用户名: 密码: 验证码:
基于生活习性、形态建成和分子特征研究黏菌四目代表类群的系统发育关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黏菌是一类广泛存在于陆地生态系统中的真核生物,它与生境的长期进化选择塑造了其特有的营养体和子实体形态特征。目前主要是基于子实体形态特征,将黏菌分成了鹅绒菌目、刺轴菌目、无丝菌目、团毛菌目、绒泡菌目和发网菌目六大类,其中鹅绒菌目因其孢子外生的特点明显与其它五个孢子内生的类群不同。有关刺轴菌目、无丝菌目、团毛菌目、绒泡菌目和发网菌目之间的系统发育关系一直吸引着许多黏菌学者的目光,但不同研究者基于不同的形态和分子特征构建的各类群系统发育树不同。本研究从无丝菌目、团毛菌目、绒泡菌目和发网菌目代表类群在自然界中的生活习性入手,结合形态建成过程,保守和不保守的分子特征,探讨了它们在黏菌系统发育中的进化位置,希望为黏菌的分类学和进化发育学发展补充新的理论依据。主要研究结果如下:
     1.在吉林省、西藏自治区和四川省代表区域共获得78种黏菌,隶属于鹅绒菌目、无丝菌目、团毛菌、绒泡菌目和发网菌目7科22属,它们的基物类型为枯枝落叶、倒木和树皮三种,除枯枝落叶的pH受树种影响有明显的差异之外,倒木和树皮的pH之间无显著差异。不同分类阶元偏好的基物类型和pH不同。鹅绒菌目和无丝菌目黏菌的基物类型单一,都为倒木,团毛菌目、发网菌目和绒泡菌目黏菌的基物类型多样。其中团毛菌目黏菌的基物类型主要为倒木、发网菌目为倒木和枯枝落叶、绒泡菌目主要为枯枝落叶。另外,各目偏好的pH之间无显著差异;利用16S rDNA基因初探无丝菌目、团毛菌目、绒泡菌目和发网菌目14个样品内部的细菌类群,仅有9个样品内部检测到了细菌,它们分别为变形菌门(包括α、β和γ,三个纲)和放线菌门细菌,其中γ-变形菌纲细菌为广布种。另外,黏菌内部所含的细菌种类可能与它们的基物类型和pH有关,与分类地位无关,还需要进一步补充数据来求证;隶属于绒泡菌目的大孢钙皮菌、鳞钙皮菌、淡黄绒泡菌、细钙丝菌、煤绒菌和针箍菌6个显型原生质团在谷类、菇类和蔬菜类食物处理前48h的觅食过程具有物种特异性,各原生质团本身的营养状况与其生境有关,对营养物质的需求与它们的分类地位有关。
     2.在实验室培养的团毛菌目、绒泡菌目和发网菌目共14种黏菌的形态建成过程基础上,发现团毛菌目、绒泡菌目和发网菌目黏菌在原生质团的形成过程和生长方式上存在共性,绒泡菌目和发网菌目黏菌在原生质团形成子实体阶段也存在许多共性,且发网菌目具有更高级可移动的珊瑚状结构。结合有关无丝菌目黏菌形态建成的文献资料,从四日对应的原生质团生活史策略及子实体形态结构的复杂程度来看,无丝菌目为较原始的类群,团毛菌目、发网菌目和绒泡菌目为较高级的有同源性的类群,其中发网菌目和绒泡菌目从团毛菌目进化而来。
     3.新获得了鹅绒菌、大孢钙皮菌、鳞钙皮菌、辐射双皮菌、蛇形半网菌和长尖团毛菌6种黏菌的细胞色素氧化酶Ⅰ部分DNA序列,其中鹅绒菌目的序列明显比刺轴菌目、团毛菌目、发网菌目和绒泡菌目长,且后四个目的序列高度保守,无内含子区域。在DNA转录成mRNA时,绒泡菌目和发网菌目有较多的C碱基插入,而刺轴菌目和团毛菌目没有。构建的ML系统树也将绒泡菌目和发网菌目稳定的聚在了一个分支,它们为较进化的类群,亲缘关系较近;获得的大孢钙皮菌a-微管蛋白DNA序列全长1159bp,177-235bp区域为内含子,两端区域共1100bp碱基为外显子。外显子预测编码的氨基酸序列为366aa,与多头绒泡菌α-微管蛋白的相似性为100%,但核苷酸序列不同,存在同义突变现象;新获得了白头高杯菌、光果菌(内蒙和四川)、大孢钙皮菌、鳞钙皮菌、孔膜菌、异型团网菌、赭褐筛菌、圈绒泡菌、小绒泡菌、苔生双皮局、细钙丝菌、彩囊钙丝菌、煤绒菌、扁绒泡菌和针箍菌共18个ITS1,5.8S和ITS2序列,其中12种绒泡菌目黏菌的基因片段在800-2000bp之间,变异较大,特别是其中的ITS1区域。团毛菌目和无丝菌目变异较小,总长度和GC%都比绒泡菌目少。绒泡菌目比团毛菌目和无丝菌目进化速度快。
     因此,基于黏菌四目代表类群的生活习性、形态建成和分子特征来看,无丝菌目为较原始的类群,团毛菌目、发网菌目和绒泡菌目为较高级的类群,其中发网菌目和绒泡菌目亲缘关系较近可能从团毛菌目进化而来。
Myxomycetes are a kind of eukaryotic organisms that exist widely in terrestrial ecosystem. Their specific morphological characteristics of vegetative and fruiting body are shaped by long-term evolution and selection between their habitat and themself. The classification of Myxomycetes depends mainly on morphological characteristics of fruiting body and includes six main groups (Ceratiomyxales, Echinosteliales, Liceales, Trichiales, Physarales and Stemonitales). Ceratiomyxales, a group of species with exospores, are distinctly different from the other five orders, a group of species with endospores. The phylogenetic relationships of five orders with endospores have been attracting the attention of many researchers, but there are too many different contentions based on different morphological and molecular characteristics. In the paper, based on their living habits in nature, features of morphogenesis, and conservative and variational molecular characteristics, the positions of Liceales, Trichiales, Physarales and Stemonitales in the phylogeny evolution of Myxomycetes were studied. Hope to provide some new theoretical proofs for the development of taxonomy and evolutionary biology of Myxomycetes. Main results for this study are as follows:
     1.78species, which were collected from some typical regions of Jilin Province, Sichuan Province and Tibet Autonomous Region, belonged to Ceratiomyxales, Liceales, Trichiales, Physarales and Stemonitales,7families,22genus. Their substratum types were litter, log and bark, whose pH was no significant difference except that of the litter. It was easily affected by species of tree. Each taxonomic category had preferential substratum type and pH. The substratum types of Ceratiomyxales and Liceales were stable and log, and those of Trichiales, Physarales and Stemonitales were diverse. Those of Trichiales were mainly log, those of Stemonitales were log and litter, and those of Physarales were mainly litter. In addition, there was no significant difference of pH among five groups; Diversity of internal bacterium of14samples in four orders was detected by16S rDNA gene. Bacteria were only detected from9samples and belonged to Proteobacteria (including Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) and Actinobacteria. Gammaproteobacteria was the dominant population. In addition, there may be some difference of bacterium diversity in different habitats and pH range, not affected by taxonomic status and needed more data to prove that; The foraging process of six phaneroplasmodia (Didymium megalosporum, D. squamulosum, Physarum melleum, Badhamia gracilis, Fuligo septica and Physarella oblonga) to three treatments during 48hours was characteristic for themselves. The nutritional status of each phaneroplasmodium was related to its habitat and the nutritional requirement of each phneroplasmodium was related to its taxonomic status.
     2. Based on relevant literature and14species'features of morphogenesis in Trichiales, Physarales and Stemonitales, the forming process and growth method of plasmodia among Trichiales, Physarales and Stemonitales were similar. There were also many similarities in the morphological characteristics between Physarales and Stemonitales during the forming process of fruiting body. But Stemonitales had an advanced and mobile coralloidal mass. Based on reported morphogenesis features of Liceales, from the perspective of complexity of plasmodial life history strategy and fruiting body morphology, Liceales was more primitive group, and Trichiales, Physarales and Stemonitales were more advanced groups. In addition, there was a homology among Trichiales, Physarales and Stemonitale, and Physarales and Stemonitale may derive from Trichiales.
     3. Partial cytochrome oxidase I genes of Ceratiomyxa fruticulosa, D. megalosporum, D. squamulosum, Diderma radiatum, Hemitrichia serpula and Trichia decipiens were first gained. That of Ceratiomyxales was longer than those of Echinosteliales, Trichiales, Physarales and Stemonitales, which were highly conservative and no intron area. When the DNA was transcribed into mRNA, those of Physarales and Stemonitales had more insertion of Cs, but those of Echinosteliales and Trichiales had not. The phylogenetic tree constructed by maximum likelihood method gathered Physarales and Stemonitales together, which were more advanced groups; Partial DNA sequence of a-tubulin of plasmodia in D. megalosporum was1159bp in length, whose region from177bp to235bp was intron area and remaining regions were exon area. The coded amino acid sequence was366aa in length and was fully identical with the same sequence of P. polycephalum. But the DNA sequences between them were different, and there were same sense mutation; Eighteen genes of ITS region and5.8S rDNA of ribosome were gained firstly from15species, including Craterium leucocephalum, P. compressum (fruiting body and plasmodium), P. gyrosum, P. pusillum, P. oblonga (fruiting body and plasmodium), B. gracilis, B. utricularis, F. septica, L. fragilis (Sichuan Province and Inner Mongolia Autonomous Region), D. megalosporum, D. squamulosum, D. chondrioderma, Arcyria occidentalis, Enteridium splendens, Cribraria argiliacea. Those of12species in Physarales were800-2000bp in length and had a large variation especially at the region of ITS1. Those of species in Liceales and Trichiales were less than in Physarales in the length and the value of GC%. So the speed of evolution of Physarales was faster than those of Trichiales and Liceales.
     Therefore, based on living habits in nature, morphogenesis and molecular characteristics of Liceales, Trichiales, Physarales and Stemonitales, Liceales were more primitive groups, and Trichiales, Physarales and Stemonitales were more advanced groups. In addition, Physarales and Stemonitale had close gentic relationship and were derived from Trichiales.
引文
[1]Stephenson S L, Schnittler M, Novozhilov Y K. Myxomycete diversity and distribution from the fossi record to the present[J]. Biodivers Conserv,2008,17:285-301.
    [2]Kalyanasundaram I. A positive ecological role for tropical Myxomycetes in association with Bacteria[J]. Systematics and Geography of Plants,2004,74(2):239-242.
    [3]Dudka I O, Romanenko K O. Co-existence and interaction between myxomycetes and other organisms in shared niches[J]. Acta Mycologica,2006,41(1):99-112.
    [4]Schnittler M, Unterseher M, Tesmer J. Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest[J]. Mycologia,2006, 98(2):223-232.
    [5]Paul E A. Soil microbiology, ecology, and biochemistry.3rd ed[M]. Elsevier Academic Press,2007,152.
    [6]李玉,李惠中,王琦,等.中国真菌志-黏菌卷一[M].北京:科学出版社.2008.
    [7]Baldauf S L, Doolittle W F. Origin and evolution of the slime molds (Mycetozoa)[J]. Proc Natl Acad Sci USA,1997,94:12007-12012.
    [8]Baldauf S L, Roger A J, Wenk-Siefert I, et al. A kingdom-level phylogeny of eukaryotes based on combined protein data[J]. Science,2000,290:972-977.
    [9]Stephenson S L. From morphological to molecular:studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph[J]. Fungal Diversity,2011,50:21-34.
    [10]Lado C. An on line nomenclatural information system of Eumycetozoa[DB]. http://www.nomen.eumvcetozoa.com (May 14,2013).
    [II]Alexopoulos CJ. The experimental approach to the taxonomy of the myxomycetes[J]. Mycol,1969,61: 219-239.
    [12]Collins O N R. Myxomycete biosystematics:some recent developments and future research opportunities[J]. Botanical Review,1979,45(2):145-201.
    [13]Fiore-Donno A M, Berney C, Pawlowski J, et al. Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-A and samll subunit rRNA gene sequences[J]. J. Eukaryot. Microbiol,2005,52(3):201-210.
    [14]Fiore-Donno A M, Meyer M, Baldauf S L, et al. Evolution of dark-spored Myxomycetes (slime-molds): molecules versus morphology[J]. Molecular Phylogenetics and Evolution,2008,46:878-889.
    [15]Malmstrom C. Ecologists study the interactions of organisms and their Environment J]. Nature Education Knowledge,2012,3(10):88.
    [16]Ing B. The phytosociology of myxomycetes[J]. New Phytol,1994,126(2):175-201.
    [17]Novozhilov Y K, Zemlianskaia I V, Schnittler M, et al. Myxomycete diversity and ecology in the arid regions of the Lower Volga River Basin (Russia)[J]. Fungal Diversity,2006,23:193-241.
    [18]Everhart S E, Keller H W. Life history strategies of corticolous myxomycetes:the life cycle, plasmodial types, fruiting bodies, and taxonomic orders[J]. Fungal Diversity,2008,29:1-16.
    [19]Keller H W, Everhart S E. Importance of Myxomycetes in biological research and teaching[J]. Fungi, 2010,3:13-27.
    [20]Dussutour A, Latty T, Beekman M, et al. Amoeboid organism solves complex nutritional challenges[J]. Proc. Natl. Acad. Sci. USA,2010,107(107):4607-4611.
    [21]Latty T, Beekman M. Irrational decision-making in an amoeboid organism:transitivity and context-dependent preferences[J]. Proc. R. Soc. B,2011,278:307-312.
    [22]Martin G W, Alexopoulos C J. The Myxomycetes[M]. IowaCity:University of Iowa Press, USA,1969.
    [23]李玉,李惠中,王琦,等.中国真菌志-黏菌卷二[M].北京:科学出版社.2008.
    [24]Gray W D, Alexopoulos C J. Biology of the Myxomycetes[M]. New York:Ronald Press.1968.
    [25]de Bary A. Comparative morphology and biology of the fungi, Mycetozoa, and bacteria[M]. Oxford, Clarendon Press,1887.
    [26]Cienkowski L. Ueber die Aufnahme lebender und todter verdaulucher Korper in die plasmodien der Myxomyceten[J]. Flora,1892,76:182-224.
    [27]Strasburger E. Zur Entwikelungsgeschichte der Sporangien von Trichia fallax[J]. Bot. Zeit,1884,42: 305-316,321-326.
    [28]Alexopoulos C J. Gross morphology of the plasmodium and its possible significance in the relationships among the Myxomycetes[J]. Mycologia,1960,52(1):1-20.
    [29]Rammeloo J. Notes concerning the morphology of some myxomycete plasmodia cultured in vitro[J]. Bulletin de la Societe Royale de Botanique de Belgique,1976,109(2):195-207.
    [30]Wrigley de Basanta D, Lado C, Estrada-Torres A, et al. Description and life cycle of a new Didymium (Myxomycetes) from arid areas of Argentina and Chile[J]. Mycologia,2009,101(5):000-000.
    [31]Wrigley de Basanta D, Lado C, Estrada-Torres A. Spore-to-spore culture of Didymium operculatum, a new myxomycete from the Atacama Desert of Chile[J]. Mycologia,2011,103(4):895-903.
    [32]Wrigley de Basanta D, Lado C, Estrada-Torres A. Morphology and life cycle of a new species of Didymium (Myxomycetes) from arid areas of Mexico[J]. Mycologia,2008,100(6):921-929.
    [33]Lado C, Mosquera J, Estrada-Torres A, et al. Description and culture of a new succulenticolou Didymium (Myxomycetes)[J]. Mycologia,2007,99(4):602-611.
    [34]Wrigley de Basanta D, Lado C, Estrada-Torres A. Description and life cycle of a new Physarum (Myxomycetes) from the Atacama Desert in Chile[J]. Mycologia,2012,104(5):1206-1012.
    [35]Wrigley de Basanta D, Lado C, Estrada-Torres A. Licea eremophila, a new myxomycete from arid areas of South America[J]. Mycologia,2010,102(5):1185-1192.
    [36]Mosquera J, Lado C, Estrada-Torres A, et al. Description and culture of a new myxomycete, Licea succulenticola[J].Anales del Jardin Botanico de Madrid,2003,60:3-10.
    [37]Clark J. Myxomycete reproductive systems:additional information[J]. Mycologia,1995,87(6):779-786.
    [38]Macbride T H, Martin G W. The Myxomycetes[M]. New York:Macmillan Co.,1934.
    [39]Gray W D. Myxomycetes new or rare in Indiana[J]. Proc. Ind. Acad. Sci,1948,57:69-73.
    [40]Kambly P E. The color of myxomycete plasmodia[J]. American Journal of Botany,1939,26(6):386-390.
    [41]Watanabe A. Ueber die Bedeutung der Nahrbakterien fur die Entwicklung der Myxomyceten plasmodien[J]. Bot. Mag,1932,46:247-255.
    [42]Stephenson S L. Distribution and ecology of myxomycetes in temperate forests Ⅱ. Patterns of occurrence on bark surface of living trees, leaf litter, and dung[J]. Mycologia,1989,81:608-621.
    [43]Keller H W, Kilgore C M, Everhart S E, et al. Myxomycete plasmodia and fruiting bodies:unusual occurrences and user-friendly study techniques[J]. Fungi,2008,1:24-37.
    [44]Pianka E R. On r- and k- selection[J]. American Naturalist,1970,104:592-597.
    [45]Begon M, Townsend C R, Haper J L. Ecology:from individuals to ecosystems. Fourth Edition[M]. Blackwell Publishing Ltd., Maiden,2006.
    [46]Alexopoulos C J. The Myxomycetes Ⅱ [J]. Botanical Review,1963,29(1):1-78.
    [47]Cohen A L. Nutrition of the Myxomycetes. Ⅱ. Relations between plasmodia, bacteria, and substrate in two-membered culture[J]. Botanical Gazette,1941,103(2):205224.
    [48]Wrigley de Basanta D. Acid deposition in Madrid and corticolous myxomycetes[J]. Stapfia,2000,73: 113-120.
    [49]Everhart S E, Keller H W, Ely J S. Influence of bark pH on the occurrence and distribution of tree canopy myxomycete species[J]. Mycologia,2008,100(2):191-204.
    [50]Harkonen M. Myxomycetes developed on litter of common Finnish trees in moist chamber cultures[J]. Nordic J Bot,1981,1:791-794.
    [51]Gray W D. The relation of pH and temperature to the fruiting of Physarum polycephalum[J]. American Journal of Botany,1939,26(9):709-714.
    [52]McManus S M A. Some observations on plasmodia of the Trichiales[J]. Mycologia,1962,54:78-90.
    [53]Nakagaki T, Yamada H, Toth A. Maze-solving by an amoeboid organism[J]. Nature,2000,407:470.
    [54]Bonifaci V, Mehlhorn K, Varma G. Physarum can compute shortest paths[J]. arXiv:1106.0423v3,2012.
    [55]Saigusa T, Tero A, Nakagaki T, et al. Amoebae anticipate periodic events[J]. Phys Rev Lett,2008,100: 018101-018104.
    [56]Chet I, Naveh A, Henis Y. Chemotaxis of Physarum polycephalum towards carbohydrates, amino acids and nucleotides[J]. J Gen Microbiol,1977,102:145-148.
    [57]Kincaid R L, Mansour E. Chemotaxis toward carbohydrates and amino acids in Physarum polycephalum[J]. Experimental Cell Research,1978,116:377-385.
    [58]Knowles D J C, Carlile M J. The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds[J]. Journal of General Microbiology,1978,108:17-25.
    [59]McClory A, Coote J G.The chemotaxtic response of the myxomycete Physarum polycephalum to amino acids, cyclic nucleotides and folic acid[J]. FEMS Microbiology Letters,1985,26:195-200.
    [60]Konijn T M, Koevenig J L.Chemotaxis in Myxomycetes or true slime molds[J]. Mycologia,1971,63: 901-906.
    [61]Emoto Y. Uber die Chemotaxis der Myxomyceten-Plasmodien[C]. Proceedings of the Imperial Academy of Japan,1932,8:460-463.
    [62]Madelin M F, Audus F, Knowles D. Attraction of plasmodia of the Myxomycete, Badhamia utricularis, by Extraxts of the Basidiomycete, Stereum hirsutum[J]. Journal of General Microbiology,1975,89: 229-234.
    [63]Adamatzky A. On attraction of slime mould Physarum polycephalum to plants with sedative properties[J]. Nature Precedings, dx.doi.org/10.1038/npre.2011.5985.1
    [64]Adamatzky A, Costello B D L. Physarum attraction:Why slime mold behaves as cats do?[J]. Communicative Integrative Biology,2012.5(3):297-299.
    [65]Sauer H W. Developmental biology of Physarum[M]. Cambridge Univ Press, Cambridge,1982.
    [66]Halvorsrud R, Wagner G. Growth patterns of the slime mold Physarum on a nonuniform substrate[J]. Phys Rev E,1998,57:941-948.
    [67]Nakagaki T, Yamada H, Hara M. Path finding by tube morphogenesis in an amoeboid organism[J]. Biophy. Chem,2001,92:47-52.
    [68]Nakagaki T, Kobayashi R, Nishiura Y, et al. Obtaining multiple separate food sources:behavioural intelligence in the Physarum polycephalum[J]. The Royal Society,2004,271:2305-2310.
    [69]Tero A, Takaqi S, Saiqusa T, et al. Rules for biologically inspired adaptive network design[J]. Science, 2010,327(5964):439-442.
    [70]Seifriz W, Urbach F. Physical activities and respiration in slime molds[J]. Growth,1944,8:221-233.
    [71]Lister A. Notes on the plasmodium of Badhamia utricularis and Brefeldia maxima[J]. Annals of Botany, 1888,2:1-24.
    [72]Pallotta D, Laroche A, Tessier A, et al. Molecular cloning of stage specific mRNAs from amoebae and plasmodia of Physarum polycephalum[J]. Biochem Cell Biol,1986,64:1294-1302.
    [73]Sweeney G E, Watts D I, Turnock G. Differential gene expression during the amoebal-plasmodial transition in Physarum[J]. Nucleic Acids Res,1987,15:933-945.
    [74]Bailey J. Plasmodium development in the myxomycete Physarum polycephalum:genetic control and cellular events[J]. Microbiology,1995,141:2355-2365.
    [75]Burland T G, Gull K, Schedl T, et al. Cell type-dependent expression of tubulins in Physarum[J]. The Journal of Cell Biology,1983,97:1852-1859.
    [76]Glockner G, Golderer G, Werner-Felmayer G, et al. A first glimpse at the transcriptome of Physarum polycephalum[J]. BMC Genomics,2008, Doi:10.1186/1471-2164-9-6.
    [77]Barrantes I, Glockner G, Meyer S, et al. Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum[J]. BMC Genomics,2010, http://www.biomedcentral.com/1471-2164/11/115.
    [78]Takano H, Abe T, Sakurai R, et al. The complete DNA sequence of the mitochondrial genome of Physarum polycephalum[J]. Mol Gen Genet,2001,264:539-545.
    [79]Bandschuh R. Computational prediction of RNA editing sites[J]. Bioinformatics,2004,20(17): 3214-3220.
    [80]Gott J M, Parimi N, Bundschuh R. Discovery of new genes and deletion editing in Physarum mitochondria enabled by a novel algorithm for finding edited mRNAs[J]. Nucl Acid Res,2005,3(16): 5063-5072.
    [81]Horton T L, Landweber L F. Evolution of four types of RNA editing in myxomycetes[J]. RNA,2000,6: 1339-1346.
    [82]Gott J M, Somerlot B H, Gray M W. Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria[J]. RNA,2010,16:482-488.
    [83]Hendrickson P G, Silliker M E. RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis[J]. Curr Genet,2010,56:203-213.
    [84]Traphagen S J, Dimarco M J, Silliker M E. RNA editing of 10 Didymium iridis mitochondrial genes and comparison with the homologous genes in Physarum polycephalum[J]. RNA,2010,16:828-838.
    [85]Miller D, Krishnan U. Phylogenetic relationships of Myxomycetes inferred from nuclear and mitochondrial r DNA sequences.4th Intern. Congr.
    [86]宋佳歌.绒泡菌日(Physarales)部分黏菌分子系统学初步研究[D].[硕十学位论文].长春:吉林农业大学,2010.
    [87]刘淑艳,宋佳歌,迟明亮,等.核糖体DNA在黏菌分子系统学研究中的应用与发展[J].菌物研究,2009,7(3-4):207-210.
    [88]Otsuka T, Nomiyama H, Sakako Y, et al. Nucleotide sequence of Physarum polycephalum 5.8S rRNA gene and its flanking regions[J]. Nucleic Acids Research,1982,10(7):2379-2385.
    [89]Johansen S, Johansen T, Haugli F. Structure and evolution of myxomycete nuclear group I introns:a model for horizontal transfer by intron homing[J]. Curr Genet,1992,22:297-304.
    [90]Martin M P, Lado C, Johansen S. Primers are designed for amplification and direct sequencing of ITS region of rDNA from Myxomycetes[J]. Mycologia,2003,95(3):474-479.
    [91]李妹.黏菌代表种的个体发育相关基因表达及系统发育关系研究[D].[硕十学位论文].长春:吉林农业大学,2010.
    [92]Fiore-Donno A M, Novozhilov Y K, Meyer M, et al. Genetic structure of two protist species(Myxogastria, Amoebozoa) suggests asexual reproduction in sexual amoebae[J]. Plos One,2011,6(8):e22872.
    [93]Lundblad E W, Einvik C, R(?)nning S, et al. Twelve group I introns in the same pre-RNA transcript of the myxomycete Fuligo septica:RNA processing and evolution[J]. Mol. Biol. Evol,2004,21(7): 1283-1293.
    [94]Winsett K E, Stephenson S L. Using ITS sequences to assess intraspecific genetic relationships among geographically separated collections of the myxomycete Didymium squamulosum[J]. Revista Mexicana de Micologia,2008,27:59-64.
    [95]张旭.绒泡菌目和发网菌目部分黏菌DNA分子系统学研究.[D].[硕士学位论文].长春:吉林农业大学,2011.
    [96]潘景芝.黏菌主要类群个体发育及DNA分子系统学研究[D].[博士学位论文].长春:吉林农业大学,2010.
    [97]刘朴.主要黏菌个体发育、分子系统学及化学成分研究[D].[硕士学位论文].长春:吉林农业大学,2007.
    [98]刘淑艳,李玉.用PCR法扩增部分黏菌rDNA ITS区[J].吉林农业大学学报,1998,20(增刊):107.
    [99]Novozhilv Y K, Schnittler M, Erastova D A, et al. Diversity of nivicolous myxomycetes of the Teberda State Biosphere Reserve (Northwestern Caucasus, Russia)[J]. Fungal Diversity,2012, Doi:10.007/s13225-012-0199-0.
    [100]Nandipati S C, Haugli K, Coucheron D H, et al. Polyphyletic origin of the genus Physarum (Physarales, Myxomycetes) revealed by nuclear rDNA mini-chromosome analysis and group I intron synapomorphy[J]. BMC Evolutionary Biology,2012,12:166. http://www.biomedcentral.com/1471-2148/12/166.
    [101]Fiore-Donno A M, Nikolaev S I, Nelson M,et al. Deep phylogeny and evolution of slime moulds (Mycetozoa)[J]. Protist,2010,161:55-70.
    [102]刘淑艳.黏菌一些主要分类单元19S rDNA序列测定及其分子系统学的研究[D].[博士学位论文].长春:吉林农业大学,2000.
    [103]陈小姝.黏菌主要类群营养体阶段发育特点及系统发育关系的研究[D].[博士学位论文].长春:吉林农业大学,2011.
    [104]吉林农业大学,中国科学院微生物研究所.粘菌分类资料[M].长春:吉林农业大学出版社,1977,15.
    [105]Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature,2012, Doi:10.1038/nature 11237.
    [106]Pan J Z, Zhang X, Liu F J, et al. Oat-culture and rDNA-ITS sequence analyses of the plasmodium of Physarum melleum in Myxomycetes[J]. Mycosystema,2010,29(6):893-896.
    [107]王琦,年淑青,李玉.团毛菌目黏菌个体发育比较研究[J].菌物学报,2006,25(1):31-40.
    [108]Liu P, Wang Q, Li Y. Spore-to-spore agar culture of the myxomycete Physarum globuliferum[J]. Archives of Microbiology,192:97-101.
    [109]Kalyanasundaram I. The Myxomycetes. Available from; http://www.Eumycetozoan Research Project, 2005,5p.
    [110]Stephenson S L. Myxomycetes of New Zealand[M]. Fungal Diversity Press, Hong Kong,2003.
    [111]胡开敏,刘清臻.树木叶片汁液的pH值及缓冲量与抗大气污染性能的初步研究[J].东北林学院学报,1983,11(4):71-77.
    [112]Takahashi K, Hada Y. Distribution of Myxomycetes on coarse woody debris of Pinus densiflora at different decay stages in secondary forests of western Japan[J]. Mycoscience,2009,50:253-260.
    [113]Pinoy E. Role des bacteries dans le developpement des certains Myxomycetes[M]. Ann. Inst. Pasteur, 1907,21:622-656; 686-700.
    [114]Rousk J, Baath E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. International Society for Microbial Ecology,2010,1-12.
    [115]Latty T, Beekman M. Food quality affects search strategy in the acellular slime mould, Physarum polycephalum[J].Behavioral Ecology,2009,20:1160-1167.
    [116]Kincaid R L, Mansour E. Chemotaxis toward carbohydrates and amino acids in Physarum polycephalum[J]. Experimental Cell Research,1978,116:377-385.
    [117]Latty T, Beekman M. Speed-accuracy trade-offs during foraging decisions in the acellular slime mould physarum polycephalum [J]. Proc. R. Soc. B,2011,278:539-545.
    [118]Halvorsrud R, Wagner G. Growth patterns of the slime mold Physarum on a nonuniform substrate[J]. Phys. Rev. E,1998,57:941-948.
    [119]Martinez A, Hewitt D G. Nutritional condition of white-tailed in northern Mexico[J]. Wildl Soc Bull, 1999,27(3):543-546.
    [120]Delgiudice G D, Moen R A, Singer F J. Winter nutritional restriction and simulated body condition of Yellowstone elk and bison before and after the fires of 1988[J]. Wildl Monogr,2001,147(1):1-60.
    [121]谷硕.黏菌主要种原质团的培养、生物学特性及其对细菌吞噬作用的研究[D].[硕士学位论文].长春:吉林农业大学,2011.
    [122]朱鹤.中国北方代表地区黏菌主要类群的个体发育及化学成分研究[D].[博士学位论文].长春:吉林农业大学,2012.
    [123]McManus M A. Culture of Stemonitis Fusca on Glass[J]. American Journal of Botany,1961,48(7): 582-588.
    [124]Camp W G. The fruiting of Physarum polycephalum in relation to nutrition[J]. Am. Jour. Bot,1937,24: 300-303.
    [125]Alexopoulos C J. The laboratory cultivation of Stemonitis[J]. American Journal of Botany,1959,46(2): 140-142.
    [126]Keller H W, Snell K L. Feeding activities of slugs on myxomycetes and macrofungi[J]. Mycologia, 2002,94:757-760.
    [127]Welden A L. Capillitial development in the Myxomycetes Badhamia gracilis and Didymium iridis[J]. Mycologia,1955,47(5):714-728.
    [128]Robideau G P, deCock A A M, Coffey M D, et al. DNA barcoding of oomycetes with cytochrome C oxidase subsunit I and internal transcribed spacer[J]. Molecular Ecology Resources,2011,11: 1002-1011.
    [129]Keeling P J, Doolittle W F. A non-canonical genetic code in an early diverging eukaryotic lineage[J]. The EMBO Journal,1996,15(9):2285-2290.
    [130]Martin M P, Lado C, Johansen S. Primers are designed for amplification and direct sequencing of ITS region of rDNA from Myxomycetes[J]. Mycologia,2003,95(3):474-479.
    [131]Hesse J, Thierauf M, Ponsting IH. Tubulin sequence region β-155-174 is involved in binding exchangeable guanosine triphosphate[J]. The Journal of Biological Chemistry,1987,262(3): 15472-15475.
    [132]Cunningham D B, Buchschacher G L Jr, Burland T G, et al. Cloning and characterization of the alt A a-tubulin gene of Physarum[J]. Journal of General Microbiology,1993,139:137-151.
    [133]Katz L A. Origin and diversification of Eukaryotes[J]. The Annual Revies of Microbiology,2012,66: 411-427.
    [134]Mckean P G, Vaughan S, Gull K. The extended tubulin superfamily[J]. Journal of Cell Science,2001, 114:2723-2733.
    [135]Keeling P J, Doolittle W F. Alpha-tubulin from early-diverging Eukaryotic lineages and the evolution of the tubulin family[J]. Mol Biol Evol,1996,13(10):1297-1305.
    [136]董吉元,杨双熙,陈叶叶,等.银耳α-微管蛋白基因的克隆及序列分析[J].园艺学报,2011,38(5):921-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700