用户名: 密码: 验证码:
施用不同肥料对草莓生长和根系形态的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机肥料投入不足及质量下降制约着我国有机食品、绿色食品的发展。本论文以草莓为研究对象,通过不同种类商品有机氮肥及其与无机氮肥配合施用,设置了5个处理,分别是有机肥A(OFA),有机肥B(OFB)、有机无机复配肥(OIF),无机肥尿素(UN)和不施肥处理(CK),以研究:1)不同形态氮肥施用条件下土壤硝态氮、铵态氮和微生物量氮的动态变化;2)不同形态氮肥施用对草莓根冠干物质累积及根系形态变化的影响;3)不同形态氮肥施用对草莓氮素吸收分配的影响:4)不同形态氮肥施用条件下草莓植株内源激素的变化;5)不同肥料氮素施用下草莓根系形态变化的发生机理。旨在揭示不同形态氮肥施用下根系形态变化的发生机制及其对植株生长、果实产量和品质的影响。
     研究结果表明:
     1.在肥料一次性作基肥施用条件下,氮肥对草莓苗期根系生长产生抑制作用,并且无机氮肥(UN)和有机无机复配氮肥(OIF)还抑制苗期植株地上部分的生长,这种抑制作用会持续到初果期;而施用商品有机肥(OFA和OFB)有利于草莓地上部生物量的持续增加,它们对根系生长抑制的持续时间不长,并很快转为促进作用。在移栽60天后,OFA和OFB地上部干物质比对照增加85.9%和35.2%,而OIF和UN两个处理比对照减少了12.1%和1.2%。
     2.全生育期干物质累积高峰出现在草莓移栽后134d-175d。施肥对草莓根冠生物量及其累积速率产生影响,使根冠占植株总量的比例和根冠比发生改变。草莓根冠比呈现出苗期升高,始花期后降低的趋势,草莓全生育期中根冠比“高-低-高”的总变化趋势有利于植株生育中后期冠层生物量累积的增加和果实成熟末期根系生理活性的保持,有机肥料施用正好能使植株根冠比呈现出这一特征。
     3.施肥有利于促进植物氮素吸收,提高氮素积累速率,促进氮素向果实中分配。施肥处理后氮素的日均积累量平均为10.8mg/株,而不施肥处理仅为5.1mg/株。在果实采收末期,不同处理草莓各器官的氮素分配趋势均为:果实>茎和叶柄>叶片>根系。施用纯有机肥(OFA和OFB),果实中吸收的氮素达到植株吸收总量的一半,分别占53.5%和51.7%,无机氮肥处理(UN)和有机无机复混肥处理(OIF)的果实氮素分配率较少,分别为46.1%和39.8%。
     4.在氮素养分等量施用条件下,施用OFA和OFB促进草莓产量的增加,而UN和OIF施用引起产量降低。表明草莓是一种不宜将无机氮料作为基肥一次性施用的水果型植物。施氮有利于提高草莓品质及商品果率,施用纯有机肥处理,糖酸比提高23.7-28.7%,与对照呈显著差异,而无机尿素和有机无机复配肥处理的增加幅度小于14.2%,与对照的差异不显著。
     5.氮肥施用不同程度地提高草莓叶片叶绿素含量SPAD值。不同时期的草莓植株特定部位叶片SPAD值分别与同时期全氮含量存在着显著线形正相关,相关系数介于0.8107与0.8531之间,倒二叶(靠近心叶)的相关系数更高。这种关系的存在为草莓叶片氮素营养状况的无损诊断提供了理论依据。
     6.本试验条件下,施氮对草莓移栽初期的根系伸长有抑制作用,其中无机氮肥影响程度较重,有机氮肥影响程度较轻,而有机肥料施用有助于草莓移栽中后期(60-90天)根系的伸长;施肥同样也降低草莓苗期根系比根长(sRL),但影响程度随时间推进而逐渐减小。根系直径与SRL变化趋势相反,二者存在极显著的线性负相关,由此导致UN与OIF处理细根比例相对较大。
     7.在草莓移栽初期,植株侧根数量和侧根密度受施肥影响显著,OFA与OFB的影响小于UN和OIF。移栽60天后,OFA和OFB处理的草莓其每株侧根数量比对照分别增加8.9%和20.5%,而OIF与UN处理的侧根数量依然低于对照;同时期的侧根密度亦以有机肥处理(OFA和OFB)大于尿素和有机无机复配肥处理(OIF和UN),增加幅度为17.9%~57.3%。另外,OFA与OFB处理显著提高了生长60d的植株根系表面积和体积。说明有机氮肥较无机氮肥及有机无机复配肥更能诱导草莓侧根的发生,增加植株根系养分吸收面积。
     8.施肥可以显著提高土壤铵态氮和硝态氮含量,土壤微生物量氮含量的高低主要与施用的有机物料C/N比有关。在草莓全生育期,OFA、OFB和OIF处理的土壤有效氮平均含量分别较UN降低49.3%、79.9%和28.7%,而土壤微生物量氮平均含量却分别提高91.2%、83.0%和68.2%。说明虽然有机肥(OFA和OFB)和有机无机复配肥(OIF)的供氮能力低于尿素(UN),但它们比无机肥更能促进微生物对土壤氮的固持,提高土壤对氮素的“缓冲”能力,改善土壤供氮性能。
     9.在草莓移栽初期(20d),施肥区根系及叶片中内源IAA和ABA含量显著高于对照,而移栽60天时。OFA和OFB处理的根和叶片中IAA和ABA含量却显著低于对照,同时期UN和OIF处理的根和叶片中IAA和ABA含量均高于有机肥处理.施肥显著提高草莓苗期根和叶片中iPAs的含量,施用含有无机氮的肥料处理(UN和OIF)的提高程度大于施用纯有机肥料处理。另外,施肥能显著降低草莓内源生长素/细胞分裂素IAA/iPAs比值,并且施用含有无机氮的肥料处理(UN和OIF)的比值降低程度大于施用纯有机肥料处理。
     10.土壤硝态氮、铵态氮和有效氮与根系形态参数(根生物量、根直径、根尖数、侧根数量、总根长、主根长度、比根长和侧根密度)之间存在着良好的相关性,它们相关程度达到显著水平以上项次的顺序为:硝态氮(8项)>有效氮(7项)>铵态氮(5项)。其中土壤氮素有效养分与根直径是正相关,其它均为负相关。不同施肥处理植株的根直径、侧根数量和侧根密度总平均值与土壤氮素有效养分总平均值之间的相关关系可以更好地用二次曲线回归方程来表达。
     11.草莓植株内源IAA和iPAs含量与根系形态指标参数之间有着较好的线性相关关系,除根系分枝度外,内源IAA水平与其它根系指标呈极显著相关,相关系数介于0.6941和0.9253之间。根系中内源iPAs含量与根系形态指标参数的相关性较IAA稍差,只与根系生物量、根直径、总根长、主根长度和比根长呈极显著线性相关(P<0.01),未发现内源ABA含量与草莓根系形态参数之间存在相关关系。
     12.土壤氮素养分的改变和植株内源激素的差异都对草莓苗期根系形态建成有着重要的影响。有两种机制可能存在于氮肥施用调控草莓根系形态变化过程中:内源激素诱导机制与供氮诱导机制(硝酸盐诱导的基因调控机制)。由植株内源激素含量和土壤硝态氮含量与根系形态参数的相关程度(相关系数大小)推测,内源激素对根系形态建成的诱导机制占主导地位,而后者占次要地位。草莓施氮根系形态的变化可能是2种机制共同作用的结果。
     综上所述,由于草莓苗期生长量较少,土壤中较少的氮素完全能满足植株幼苗生长的养分需要,供氮(即便是有机氮)都可能给移栽初期根系生长造成负面影响。然而,草莓生长过程中不同肥料氮素释放速率存在差异,有机肥料的氮素释放过程基本与植物需求过程相吻合,有助于草莓生长后期根生物量、根尖数、侧根数量、总根长、主根长度、比根长和侧根密度等根系参数的提高。不同形态氮肥施用显著影响土壤氮素有效养分状况和植物生理状况,在草莓根系结构调控中,植株内源激素和土壤硝态氮起着关键作用。同时有机氮肥施用通过提高土壤硝铵比值优化植株生长过程中的根冠比,显著提高草莓果实的产量和品质。
Application of commercial organic fertilizers is very important for theproduction of green foods and organic foods. Strawberry and different fertilizercombinations were used in this experiment. Treatments included organic fertilizer A(OFA), organic fertilizer B (OFB), organic-inorganic compound fertilizer (OIF),chemical fertilizers only (UN) and no amending (CK). The aim of this research was tocompare the influences of different fertilizer applications on 1) Dynamics of soilNO_3~--N, NH_4~+-N and microbial biomass N; 2) Strawberry root and shoot biomassaccumulation; 3) Root growth and development; 4) Nitrogen (N) uptake anddistribution in strawberry; 5) Changes of plant endogenous hormones and the relatedroot morphology; 6) Yield and quality of strawberry fruit.
     The results obtained are listed as follows.
     1. Fertilizer applications inhibited root growth of strawberry during very seedlingstage. Furthermore, UN and OIF application inhibited shoot growth until early fruitstage whereas application of organic N fertilizers (OFA and OFB) had a continuousincrease effect on shoot biomass after they decreased root growth for a very short timeduring the seedling stage. Root dry biomasses in OFA and OFB treatments were85.9% and 35.2% higher than that in CK, while they were decreased by 12.1% and1.2% in OIF and UN treatments 60 days after strawberry seedlings were transplanted,respectively.
     2. Highest accumulation of root and shoot biomass were found during 134~175days after transplanting. Fertilizer application affected root biomass, shoot biomassand their accumulation rate in a different way and thus, the ratio of root and shootbiomass to total biomass and root/shoot were changed. Root/shoot ratio increased atseeding stage, and then decreased after early flowering stage. The "high-low-high"variation tendency of root/shoot ratios during the whole growth period wasbenefitablc to strawberry biomass accumulation in middle-late growth stages, and toroot physiological activities during lateral fruit mature period. This variation tendencycould be obtained by application of organic fertilizers(OFA and OFB).
     3. Fertilizer application improved N uptake by plants, thus increasing N accumulation in plants and N distribution in fruits. Average accumulation of N perday was 10.8 mg/plant in N fertilization
     treatment, and 5.1mg/plant in CK. N distribution in different organs of alltreatments at the end of fruiting season was in the order of fruit>stem and petiole>root. The N accumulated in fruit with organic fertilizers treatments (OFA and OFB)accounted for half of the total N taken up by strawberry plants, namely 53.5% and51.7%, while those with inorganic fertilizer (UN) or Organic-inorganic fertilizertreatments (OIF) were only 46.1% and 39.8% of the total N absorbed, respectively.
     4. In terms of equal N application, the yields of strawberry was increased byOFA and OFB, but decreased by UN and OIF. This was mainly caused by too muchinorganic N present in the soils not suitable for strawberry growth. Fertilizerapplication could improve strawberry quality. Sugar/acid ratio of the strawberry, forexample, was increased by 23.7-28.7% in organic fertilizer application treatmentwhile it was increased only 14.2% in inorganic fertilizer treatment.
     5. There was significantly positively linear dependence between SPAD values ofstrawberry leaves on specific node in different stages and the total N in plant with thesame stage. The correlation coefficient values varied from 0.8107 to 0.8531.Therefore, non-destructive testing of N nutrient situation would be facilitated by thelinear dependence.
     6. Root growth was inhibited after fertilizer application in the initial stage ofstrawberry transplanting and it was more strongly affected by inorganic N fertilizerapplication. N fertilizer application also decreased the specific root length (SRL) ofseedling stage but the effects disappeared soon with strawberry growth. There was anegative relationship between root diameter and SRL, which resulted in a big value offine roots in UN and OIF treatments.
     7. In the initial stage after transplanting, lateral root number and lateral rootdensity of strawberry plants were evidently affected by fertilization. Sixty days aftertransplanting, the lateral root number of strawberry in OFA and OFB treatment wereincreased by 8.9% and 20.5% compared with CK, respectively, whist those of UN andOIF treatments were still less than CK. Lateral root density of strawberry in OFA andOFB treatment were 17.9% to 57.3% higher than those of UN and OIF treatments. Inaddition, root surface area and volume of strawberry 60 days after transplanting weresignificantly increased by the application of OFA and OFB. These results showed thatthe development of lateral root was effectively induced by organic N fertilizer and thus, root surface area for nutrients uptake of strawberry were elevated.
     8. Fertilizer application significantly increased soil NO_3~--N and NH_4~+-N and themicrobial biomass N mainly depended on the C/N of organic matters applied in soil.The soil available N of OFA, OFB and OIF treated soil were decreased by 49.2%,79.9% and 28.7%, respectively but the average microbial biomass N were increasedby 91.2%, 83.0% and 68.2%, respectively, compared with CK in the whole growthperiod of strawberry plants. The study indicated that the content of mineral N inorganic fertilizer (OFA and OFB) and organic-inorganic fertilizer (OIF) treatmentswas less than that of urea N (UN) but application of organic fertilizers could facilitateimmobilization of soil N by soil microbes and increase soil N supply bufferingcapacity, which was very useful to the gowth of strawberry plant.
     9. Contents of endogenous IAA and ABA in leaves and roots in fertilization sitesduring the initial stages (20 days after transplanting) were significantly higher thanthose in CK. However, at 60 days after transplanting, the contents of IAA and ABA inleaves and roots in OFA and OFB treatments were lower than those in UN and OIFtreatments. Fertilization significantly increased the content of iPAs in leaves and rootsof strawberry seedlings and UN and OIF application had higher iPAs content than OFtreatments. In addition, the ratio of endogenous IAA/iPAs was significantly decreasedby fertilizer applications and UN and OIF had a more effect than OF.
     10. There were significant correlations between the contents of soil available Nand root morphological characteristics (root biomass, root diameter, root tips, lateralroot number, total root length, length of adventitious root, specific root length (SRL)and lateral root density). Among them, positive correlation was only found betweensoil available N and root diameter. The correlation between the average content of soilavailable N and root diameter, lateral root number and lateral root density withdifferent treatments could be quantified finely by quadratic regression equation.
     11. Better linear correlation was found between root morphologicalcharacteristics and the contents of endogenous IAA and iPAs in strawberry. Therewere significant correlations between the contents of endogenous IAA and otherindexes of roots except degree of branching with the correlation coefficient rangedfrom 0.6941 to 0.9253. The content of endogenous iPAs was not as good as thecontent of endogenous IAA correlating to root morphological characteristics, and thesignificantly negative correlations were only found between the content ofendogenous iPAs and root biomass, root diameter, total root length, length of adventitious root and specific root length (P<0.01). No correlation was found amongthe content of endogenous ABA and root morphological characteristics.
     12. The changes of soil N nutrient and the differences in endogenous hormone inplants all greatly affected root formation during strawberry seedling stage. Theremight be two mechanisms for N to modulate strawberry root formation: the inducedmechanism by endogenous hormones and the induced mechanism by N supply (generegulation by nitrate-N supply). According to the correlations between rootmorphological characteristics and the contents of endogenous hormone in strawberryand soil nitrate-N, it could be deduced that endogenous hormone is the dominatingfactor to induce the root formation.
     In conclusion, strawberry plants grow slowly at seedling stage, so a soil with lowmineral N content could supply enough N for their growth. Too much mineral Nsupply could restrict root growth. However, application of pure organic fertilizerscould help the increase of root biomass, root tips, lateral root number, total root length,length of adventitious root, specific root length and lateral root density at lateralseedling stages. The changes of endogenous hormones and nitrate-N played importantroles in the modulation of root formation for strawberry plants. The application of Nfertilizers significantly affected the status of soil available N and plant growth; theroot to shoot ratio was optimized in the course of plant growth with the application ofOFA and OFB by increasing the ratio of nitrate-N to arnmonium-N in soil, which wasfavorable to improvement of yield and quality of strawberry fruit.
引文
Adrie Vander Werfand OscarW Nagel. Carbonal location to shoot and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant Soil, 1996, 185:21~32.
    Anthony Egrinya Eneji, Toshimasa Honna, et al. Nitrogen Transformation in four Japanese soils following Manure+Urea amendment [J]. Soil Sci. Plant Anal, 2002, 33(1&2): 53~66.
    Appel T and Mongol K. Nitrogen fractions in sandy soils in relation to plant nitrogen uptake and organic matter incorporation. Soil Biol. Biochem., 1993, 25: 685~691.
    Archbold D. D. and Mackown C., Nitrogen availability and fruiting influence nitrogen cycling in strawberry, J. Hort. Sci. 1997, 122:134-139.
    Atwell, B.J. Response of roots to mechanical impedance. Environ. Exp. Bot.[J], 1993, 33:27~40.
    Azam F, Yousaf M, Hussain F, et al. Determination of biomass N in some agricultural soils of Punjab, Pakistan. Plant Soil, 1989, 113: 223~228.
    Babik. The influence of nitrogen fertilization on yield, quality and senescence of Brussels sprouts [J]. Acta-Horticurae, 1996, 407:353~359.
    Bahman Eghball and JerryW. Maranville Root development and nitrogen influx of corn genotypes grown under combined drought and N stress. Agron.J., 1993, 85:147~152.
    Bencldsen G. Environmental impact of fertilizing soils using sewage and animal wastes [J]. Fertilizer Research, 1994, 37(1): 1~20.
    Blakely L M, Durham M, Evans T A, Blakely R M. Experimental studies on lateral mot formation in radish seedling roots: general methods, developmental stages, and spontaneous formation of laterals. Bot Gaz 1982, 143:341~352
    Boerjan W, Cervera M T, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D Superroot, a recessive muta in Arabidopsis, confers auxin overproduction, Plant Cell 1995, 7:1405-1419
    Bowman D C, Devitt D A, Enjelke M C, et al. Root architecture affects nitrate leaching from bentgrass turf [J].Crop Sci, 1998, 38: 1633~1639.
    Brinkman M. A., Rho Y. D. Response of three oat cultivars to N fertilizer. Crop Sci. 1984. 24:973~977.
    Brookes P C, Landman A and Pruden G Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biol. Biochem, 1985, 17(6): 837~842.
    Brunner I, Brodbeck S, Walthert L. Fine root chemistry, starch concentration, and 'vitality' of subalpine conifer forests in relation to soil pH. Forest ecology and management, 2002.165:75~84
    Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3):389~399
    Casimiro I, Marchant A, Bhalerao R P, Beeckman T, Dhooge S, Swarup R, -Graham N, Inz6 D, Sandberg G, Casero P J et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 2001, 13:843~852
    Celenza J L, Grisafi P L, Fink G R. A pathway for lateral root formation in Arabidopsis thaliana. Genes 1995, 9:2131~2142
    Chen G C, He Z L. Effect of land on microbial biomass-C, -N and-P in red soil. J Zhcjiang University (Science), 2003.4(4):480~484(inChinese).
    Clarkson DT, Gojon A, Saker LR, Wiersema PK, Purvcs JV, Tillard P, Arnold GM, Paams AJM, Waalburg W, Stulen I Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of ~(13)N and ~(15)N tracing. Plant Cell Environ 1996, 19:859~868
    Clausscn W. Leng F. Effect of ammonium or nitrate nutrition on net photosynthesis, growth and activity of enzymes nitrate rcductase and glutamine synthctase in blueberry, raspberry and strawberry[J]. Plant and Soil. 1999, 208:95~102.
    Comfort SD, Malzer GL, and Busch RH. Nitrogen fertilization of spring wheat gcnotypes: influence on root growth and soil water depietion. Agronomy Journal, 1988, 80:114~120
    Cox M C, Qualsct C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. Nitrogen translocation in relation to grain yield and protein [J]. Crop Science, 1986, 26: 737~740
    Crovetto, C.C. No-till development in Chequen farm and its influence on some physical, chemical and biological parameters. [J]. Soit Water Conscrv. 1998. 53:194~199.
    Davies W J, Tardicu F, Trejo C L. How do chemical signals work in plants that grow in drying soil[J]. Plant Physiology, 1994, 104: 309~314.
    Deng X. and Woodward F I. The growth and yield responses of fragaria ananassa to elevated CO2 and N supply [J]. Annals of Botany, 1998, 81, (1): 67-71
    Dolan L The role of ethylene in the development of plant form. J Exp Bot 48:201~210
    Drew M C, Saker L R, Ashley T W. Nutrient supply and the growth of the seminal roots system in barley [J]. Journal of Experimental Botany, 1973, 24: 1189~2002.
    Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley [J]. New Phytol. 1975, 75:479~490
    Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability [J]. Plant and Soil, 1995, 169:205~214
    Estelle M, Somerville C Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 1987, 206:200~206
    Farley R A, Fitter A H. The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol, 1999, 87:688~697.
    Fitter A H, Stickland T R. Architectural analysis of plant-root system.lnfluence of nutrient supply on architecture in contrasting plant-species [J].New Phytologist, 1991, 118(3): 383~389.
    Fitter A H. Characteristics, functions of root systems. In: Waise I Y., Eshel A., Kafkafi U. eds. Plant roots: the hidden half. 2th edition. NewYork, Marcel Dekker, 1996. 1~20.
    Fitter A H. Functional significance of root morphology and root system architecture [A]. In: Fitter A H, Editor, Ecological Interactions in Soil[M]. Oxford: Blackwcll Scientific Press, t985.87~106.
    Fosket DE. Hormonal control of morphogenesis in culture tissue:In Skoog F (ed), Plant Growth Substances. Berlin, Springcr-Verlag, 1979, 362~369.
    Gadgiio N F, Pilarti R A, Baldi B L. Using nitrogen balance to calculate fertilizer in strawberries[J]. Hort Technology, 2000, 10(1):147~150.
    Genoud T, Metraux JP. Cross talk in plant cells ignaling: structure and function of the genetic network [J].Trends. Plant Sci., 1999, 4:503~507.
    Gilbert GA, Knight JD, et al. Proteoid root development of phosphorous deficient lupines mimicked by auxin and phosphonate [J]. Ann.Bot., 2000, 85:921~928.
    Granato T C, Rapper C D. Proliferation of maize roots in response to localized supply of nitrate [J]. Journal of Experimental Botany, 1989, 40:263~275.
    Grime J P, Campbell B D, Mackey J M L, et al. Root plasticity, nitrogen capture and competitive ability [A]. In: Atkinson D. Editor, Plant Root Growth: An Ecological Perspective [M]. Oxford: Blackwell Scientific Publications, 1991, 381~397.
    Guo G Q, Wang R C, Crawford N M. The Arabidopsis dual-affinity nitrate transporter gene At NRT1.1 CHL1 sregulated by anxinin both shoots and roots [J]. J. Exp.Bot. 2002, 53: 835~848.
    Hackett C. A method of applying nutrients locally to roots under controlled conditions and some morphological effect of locally applied nitrate on the branching of wheat roots [J]. Australian Journal of Biological Sciences, 1972, 25:1169~1180
    Hadas A, Molina J A E, Feigenbaum S, et al. Factors affecting nitrogen immobilization in soil as estimated by simulation models [J]. Soi Sci Soc A, 1992, 56: 1481~1486.
    Han KH, Choi WJ, Han GH, et al. Urea-nitrogen transformation and compost-nitrogen mineralization in three different soils as affected by the interaction between both nitrogen inputs [J]. Biol Fertil Soils, 2004, 39: 193~199.
    Houba V J G, Novozamsky I, Huybregts A W M, et al. Comparison of soil extractions by 0.01 mol L~(-1) CaCl_2, by EUF and by some conventional extraction procedures [J]. Plant and Soil, 1986, 96: 433~437.
    Huston M A, Smith T M. Plant succession: Life history and competition [J]. American Naturalist, 1987, 130(2): 168~198
    Jensen ES. Mineralization immobilization of nitrogen in soil amended with low C: N ratio plant residues with different particle size[J]. Soil Biology and Biochemistry, 1994, 26:519~521
    Jung TS, Lee KH. The effect of NH_4~+:NO_3~-N ratio on the growth, nitrogen concentration and Ca, Mg and K composition of strawberries grown in nutrient solution[C]. Abstracts of Communicated Papers Horticulture Abstracts, Korean Society for Horticultural Science, 1989, 7:1, 62~63.
    Keutgen A J, Noga G and Pawelzik E. Cultivar-specific impairment of strawberry growth, photosynthesis, carbohydrate and nitrogen accumulation by ozone. [J] Environmental and Experimental Botany, 2005, 53(3): 271~280.
    King J J, Stimart D P, Fisher R H, Bleecker A B. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 1995, 7:2023~2037
    Lee K. H. and Jose, S. B. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 2003.185:263-273.
    Lee S K, Kader A A. Preharvest and postharvest factors influcing vitamin C content of horticultural crops. Post harvest Bio.Techno., 2000, 20:207~220
    Liger O F, et al. Nitrate and inoculation enhanced ethylene biosynthesis in soybean roots and possible mediator of nodulation control [J]. Plant Physiol., 1999, 154:482~488.
    Lynch J, Brown KM. Ethylene and plant response to nutritional stress [J]. Physiol. Plant, 1997, 100:613~619.
    Lynch J. Root architecture and plant productivity[J]. Plant physiology, 1995, 109:7~13.
    Maldiney R, Pelese F, Pilate G. Sossountzov L, Miginac E. Endogenous levels of adventitious root formation in cuttings of Cralgella and Craigella lateral suppressor tomato. Physiol. Plant, 1986, 68:426~430
    Marafa, L. M. and Chau, K. C. 2005. Nitrogen mineralization in soils along a vegetation chronosequence in Hong Kong. Pedosphere. 15(2): 181—188
    Marschner H, Kirkby E A, Cakmak T. Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients [J].Journal of Experimental Botany, 1996, 47:1255~ 1263.
    Marschner, H. Mineral Nutrition of Higher Plants, 2nd Edition. Academic Press, 1995 London.
    Matsuo T, Mitsuzono H. Variation in the levels of major free cytokinins and free abscisic acid during tuber development of sweet-potato. Journal of Plant Growth Regulation, 1988(7): 249~258.
    Matsuo T. Identification of free cytokinins and the change in endogenous levels during tuber development of sweet-potato. Plant and Cell Physiology, 1983(24): 1305~1312.
    McGill W B, Cannon K R, Robertson JA, et al. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations [J]. Can J Soil Sci, 1986, 66: 1~19.
    Mou P, Michell R J, Jones R H. Root distribution of two tree species under a heterogeneous environment. J Appl Ecol, 1997, 34:645~656.
    Mozafar A. Nitrogen fertilizers and the amount of vitamins in plants: A review. J Plant Nutr. 1993, 16(12): 2479-2506
    Muday G K, Lomax T L, Rayle D L Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica. Planta 1995, 195:548~553
    Muday GK, Haworth P Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochem 1994, 32:193~203
    Neve D and Hofman G. Modelling N mineralization of vegetable crop residues during laboratory incubations [J]. Soil Biochem, 1996, (28): 1451~1457
    Passiura J B. Roots and drought resistance [J].Agricultural Water Management, 1983, 7: 265~280.
    Paul E A, Clark F E. Soil microbiology and biochemistry[M]. Academic Press, San Diego, 1989, 182-197
    Pilet P E, Saugy M. Effect of applied and indol-3yl-acetic acid on maize root growth. Planta, 1985, 164: 254
    Preusch P L, Takeda F and Tworkoski T J. N and P uptake by strawberry plants grown with composted poultry litter[J]. Scientia Horticulturae, 2004, 102(1): 91~103
    Reed RC, Brady SR, Muday G (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369~1378
    Ross D J. and Cairns A. Nitrogen availability and microbial biomass in stockpiled topsoils in southland. New Zealand J Sci., 1981, 24: 137~143.
    Sanchez L, Diez JA, Polo A, et al. Effect of timing of application of municipal solid waste compost on N availability for crops in central Spain[J]. Biol Fertil Softs, 1997, 25: 136-141.
    Sattelmacher B, Walter J H and Becker H C. Facters that contribute to genetic variation for nutrient efficiency of crop plants. Z. pflanzenernahr.Bodenk., 1994, 157:215~224.
    Scheible WR, Gonzales-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell.[J]. 1997, 9:783~798
    Schiefelbein J W, Benfey P N. The development of plant root: new approaches to under ground problem [J]. Plant Cell, 1994, 3:1147~1154
    Schmid TW, TTTTELJ, SCHIKORAA. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots [J]. Plant Physiol., 2000, 122:1109~1118.
    Schnure J, Rosswall T. Mineralization of nitrogen from N labeled fungi, soil microbial biomass and roots and its uptake by barely plant, Plant Soil, 1987.102:71~78
    Schnurer J., Clarholm M, Rosswall T. Microbial biomass and activity in an agricultural soil with different organic matter contents, Soil Biol. Biochem. 1985, 17: 611-618.
    Seith B, George E, Marschner H, et al. Effect of varied soil nitrogen supply on Norway spruce. Plant Soil, 1996, 184:291~298.
    Shen Q R., Xu S M., Shi R H. Effect of Incorporation of wheat straw and urea into soil on biomass nitrogen and nitrogen-supplying characteristics of paddy soil[J]. Pedosphere, 1993, Vol.3, No.3, pp. 201~205.
    Snchez E, Ruiz J M, Romero L. Proline metabolism in response to nitrogen toxicity in fruit of French bean plants (Phaseolus vulgaris L. cv. Strike). Sci Hort. 2002, 93:225~233.
    Song Q H, Li F M, Liu H S, et al. Effcet of film mulching on soil microbial biomass in spring wheat field in semiarid loess area.Chin J Appl Ecol, 2003.14(9):1512~1516(inChinese)
    Tagliavini M, Baldi E, Lucchi P, Antonelli M. et al. Dynamics of nutrients uptake by strawberry plants (Fragaria× Ananassa Dutch.) grown in soft and soilless culture[J]. European Journal of Agronomy, 2005, 23(1): 15~25
    Tandon H L S. Fertilizers, organic manures, recyclable wastes and biofertilizers [M]. New Delhi (India): Fertilizer Development and Consulation Organisation, 1992.
    Tilman D. Plant Strategies and the Structure and Dynamics of Plant Communities [M]. Princeton: Princeton University Press, 1988.52~97
    Torrey JG (1950) Induction of lateral roots by indoleacetic acid and root decapitation. Am J Bot 37: 257~264
    Torrey J(3 (1976) Root hormones and plant growth. Ann Rev Plant Physio127: 435~459
    Trull MC, et al. The response of wild-type and ABA mutant Arabdopsis thaliana plants to phosphorus starvation [J]. Plant Cell Envi-ron., 1997, 20:85~92.
    Van Sanford D A, Mackown C T. Cultivar differences in nitrogen remobftization during grain fill in soft red winter wheat[J] Crop Science, 1987, 27: 295~300.
    Wagner B W, Becke. Cytokinins in the perennial herb Urtica dioicaL. As influenced by its nitrogen status [J]. Planta, 1993, 190:511~518
    Wang Z H, Ye Q F, Shu Q Y, et al. Impact of root exndates from transgenic plants on soil microecosystems [J]. Chinese Journal of Applied Ecology, 2002.13(3):373~375(inChinese).
    Willingen, P. Nitrogen turnover in the soil-crop system comparison of fourteen simulation models. Fertilizer Res. 1991, 27:141-149.
    Xing G X, Yah X Y. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPPC guidelines for national greenhouse gases [J]. Environmental Science and Policy, 1999(2): 355-361.
    Zaman M, Di H J, Cameron K C, et al. Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials [J]. Biol Fertil Soils, 1999, 29: 178-186.
    Zhang H, Andrea J, Peter W B, et al. Dual pathways for regulation of root branching by nitrate [J]. Plant Biology, 1999, 96:6529-6534.
    Zhang H, Forde B G. An arabidopsis MADs box gene controlling nutrient-induced changes in root architecture. Science, 1998, 279:407~409.
    Zhang H, Forde B. Regulation of Arabidopsis root development by nitrate availability [J]. Journal of Experimental Botany, 2000, 51(342): 51-59.
    ZhangC E, Liang Y L, He X B. Effects of plastic cover cultivation on soil microbial biomass. Acta Ecol Sin, 2002.22(4):508~512(inChinese)
    ZhangH and FordeBG. An Arabidopsis MADs-box gene controlling nutrient-induced changes in root architec-ture. Science, 1998, 279:407~409.
    Zhou J B, Li S H, Chen Z J. Soil microbial nitrogen and its relationship to uptake of nitrogen by plants. Pedosphere, 2002.12(3):251~256.
    Zobel RW. Control of morphogenesis in ethylenerequiring tomato mutant, diageotropica. Can J Bot 1974, 52:735-741
    Odhiambo JJ O,Bomke A八冬季覆盖作物对短期氮肥有效性的影响[J].水土保持科技情报,2001,(6):24~27.
    艾绍英,柯玉诗,姚建武,等.氮磷钾营养对大青菜产量、品质和生理指标的影响[J].华南农业大学学报,2001,22(2):11-14.
    包雪梅,张福锁,高祥照,等.中国有机肥资源利用现状分析[J].中国农业科技导报,2003a,5(29):3~8(增刊).
    包雪梅,张福锁,马文奇.中国有机肥资源特征、时空分布及养分潜力[J].中国农业科技导报,2003b,5(29):9~13(增刊).
    包雪梅,张福锁,马文奇.中国有机肥资源与利用状况研究进展[A].养分资源综合管理[C],中国农业大学出版社,2003c,56~66.
    鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2000 Bao S D. Analysis of soil agriculture chemistry [M], Beijing: China Agriculture Press, 2000
    北京农业大学主编.农业化学(总论)[M].农业出版社,1994,63;218.
    蔡绵聪.生物有机肥对花椰菜生产的影响[J].佛山科学技术学院学报(自然科学版),2003,21(1):67~69.
    曹林奎,陆贻通,林玮.生物有机肥料对温室蔬菜硝酸盐和土壤盐分累计的影响[J].农村生态环境,2001,17(3):45~47.
    曹志洪.施肥与水体环境质量.土壤(soils),2003,35(5):353~363.
    陈防,鲁剑巍,等.有机无机肥料对农业环境影响评述[J].长江流域环境与资源,2004,13(3):258-261.
    陈宁福.影响插枝生根的物质。植物杂志 1983,6:7-8.
    陈同斌,陈世庆,徐鸿涛.中国农用化肥氮磷钾需求比例的研究.地理学报,1998,53(1):32-41.
    程云环,韩有志,王庆成,王政权.落叶松人工林细根动态与土壤资源有效性关系研究.植物生态学报,2005,29(3):403-410.
    池田英男,等.1979,(日)园芸学会杂志[J],Vol.47,454-462.
    董桂春,王余龙,黄建晔,等.施氮时期对扬稻6号根系生长及产量的影响[J].江苏农业研究,2001a,22(3):13-17.
    董桂春,王余龙,吴华,王坚刚,蔡惠荣,张传胜,蔡建中.供氮浓度对水稻根系生长的影响[J].江苏农业研究,2001b,22(4):9~13
    董玉明,叶自新.复合有机肥对大棚茄子生长及产量的影响[J].长江蔬菜,2004,8:42-43.
    樊卫国,杨宏敏,刘进平.施用奥普尔肥对银杏叶产量及黄酮等含量的影响[J].山地农业生物学报,2001,20(2):114-116.
    樊小林,史正军,吴平.水、肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报(自然科学版),2002,30(2):1-5.
    范小建,切实加强有机肥料建设,努力提高农业综合生产能力[N],农民日报:2005-06-21
    高峰,曹林奎,陈国军,等.生物有机肥在糯玉米生产上的应用研究[J].2003,21(3):237~241.
    高强,李亚峰,刘振刚,等.有机复混肥对土壤及甜椒产量和品质的影响[J].吉林农业大学学报,2001,23(4):75~78.
    高祥照,马文奇,马常宝,张福锁,王运华.中国作物秸秆资源利用现状分析.华中农业大学学报,2002.21(3):242-247.
    韩碧文,段留生,王华芳等.氮磷的再利用[A].娄成后,王学臣.作物产量形成的生理学基础[M].北京:中国农业出版社,2001,174~179
    韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状.农业工程学报,2002.18(5):87-91.
    何念祖,孟赐福.植物营养学原理[M].上海,上海科技出版社,1987.59-124.He N Z,et al.The theory of plant nutrition[M].Shanghai science and technology press,1987.59-124(in Chinese).
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,2:61-69.
    何钟佩.作物激素生理及化学控制.北京:中国农业大学出版社,1996:1-42.
    黄红英,朱万宝.不同堆制方法对牛粪和鸡粪发酵脱水的影晌[J].农村生态环境,2003,19(1):53-55.
    黄鸿翔,李书田,李向林,姚杰,曹卫东,王敏,刘荣乐,我国有机肥的现状与发展前景分析,土壤肥料,2006(1):3-8
    黄家安.爱丰有机肥在水稻上应用效果研究[J].现代化农业,2003,2:23.
    贾小红,黄元仿,徐建堂.编有机肥料加工与施用[M].化学工业出版社,2002.
    姜东,于振文,许玉敏,等,有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报,1999,36(4):440~447.
    金继运,等.施肥技术升级战略研究报告.
    金燕,李艳霞,陈同斌,等.污泥及其复合肥对蔬菜产量及重金属积累的影响[J].植物营养与肥料学报,2002,8(3):288~291
    巨晓棠.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业大学学报,2002,7(3):52-56.
    赖涛,沈其荣,褚冰倩,张春兰.新型有机肥的氮素在土壤中的转化及其对草莓生长和品质的影响[J],土壤通报,2005,36(6):891~895.
    赖涛,沈其荣,茆泽圣,等,不同商品肥品种对草莓生长及其氮素吸收分配的影响,植物营养与肥料学报(已接收,2006年第6期)。
    李贵桐,赵紫娟,黄元仿,李宝国.秸秆还田对土壤氮素转化的影响[J].植物营养与肥料学报,2002,8(2):162-167.
    李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.195-197,246-248.
    李巧珍,王波,翁荣林,等.生物有机复合肥对桑树生长发育的影响[J].中国蚕业,2003,24(1):21~22.
    李庆康,张永春,孙丽,等.商品有机肥生产与推广中易出现的几个误区[J].江苏农业科学,2003,1:76~78.
    李荣刚.高产农田氮素肥效与调控途径.以江苏太湖地区稻麦两熟农区为例推及全省.中国农业大学博士学位论文,2000.
    李世清,凌莉,李生秀.影响土壤中微生物体氮的因子[J].土壤与环境,2000,9(2):158~162.
    李远明,申庆龙,张凤泉,等.生物有机肥在优质大豆生产中应用效果的研究[J].大豆通报,2002,3:7
    李远新,李进辉,何莉莉,等.氮磷钾配施对保护地番茄产量及品质的影响[J].中国蔬菜,1997,4:10-13.
    李召虎,等.棉花幼苗侧根发生的化学诱导研究[J].北京农业大学学报,1991,17(增刊):6-8.
    李卓杰.植物激素及其应用.广州:中山大学出版社,1993:10-56.
    李宗庭.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996.
    梁振兴,刘兴海.小麦产量形成的栽培技术原理[M].北京:北京农业大学出版社,1994
    刘更另主编,中国有机肥料[M].农业出版社,1991:25.
    刘国顺,彭华伟.生物有机肥对植烟土壤肥力及烤烟干物质积累的影响[J].河南农业科学,2005,1:46~49.
    刘俊玲,帅敏,黄刚,等.生物有机叶面肥—丰本生长酵素对西洋参生长效果的研究[J].人参研究,2003,2:33~34.
    刘荣乐.我国七省(区)农作物施肥结构及施肥效果研究[D].北京:中国农业大学博士学位论文,2001.
    刘卫群,王卫民,陈良存,郭群召.氮源对烤烟根系生长发育的影响[J].烟草科技2004,205(8):41-43.
    刘雄兰,金建青,朱伟清,等.不同有机肥对黑李产量及树势的影响[J].浙江林业科技,200424(3):33~34.
    刘秀春,陈宝江,王冬梅等,保护地草莓养分积累与分布的研究[J],北方果树,2000(4),12-13.
    刘学军,赵紫娟,巨晓棠等.基施氮肥对冬小麦产量、:氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    刘义新,韩移旺,唐绅,等.结晶有机肥对油菜产量品质的影响[J].土壤通报,2004,35(1):35~37.
    鲁如坤主编.土壤农业化学分析方法[M].北京,中国农业科技出版社,2000.463-464.Lu R K.(Eds).
    陆玲,周燮.ABA与GA_3对黄瓜离体子叶和石刁柏茎生根的影响.植物生理学报,1992, 18(2):173-178
    马其东,翟志强,刘向新.苜蓿侧根发生与内源激素的变化.草地学报,2003,9(1):64-68.
    毛达如编著,有机肥料[M].农业出版社,1981:3;11-12.
    梅莉,王政权,韩有志,谷加存,等.水曲柳根系生物量、比根长和根长密度的分布格局,应用生态学报,2006,17(1):1~4.
    门岿主编,中国历代文献精粹大典[M].学苑出版社出版,1990.
    聂军,郑圣先,廖育林,戴平安,易国英.控释氮肥对水稻叶片内源激素含量及平衡的影响.湖南农业大学学报(自然科学版),2006,32(1):15-19.
    农业部农业技术推广中心.中国有机肥料资源[M].北京:中国农业出版社,1999.1.
    农业出版社编.中国农业年鉴[M].北京:中国农业出版社,2004.
    农业出版社编.中国农业年鉴[M].北京:中国农业出版社,2005.
    秦永华,张上隆,秦巧平,吴延军等 不同有色膜对丰香草莓再生的影响及机理研究[J].中国农业科学2005,38(4):777-783
    邱德运,胡立勇 氮素水平对油菜功能叶内源激素含量的影响[J]华中农业大学学报,2002,21(3):213-216.
    全国农业技术推广服务中心编著,中国有机肥料养分志[M].中国农业出版社,1999.
    全国农业统计摘要(2004年)(http://www.agri.gov.cn/sjzl/nongyety.htm).
    沈佳音.三樱椒施用绿神(汇仁)生物有机肥试验[J].上海蔬菜,2002,6:49~50.
    沈其荣,王岩,史瑞和.土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用[J].土壤学报,2000,37(3):330~338.
    沈其荣,余玲,刘兆普,等.有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响[J].土壤学报,1994,31(3):287~293.
    沈中泉,郭云桃,袁家富.有机肥料对改善农产品品质的作用机理[J].植物营养与肥料学报,1995,1(2):55-59.
    石庆华.杂交水稻与大穗型品种根系生长特性影响产量形成的研究初报[J].江西农业大学学报,1984,(2):71-79.
    史正军,樊小林.水稻根系生长及根构型对氮素供应的适应性交化.西北农林科技大学学报(自然科学版).2002,30(6):1-6.
    宋海星,李生秀.不同水、氮供应条件下夏玉米养分累积动态研究[J].植物营养与肥料学报,2002,8(4):399~403.
    宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性变化[J].植物营养与肥料学报2004,10(1):6-11.
    隋方功,吕银燕,稻永醇二.氮素营养对甜椒果实生长发育的影响.植物营养与肥料学报2004,10(5):499-503.
    孙辉,谢嘉穗,唐亚.坡耕地等高固氮植物篱复合经营系统根系分布格局研究.林业科学,2005,41(2):8~15.
    孙世超.大豆施用生物有机肥对产量及构成因素的影响[J].大豆通报,2002,4:10.
    谈宏鹤,李小方,黄祥辉.甘蓝下胚轴不同切段内源IAA水平与不定根发生能力的研究.华东师范大学学报(自然科学版),2000(4):84-90.
    唐玉林.生长素、细胞分裂素和脱落酸对烟草叶块分化根芽的影响:[硕士学位论文].南京:南京农业大学.1993.6.
    唐玉霞,贾树龙,孟春香,等.土壤微生物量氮研究综述[J].中国生态农业学报,2002,10(2):76~78.
    田敏,姜葆霖,李小红,等.生物有机肥的研究与应用效果分析[J].2004,36(3):321~324.
    王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响[J].植物营养与肥料学,1998,4(1):22-28.
    王立刚,李维炯,邱建军,等.生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,2004,5:12,16.
    王荔,等.不同激素浓度及培养基对烟草愈伤组织分化的影响.云南农业大学学报.1999,(4):32-35
    王乔春,植物激索与插条不定根的形成(综述).四川农业大学学报,1992,10(1):33-39.
    王庆美,张立明,王振林.甘薯内源激素变化与块根形成膨大的关系中国农业科学2005,38(12):2414-2420
    王守红,张家宏,陈劲松.生态肥对土壤肥力的影响及其在番茄上的应用效果[J].安徽农业科学,2003,31(2):304;306.
    王文善,农业要可持续发展 绝对离不开化肥 磷肥与复肥 2003,18(4):1-4
    王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45~51.
    王岩,沈其荣,史瑞和,等.有机、无机肥料施用后上壤生物量C、N、P的变化及N素转化[J].土壤学报,1998,35(2):227~234.
    王艳,米国华,张福锁.氮对不同基因型玉米根系形态变化的影响研究.中国生态农业学报,2003,11(3):69-71.
    王余龙,姚友礼,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,(6):699-706.
    魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究[J].应用生态学报,2004,15(9):1565~1569.
    奚振邦,王寓群,杨佩珍.中国现代农业发展中的有机肥问题[J].中国农业科学,2004,37(12):1874~1878.
    徐斌,范玉波.强力酵素有机肥在蔬菜上的应用[J].北方园艺,2003,3:71~73.
    徐凤花,严永贵,孙冬梅,等.抗生—促生多功能生物肥料对黄瓜生长势及产量影响[J].北方园艺,2003,2:49.
    徐阳春,沈其荣.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响[J].土壤学报,2002,41(1):87~92
    徐阳春,沈其荣.水早轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报 2000,11(4)549-552.
    徐永忠,徐东旭.生物有机肥在香葱上的应用效果[J].磷肥与复肥.2004,19(4):74.
    杨长明,杨林章,等.不同养分和水分管理模式对草莓土质量的影响及其综合评价[J].生态学报,2004,24(1),63-70.
    杨春悦,沈其荣,徐阳春,等.有机高氮肥的施用对菠菜生长及土壤供氮能力的影响[J].南京农业大学学报,2004,27(2):60~63.
    姚建武,柯玉诗,黄庆.我国有机肥产业化发展现状及主要生产工艺[J].广东农业科学 2005,1:54~55.
    叶优良,张福锁,李生秀.土壤供氮能力指标研究[J].土壤通报,2001,32(6):273-277.
    于飞,周健民,王火焰,陈小琴.不同氮肥对油菜生长和养分吸收的影响[J],土壤肥料,2005,1:
    20-22 Yu F, Zhou J M, Wang H Y, Chen X Q. Effects of different nitrogen on growth and nutrient uptake of rape[J]. Soils and Fertilizers, 2005, 1:22-24
    袁灿生,毛久庚,李庆康,等.高效有机肥在冬瓜上的应用效果[J].长江蔬菜,2002,4:31~32.
    张大勇.半干旱区作物根系生长冗余的生态分析[J].西北植物学报,1995,15(5):110-114.
    张夫道.有机-无机肥料配合是现代科学技术的发展方向[J].土壤肥料,1984,1:16-19.
    张华,李玉銮.有机肥对萝卜产量和品质影响试验[J].福建农业科技,2005,1:42~43.
    张明生,谢波,谈锋.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J].中国农业科学,2002,35(5):498-501.
    张让康,黄启为,刘瑞堂,等.稳得高301活性生态肥肥效试验[J].湖南农业大学学报(自然科学版),2001,27(6):460~462.
    张树清,魏小平.蔬菜作物对硝铵态氮吸收能力比较研究[J].兰州大学学报(自然科学版),2002,38(4):77~84.
    张小全,吴可红.森林细根生产和周转研究.林业科学,2001,37(3):126~138.
    张英臣.黑龙江省设施草莓生产存在的问题及改进措施[J].落叶果树,2004(3):29-31
    赵大芹,杭朝平,杨永英.三丰有机肥在大白菜上的应用[J].贵州农业科学,1999,27(4):36~37.
    赵广才,刘利华,等,肥料运筹对高产小麦群体质量、根系分布、产量和品质的效应[J].华北农学报,2002,17(4),82-87.
    郑毅,张福锁.土壤结构和耕作对根际微生态系统的影响[J].云南农业大学学报,2003,18(2)193-197.
    中国肥料信息网.主要有机肥养分含量衷(http://www.natesc.gov.cn/sfb/TfgjYjf.htm).
    中国环保总局,2004年中国环境状况公报(http://www.zhb.gov.cn/eic/649368307484327936/20050602/8215.shtml).
    中国农业科学院土壤肥料研究所主编.中国肥料[M],上海科技出版社,1994.212-214.
    中华人民共和国农业部发布.中华人民共和国农业行业标准,2002(NY525—2002).
    钟晓红;马定渭;黄远飞 草莓果实发育过程中内源激素水平的变化[J].江西农业大学学报2004,26(1):107-111
    周大纲,顾杰,周冠华.OA活化有机肥研制及其肥效试验[J].磷肥与复肥,2004,19(2):72~74.
    周建昭,黄云.商品有机肥对甜椒营养效应的研究[J].西南农业大学学报,2003,25(1):73~76.
    朱新开,郭文善,封超年等.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报,2005,11(2):148~154.
    朱兆良,文启孝主编,中国土壤氮素,江苏科学技术出版社,1990:3-7
    朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊,2003,(2):89~92.
    朱兆良.中国土壤的氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.农业出版社.1998.160-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700