substitution lines derived from backcross between indica donor cultivar"Nona bokra"and japonica recipient cultivar "Koshihikari". Breed Sci,57:257-261.
    [193]Takai T, M. Kondo, M. Yano and T. Yamamoto.2010. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice,3:172-180.
    [194]Takahashi Y, A. Shomura, T. Sasaki and M. Yano.2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2. PNAS,98(14):7922-7927.
    [195]Takeuchi Y, S. Y. Lin, T. Sasaki and M. Yano.2003. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet, 107:1174-1180.
    [196]Talukdar A. and G. Q. Zhang.2007. Construction and characterization of 3-Slines, an alternative population for mapping studies in rice(Oryza sativa L.). Euphytica,156:237-246.
    [197]Taniguchi M. and Y. Futsuhara.1988. A dense panicle mutant producing adventitious roots from spikelets. Rice Genetics Newsletter,5:113-114.
    [198]Tardieu F, Davies W J. Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of drought plants. Plant Cell Environ,1993,16:341-349.
    [199]Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis:a method for developing nearisogenic lines that differ at quantitative trait loci. Theor Appl Genet,1997, 95:1005-1011.
    [200]Uga, Y., E. Hanzawa, S. Nagai, K. Sasaki, M. Yano and T. Sato (2012) Identification of qSORl, a major rice QTL involved in soil-surface rooting in paddy fields. Theor. Appl. Genet.124:75-86.
    [201]Wan J, T. Nakazaki and H. Ikehashi.1996. Analyses of genetic loci for diameter of seminal root with marker genes in rice. Breed Sci,46:75-87.
    [202]Wang H, S. Takeda, A. Miyao, H. Hirochika and M. Ichii.2006. Isolation of a novel lateral-rootless mutant in rice(Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci,170:70-77.
    [203]Wang Z. Q, C. Y. Yu, X. Liu, J. Wan, et al.2012. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet,124:1351-1364.
    [204]Weaver J. E.1919. The ecological relations of roots. Carnegin Inst. Washington D.C, p.286.
    [205]Wolfe K. H, M. Gouy, Y. W. Yang, P. M. Sharp and W. H. Li.1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci,86:6201-6205.
    [206]Xi Z. Y, F. H. He, R. Z. Zheng, et al.2006. Development of a wide Population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice(Oryza sativa L.). Genome,49:476-484.
    [207]Xiao Y. H, L. L. Liu, L. Jiang, et al.2005. Development of the chromosome segment substitution , lines (CSSLs) derived from a hybrid rice cross, Pai64S/9311 with super high yield potential. Rice Genet Newsl,22:17.
    [208]Xiao J, J. Li, L. Yuan and S. D. Tanksley.1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,140:745-754.
    [209]Xiao J, J. Li, L. Yuan and S. D. Tanksley.1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet,92:230-244.
    [210]Xiao J, J. Li, S. Grandillo, S. N. Ahn, L. Yuan, S. D. Tanksley and S. R. McCouch.1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics,150:899-909.
    [211]Xie W. B, Q. Feng, H. H. Yu, et al.2010. Parent independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. PNAS,107(23):10578-10583.
    [212]Xiong L. Z, K. D. Liu, X. K. Dai, C. G. Xu and Q. Zhang.1999. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet,98:243-251.
    [213]Xu M. L, J. F. Jiang, L. Ge, Y. Y. Xu, Y. Zhao, Y. R. Bi, J. Q. Wen and K. Chong.2005. FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep,24:79-85.
    [214]Xue W. Y, Y. Z. Xing, X. Y. Weng, Y. Zhao, W. J. Tang, L. Wang, H. J. Zhou, S. B. Yu, C. G Xu, X. H. Li and Q. F. Zhang.2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetic,40(6):761-767.
    [215]Yadav R, Courtois B, Huang N, et al. Mapping genes controlling root morphology and root distribution in a doubled - haploid population of rice. Theor Appl Genet,1997,94:619-632.
    [216]Yamanaka N, Watanabe S, Toda, K, Hayashi M, Fuchigami H, Takahashi R, Harada K.Fine mapping of th FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet,2005,110:634-639.
    [217]Yamamoto T, H. X. Lin, T. Sasaki and M. Yano.2000. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics,154:885-891.
    [218]Yamamoto T, Y. Kuboki, S. Y. Lin, T. Sasaki and M. Yano.1998. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet,97(12):37-44.
    [219]Yan W. H, P. Wang, H. X. Chen, H. J. Zhou, Q. P. Li, C. R. Wang, Z. H. Ding, Y. S. Zhang, S. B. Yu, Y. Z. Xing and Q. F. Zhang.2011. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant,4(2):319-330.
    [220]Yano M, Y. Harushima, Y. Nagamura, N. Kurata, Y. Minobe and T. Sasaki.1997. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet,95(7):1025-1032.
    [221]Yano M, S. Kojima, Y. Takahashi, H. X. Lin, and T. Sasaki.2001. Genetic Control of Flowering Time in Rice, a Short-Day Plant. Plant Physiol,127:1425-1429.
    [222]Yao S, S. Takeda and M. Ichii.2003. Isolation and characterization of an abscisic acid-insensitive mutation that affects specifically primary root elongation in rice(Oryza sativa L.). Plant Sci, 164:971-978.
    [223]Yao S, J. Mushika, S. Takeda and M. Ichii.2004. The short-root mutation srt5 defines a sugar-mediated root growth in rice(Oryza sativa L.). Plant Sci,167:49-54.
    [224]Yi X, Z. Liang, S. Kawasaki, S. Kuroda, M. Ichii and I. Ashikawa.2002. Construction of a contig with transformation competent subclones in the gene region of Srt3, responsible for the root growth in rice. In Plant, Animal and Microbe Genomes X Conference, San Diego, USA.
    [225]Yu S. B, J. X. Li, C. G. Xu, Y. F. Tan, X. H. Li and Q. F. Zhang 2002. Identification of quantitative trait loci and epistatic interactions for plant height and HD in rice. Theor Appl Genet,104:619-625.
    [226]Zamir D.2001. Improving Plant breeding with exotic genetic libraries. Nat Rev Genet,2:983-989.
    [227]Zhang Y. S, L. J. Luo, C. G. Xu, Q. F. Zhang and Y. Z. Xing.2006. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa L.). Theor Appl Genet,113:361-368.
    [228]Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rices (Oryza sativa.L). Theor Appl Genet,2006,113:361-368.
    [229]Zhao Y, Y. F. Hu, M. G. Dai, L. M. Huang and D. Y. Zhou.2009. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 21:736-748.
    [230]Zheng H. G, R. C. Babu, M. S. Pathan, L. Ali, N. Huang, B..Courtois, et al. 2000.Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome,43:53-61.
    [231]Zheng B. S, L. Yang, W. P. Zhang, C. Z. Mao, Y. R. Wu, K. K. Yi, et al.2003. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet,107:1505-1515.
    [232]Zheng B. S, L. Yang, C. Z. Mao, W. P. Zhang and P. Wu.2006. QTLs and candidate genes for rice root growth under flooding and upland conditions. J. Genet and Geno,33:141-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700