用户名: 密码: 验证码:
基于能力的武器装备体系评估方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的快速发展,武器装备的信息化水平不断提升,装备之间的联系变得愈加紧密,武装力量间的对抗方式正在由传统的“平台中心战”向“基于信息系统的体系对抗”转变。为应对这种深刻的变化,开展武器装备体系建模、评估、优化相关理论、方法、技术的研究具有重要的理论意义和实用价值。本文紧紧围绕“基于能力的武器装备体系评估”这一问题,系统深入地研究了体系能力建模及关系分析、体系能力需求满足度评估、体系能力差距优先级评估。
     论文主要研究工作和创新点包括:
     (1)建立了基于能力的武器装备体系评估框架
     首先,研究了基于能力的武器装备体系评估(Capabilities-based WeaponSystem-of-Systems Assessment, CBWSoSA)中相关概念,提出武器装备体系、体系能力、体系能力需求、体系能力差距、体系能力冗余、体系作战效能、基于能力的武器装备体系评估等概念。然后,分析了CBWSoSA中的五个子问题,即体系能力建模、体系能力水平分析、体系能力需求获取、体系能力需求满足度评估、体系能力差距优先级评估。最后,提出了CBWSoSA的过程模型,包括武器装备体系能力需求获取、武器装备体系能力水平分析、武器装备体系综合评价、解决方案生成四个子过程,分析了每个子过程的输入、输出、主要活动及相互关系等,特别对体系能力需求获取过程提出了基于多视图的体系能力需求获取参考模型。
     (2)研究了武器装备体系能力建模和关系视图分析
     武器装备体系能力建模和关系分析是CBWSoSA的基础。首先,研究了能力的形式化描述和能力指标分类。然后,提出了广义能力关系分析的概念,分析了能力与能力、能力与武器装备、能力与基本作战活动、能力需求与能力水平之间的关系。最后,采用多视图方法建立了五类能力关系视图,包括能力分类视图、能力依赖关系视图、能力——武器装备关系视图、能力——基本作战活动关系视图和能力差距视图,总结归纳了能力关系视图的核心数据及其相互关系,分析给出了能力关系视图开发流程。
     (3)提出了武器装备体系能力需求满足度评估方法
     针对能力需求满足评估中包含多种不确定性和输入能力数据类型多样的特点,借鉴RIMER(Belief Rule-based Inference Methodology using Evidential Reasoning,RIMER)方法的思想,提出了一种能力需求满足度评估方法。该方法以能力关系视图为基础构建信度规则库,根据能力指标类型定义了五类匹配函数,通过信度规则综合激活度计算和基于证据推理算法的规则合成获取武器装备体系满足使命能力需求的信度分布。该方法能处理评估过程中的多种不确定性,特别是不可知的情形,评估结果是能力需求满足程度的信度分布,是一种定性与定量相结合的评估方法。
     (4)提出了武器装备体系能力差距优先级评估方法
     能力差距优先级评估是根据一组的评价属性获取能力差距序值,评价结果能用于支持武器装备采办项目选择和相关条令条例调整。首先,分析了武器装备体系能力差距产生的原因、特点等。然后,提出了基于证据推理的能力差距优先级评估方法,该方法采用信度结构表示不同领域专家意见,以目标规划方法计算评价属性权重,通过证据推理算法获得能力差距重要度分布,综合四类算子获得能力差距序值。最后,以五项能力评价属性以及专家提供四种类型的不完全偏好矩阵为例,给出了综合权重计算方法。
     (5)开展了装甲装备体系能力建模和评估应用研究
     设计开发了武器装备体系能力建模原型系统,并以装甲装备体系为例,分析建立了某装甲装备体系的五类能力关系视图。在此基础上,对装甲装备体系的能力需求满足度、能力差距优先级进行评估,验证了本文所提方法的合理性和有效性。
Rapid development in science and technology fields promotes the informatizationlevel of weapons and equipments, whose connections becoming closer, and the combatmode of forces is transforming from traditional ‘platform-centric warfare’ to‘information system-based system-of-systems warfare’ as result. To adapt thistremendous transformation, researches on weapon system-of-systems (WSoS)modeling、assessment、optimization and its related theories, methodologies are of greattheoretical meaning and practical value.Taking capability as core concept, thisdissertation studies capabilities-based WSoS assessment systematically and thoroughly,including WSoS capability modeling and relationship analysis, WSoS capabilityrequirement satisfactory assessment and prioritization of WSoS capability gapsassessment.
     The main results and contributions of this thesis are presented as follows.
     (1) Aframework for capability-based WSoS assessment is established.
     First, series of concepts related to capabilities-based WSoS assessment(CBWSoSA) are studied, including WSoS, WSoS capability, WSoS capabilityrequirement, WSoS capability gaps, WSoS capability redundancy, WSoS combateffectiveness and capabilities-based WSoS assessment. Then, five sub-problems ofCBWSoSA are analyzed, including WSoS capability modeling, WSoS capability levelanalysis, WSoS capability requirement acquirement, WSoS capability satisfactoryassessment and prioritization of WSoS capability gaps assessment. Finally, the processmodel of CBWSoSA is proposed, including WSoS capability requirement acquirementprocess, WSoS capability level analysis process, WSoS comprehensive assessmentprocess and solution generation process. Inputs, outputs, main activities andinterrelationships of theses process are analyzed. Using multi-views approach, areference model for the capability requirements acquirement is proposed.
     (2) TheWSoS capability modeling and relationship analysis areinvestigated.
     WSoS capability modeling and relationship analysis is the basis for CBWSoSA.First, capability formalization description and capability indices classification arestudied. Then, a new general capability relationship analysis definition is proposed andrelationships between capabilities, capability-system, capability-basic operationalactivity, capability requirement-WSoS practical capability level are analyzed. Usingmulti-views approach, five capability relationship views (CRV) are established,including the capability taxonomy, capability dependency view, capability-armamentrelationship view, capability-basic operational activity relathionship viewand capability gaps view. Finally, the core data and its relationship of each view are summarized withthe development process for CRV.
     (3) A RIMER-based WSoS capability satisfactory assessment method isproposed.
     Considering the multiple uncertainty and input data type in capability requirementsatisfactory degree assessment (CRSDA), a new RIMER (belief rule-based inferencemethodology using evidential reasoning approach, RIMER)-based CRSDA method isproposed from the perspective of capability requirement. The evaluation processincludes four steps: first, establish the belief rule base based on CRV; second, transformthe evaluation data into belief structure; third, determine the activated degree of theinput data to the belief rules; last, calculate the evaluation results using the evidentialreasoning (ER) method. This method can be applied to handle many kinds ofuncertainties, especially deals with ignorance. The result of this method is the beliefdistribution of the WSoS to fulfill its mission.
     (4) An ER-based prioritization of WSoS capability gaps assessment methodis proposed.
     Prioritization of WSoS capability gaps assessment (PWCGA) ranks the capabilitygaps based on a set of attributes,which can be used to guide national defense projectsselection and related doctrine adjustment. First, the cause, characteristics and relatedissues of WSoS capability gaps are studied. Second, an ER-based prioritization ofWSoS capability gaps assessment is proposed. This method expresses experts’opionionusing belief structure, calculates attribute weights based on goal programming, deriveimportance distribution through ER algorithm, and integrates four operators to get therank value of each capability gaps. Last, a comprehensive weight calculation case offive capability evaluation attributes and four type incomplete preference matrixs derivedfrom the experts is demonstrated, which validates the advantage of the method incomputation complexity and total difference.
     (5) The armored WSoS (AWS) capability modeling and assessment areinvestigated.
     First, the system for WSoS capability modeling is designed and developed. Thenfive CRVs of AWS are constructed as an example. Last, the AWS capability satisfactorydegree and capability gap priority are evaluated, which validates the reasonability andeffectiveness of the approach proposed in this dissertation.
引文
[1]中华人民共和国国务院新闻办公室.2010年中国的国防[Z].北京:新华社,2011.
    [2]周经伦,罗鹏程.作战能力评估方法和模型[R].长沙:国防科学技术大学,2010.
    [3]牛新光.武器装备建设的国防系统分析[M].北京:国防工业出版社,2007.
    [4]卜广志,吕少卿.关于武器装备发展战略研究中能力评估问题的思考全军武器装备体系研究第六届学术研讨会北京:国防工业出版社,2012.
    [5]中国军事百科全书(第二版)学科分册2——军事装备总论[M].北京:中国大百科全书出版社.2008,302-306.
    [6]中国军事百科全书(第二版)学科分册——军事装备发展[M].北京:中国大百科全书出版社.2008.31-35,43-46,55-57.
    [7]李增惠.体系开发规律与科学途径——香山科学会议学术讨论会综述[J].科学新闻,2006,7:37-38.
    [8] Bexfield J N, Allen T L, Greer W L et al. Deep attack weapons mix study(DAWMS) case study [M].Alexandria: Institute for defense analysis,2001.
    [9] Pernin C G, Moore L R. The weapons mix problem-a math model to quantify theeffects of internetting of fires to the future force [M].Santa Monica: RANDcoporation,2005.
    [10] Matthews D, Collier P. Assessing the value of a C4ISREW system-of-systemscapability[C].//Washionton D.C.: command and control program (CCR P),2000:1-18.
    [11] Ender T R. A top-down, hierarchical, system-of-systems approach to the design ofan air defense weapon [D].Atlanta: Georgia Institute of technology,2006.
    [12] Frits A P. Formulation of an integrated robust design and tactics optimizationprocess for undersea weapon systems [D].Atlanta: Georgia Institute of technology,2004.
    [13] Future combat system.[EB/OL] www.globalsecurity.org/military/systems/ground/fcs.htm2011-5-1/2011-5-18
    [14] Missile Defense Agency [EB/OL]www.mda.mil/system/system.html2011-5-1/2011-5-18.
    [15] Future naval capabilities (FNCs) innovative naval prototype [EB/OL] www.globalsecurity.org/military/systems/ship/fnc.htm2o11-5-1/2011-5-18.
    [16]钱海皓.武器装备学教程[M].北京:军事科学出版社,2000.
    [17]中国人民解放军总装备部综合计划部.中国军事百科全书(第二版)学科分册——军事装备总论[M].北京:中国大百科全书出版社,2008.
    [18]游光荣,初军田,吕少卿等.关于武器装备体系研究[J].军事运筹与系统工程,2010,24(4):15-22.
    [19] Department of Defense USA.Quadrennial Defense Review Report[R] WashingtonD. C.: Department of Defense,2001.
    [20]李英华,申之明,蓝国兴.军兵种武器装备体系研究[J].军事运筹与系统工程2002,16(3):50-52.
    [21]李英华,申之明,李伟.武器装备体系研究的方法论[J].军事运筹与系统工程,2004,18(1):17-20.
    [22]辞海编辑委员会.辞海[M].上海:上海辞书出版社,1989:1270.
    [23]张鹏,周经伦,谭跃进.武器装备体系的作战效能模型[J].兵工自动化,2005,24(5):1-2.
    [24]舒宇,谭跃进,廖良才.基于能力需求的武器装备体系作战能力评价[J].兵工自动化,2009,28(11):17-19.
    [25]卜广志.武器装备体系中的信息流分析与评估研究[J].系统工程与电子技术,2007,29(8):1309-1313.
    [26]卜广志.基于信息流的武器装备体系效能模型[J].火力与指挥控制,2009,34(8):34-37.
    [27]刘磊,荆涛,吴小勇.武器装备体系演化的评估方法研究[J].系统仿真学报,2006,18(增2):621-627.
    [28] Biltgen P T. A methodology for capability-based technology evaluation forsystem-of-systems [D].Atlanta: Georgia Institute of Technology,2007.
    [29]高尚,娄寿春.武器系统效能评定方法综述[J].系统过程理论与实践,1998,18(7):109-114.
    [30]张杰,唐宏,苏凯等.效能评估方法研究[M].北京:国防工业出版社,2009.
    [31] Jackson J A, Jonies B L., Lehmakuhl L J. An operational analysis for air force2025: an application of value-focused thinking to future air and spacecapabilities[R].Maxwell, air command and staff college,1996.
    [32]张鹏,周经纶,谭跃进.武器装备体系的作战效能模型[J].兵工自动化,2005,24(5):1-2.
    [33]穆富岭,罗鹏程,周经伦.基于解析模型的空军战役作战模拟系统研究.系统仿真学报,2007,19(8):1723-1726.
    [34]罗鹏程,傅攀峰,周经纶.武器装备体系作战能力评估框架[J].系统工程与电子技术,2005,27(1):72-75.
    [35]鲁延京,张小可,陈英武等.权重信息不完全的区间型武器装备体系能力评估方法[J].系统工程,2010,28(4):94-100.
    [36]赵相安,姜志平,黄新生.武器装备体系作战能力综合分析框架[J].火力与控制.2011,36(7):7-10.
    [37]孟庆均,宋爱斌,金万峰.基于罚函数的C4ISR系统效能指标聚合方法[J].装甲兵工程学院学报,2008,22(3):5-8.
    [38]刘和明.模糊VFT建模方法及算法研究[D].长沙:国防科学技术大学.
    [39]唐铁军,徐浩军.应用兰彻斯特法进行体系对抗效能评估[J].火力指挥控制,2007,32(8):52-54.
    [40]杨峰,李群,王维平等.体系对抗跨层次建模方法论[J].系统仿真学报,2005,17(2):270-274.
    [41]李兴兵,谭跃进,杨克巍等.基于体系对抗仿真的装甲装备体系效能评估[J].指挥控制与仿真,2008,30(6):59-62.
    [42]沈如松,张育林.基于petri网的航天装备体系作战效能评估方法[J].系统仿真学报,2005,17(3):538-551.
    [43]沈如松,张育林.面向Agent的CPN及其在航天装备体系评价中的应用[J].国防科技大学学报,2005,27(5):99-102.
    [44]魏继才,张静,杨峰等.基于仿真的武器装备体系作战能力评估研究[J].系统仿真学报,2007,19(21):5093-5097.
    [45]赵炤.时敏目标打击体系建模与评估方法研究[D].长沙:国防科学技术大学研究生院,2009:129.
    [46]王建平,王建华,胡小佳.基于智能体的武器装备体系评价模型研究[J].系统仿真学报,2009,29(1):15-18.
    [47] Poole B H. A methodology for the robustness-based evaluation of systems-of-systems alternatives using regret analysis [D].Atlanta: Georgia Institute ofTechnology,2008:384.
    [48] Tangen S A. A methodology for the quantification of doctrine and materielapproaches in a capability-based assessment [D].Atlanta: Georgia Institute ofTechnology,2009:279.
    [49] Albert D S, Garstka J J, Stein F P. Network Centric Warfare: Developing andleveraging information superiority (2ndedition)[M] Washington D.C.: commandand control program (CCRP),2002.
    [50] Perry W. C. Measures of effectiveness for the information-age navy: The effectsof network centric operations on combat outcomes [M].Santa Monica: RANDcoporation,2002.
    [51] Darilek R. Perry W. Bracken J. et al. Measures of Effectiveness for theInformation-Age Army [M]. Santa Monica: RAND coporation,2001.
    [52] Davis S, Richard A, et al. Understanding command and control[M]WashiontonD.C.,US department of defense,2006.
    [53] Hwang J S. Analysis of effectiveness of cooperative engagement capability usingschutzer's C2theory [D].Monterey,Naval postgraduate school,2003.
    [54] Carney D, Fisher D. Some current approaches to interoperability [M].SantaMonica: RAND coporation2005.
    [55] Wagenhals L W, Liles S W, Levis A H. Toward executable architectures to supportevaluation[C].//Piscataway, IEEE computer society,2009:502-511.
    [56]李兴兵,谭跃进,杨克巍.基于探索性分析的装甲装备体系效能评估方法[J].系统工程与电子技术,2007,29(9):1496-1499.
    [57]谭东风.基于演化网络的体系对抗效能模型[J].国防科技大学学报,2007,29(6):93-97.
    [58]张国春,胡晓峰.体系对抗仿真中体系效能分析初探[J].系统仿真学报,2003,15(12):1698-1701.
    [59] The MODAF Development Team. The MOD Architecture Framework Version1.2[R].London: Ministry of Defense,2008.
    [60] Department of Defense architecture framework group. Department of Defensearchitecture framework version2.0[R]. Washington D. C.: Department of Defense,2008.
    [61] Joint Chiefs of Staff. Capabilities-based assessment user's guide version3[Z].Washington, D.C.: Joint staff,2009:83-92.
    [62] CJCSI3070.01G. Joint capabilities integration and development system [Z].Washington, D.C.: Joint staff,2009.
    [63] Snyder D, Mills P, Resnick A C et al. Assessing capabilities and risk in air forceprogramming-framework, metrics, and methods [M]. Santa Monica: Randcorporation,2009.
    [64]赵青松,谭伟生,李孟军.武器装备体系能力空间描述研究[J].国防科技大学学报,2009,31(1):135-140.
    [65]岑凯辉.基于能力的武器装备体系需求生成研究[R].长沙:国防科学技术大学,2010.
    [66]陈英武,豆亚杰,程贲等.基于作战活动分解的武器装备体系能力需求生成研究[J].系统工程理论与实践,2011,31(Sup1):154-163.
    [67]赵青松,杨克巍,鲁延京等.基于问题框架的武器装备体系需求建模研究[J].系统仿真学报,2008,20(14):3644-3647.
    [68]胡晓峰,杨镜宇,吴琳等.武器装备体系能力需求论证及探索性仿真分析实验[J].系统仿真学报,2008,20(12):3065-3068,3073.
    [69]胡剑文.武器装备体系能力指标的探索性分析与设计[M].北京:国防工业出版社,2009.
    [70]赵青松,谭伟生,李孟军.武器装备体系能力空间描述研究[J].国防科技大学学报,2010,31(1):135-140.
    [71]程贲,谭跃进,黄魏等.基于能力需求视角的武器装备体系评估[J].系统工程与电子技术,2011,33(2):320-323.
    [72]董庆超,王智学,朱卫星等.面向C4ISR能力分析的领域特定描述语言[J].系统工程理论与实践,201131(3):552-560.
    [73]张维明,刘忠,阳东升等.体系工程理论与方法[M].北京:科学出版社,2010.
    [74] DEA4. Department of National Defense Architecture Framework1.7[R]2010.
    [75]程贲,鲁延京,葛冰峰等.武器装备体系能力多视图模型研究[J].国防科大学报,2011,33(6):163-168.
    [76]王智学,董庆超,陈彬等.基于UML模型的C4ISR系统能力需求分析与验证[J].系统工程与电子技术,2009,31(9):2167-2171.
    [77] Joint Chiefs of Staff. Joint Capability Areas [Z]. Washington, D.C.: Joint staff,2009.
    [78] Dickerson C E, Soules S M, Sabins M R et al. Using architectures for research,development, and acquisition[R].Washington D.C.: Office of the AssistantSecretary of the Navy for Research Development and Acquisition (OASN(RDA)),2004.
    [79]王磊.C4ISR体系结构服务视图建模描述与分析方法研究[D].长沙:国防科学技术大学研究生院,2011:152.
    [80]刘宝碇,赵瑞清,王纲.不确定性规划及应用[M].北京:清华大学出版社,2003:1.
    [81] The research and technology organization (RTO) of NATO, Handbook on longterm defense planning [M] Ottawa: St. Joseph print group inc.2003.
    [82] Davis P K. Analytic architecture for capabilities-based planning, mission-systemanalysis, and transformation [M]. Santa Monica: RAND coporation,2002:XI.
    [83] Caudle S L. Homeland security and capabilities-based planning: improvingnational preparedness [D].Monterey: Naval postgraduate school,2005.
    [84] Taylor B. Guide to capability-based planning[C]//Neuilly-sur-Seine, research andtechnology organization of NATO,2005:8-1~8-14.
    [85] TTCP. Guide to capability-based planning [EB/OL]. www.dtic.mil/ttcp/JSA-TP-3-CBP-Paper-Final.doc2004-10-01/2011-07-01.
    [86] Chim L, Nunes-Vaz R, Prandolini R. Capability-based planning for Australia'snational security [J].Security Challenges,2010,6(3):79-86.
    [87] Dempster A P. Upper and lower probabilities induced by a multi-valued mapping[J] Annals of Mathematical Statistics,1967,(38):325-339.
    [88] Dempster. A generalization of bayesian inference [J].Journal of the royal statisticalsociety,1968,(30):325-329
    [89] Shafer. A mathematical theory of evidence [M].Princeton: Princeton universitypress,1976
    [90]段新生.证据理论与决策、人工智能[M].北京:中国人民大学出版社,1993.
    [91]杨风暴,王肖霞.D-S证据理论的冲突证据合成方法[M].北京:国防工业出版社,2010.
    [92] Smets P, Kennes R. The transferable belief model [J].Artificial Intelligence,1994,(66):191-234
    [93] Yang J B, Xu D L. On the evidential reasoning algorithm for multiple attributedecision analysis under uncertainty [J].IEEE transactions on systems, man, andcybernetics-part A: systems and humans,2002,32(3):289-304.
    [94] Yang J B, Liu J, Wang J, et al. Belief rule-based inference methodology using theevidential reasoning approach-RIMER [J]. IEEE transactions on systems, man,and cybernetics-part A: systems and humans.2006.36(2):266-285.
    [95] Wang Y M, Yang J B, Xu D L. Environmental impact assessment using theevidential reasoning approach [J]. European Journal of Operational Reaseach,2006:1885-1913.
    [96]潘泉,张山鹰,程咏梅等.证据推理的鲁棒性研究[J].自动化学报,2001,27(6):798-805.
    [97]向阳,史习智.证据理论合成规则的一点修正[J].上海交通大学学报,1999,33(4):357-360.
    [98] Yager R R. On the dempster-shafer framework and new combination rules [J]Information system.1989,41(2):93-137.
    [99]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):1-3.
    [100]王小艺,刘载文,侯朝桢.一种基于最有权重分配的D-S改进算法[J].系统工程理论与实践,2006,26(11):103-107.
    [101] Smets P. The combination of evidence in the transferable belief model [J]. IEEEtransactions on pattern analysis and machine intelligence,1990,12(5):447-458.
    [102] Inagki Toshiyuki. Interdependence between safety-control policy andmultip-sensor schemes via dempster-shafer theory [J]. IEEE transactions onreliability,1991,40(2):182-188.
    [103] Murphy C K. Combining belief functions when evidence conflicts [J]. Decisionsupport system,2000,29(1):1-9.
    [104]张山鹰,潘泉,张洪才.一种新的证据推理组合规则[J].控制与决策,2000,15(5):540-544.
    [105]邢清华,雷英杰,刘付显.一种按比例分配冲突度的证据推理组合规则[J].控制与决策,2004,19(12):1387-1390.
    [106] Dubois D, Prade H. Representation and combination of uncertainty with belieffunctions and possibility measures [J] Computational intelligence,1998(4):244-264.
    [107]王肖霞.冲突证据合成规则研究[D].太原:中北大学,2007:39-46.
    [108] Xu D L, Liu J, Wang J B, et al. Inference and learning methodology ofbelief-rule-based expert system for pipeline leak detection [J].expert systems withapplications,2007,(32):103-113.
    [109] Zhou Z J, Hu C H, Yang J B et al. Online updating belief rule based system forpipeline leak detection under expert intervention [J].Expert systems withapplications,2009,(36):7700-7709.
    [110] Liu J, Yang J B, Wang J et al. Fuzzy rule-based evidential reasoning approach forsafety analysis [J].International Journal of General Systems,2004,33:183-204.
    [111] Liu J, Yang J B, Wang J. et al. Engineering system safety analysis and synthesisusing the fuzzy rule-based evidential reasoning approach [J].Quality andreliability engineering international,2005,(21):387-411.
    [112]姜江,李璇,陈英武等.基于证据推理的航天项目风险分析与评估[C]//陈光亚中国系统工程学会第16届学术年会论文集,香港:上海系统科学出版社(香港),2010:252-259.
    [113] Yang J B, Liu J, Xu D L. et al. Optimization models for training belief-rule-basedsystems [J].IEEE transactions on systems, man, and cybernetics-part A: systemsand humans,2007,37(4):569-585.
    [114]周志杰.置信规则库在线建模方法与故障预测[D].西安:第二炮兵工程学院2010:152.
    [115]周志杰,杨剑波,胡昌华等.置信规则库专家系统与复杂系统建模[M].北京:科学出版社,2011.
    [116]姜江.证据网络建模、推理及学习方法研究[D].长沙:国防科学技术大学研究生院,2011:129.
    [117]程贲,姜江,谭跃进等.基于证据推理的武器装备体系能力需求满足度评估方法[J].系统工程理论与实践,2011,31(11):2210-2216.
    [118]舒宇.基于能力需求的武器装备体系结构建模方法与应用研究[D].长沙:国防科学技术大学研究生院,2009:134.
    [119] Joint Chiefs of Staff. Universal joint task list (CJCSM3500.04F)[Z]. Washington,D.C.: Joint staff,2011.
    [120]段采宇.武器装备需求建模、量化、集成的理论与方法研究[D].长沙:国防科学技术大学研究生院,2008:79,87-89.
    [121]陈建祥.基于效能的卫星军事应用能力缝隙分析方法[D].长沙:国防科学技术大学研究生院,2006:135.
    [122]徐培德,陈俊良.作战能力缝隙的探索性分析方法[J].军事运筹与系统工程,2008,22(2):55-58.
    [123] Joint Chiefs of Staff. Joint Capabilities Integration and Development System(CJCSI3170.01G)[Z]. Washington, D.C.: Joint staff,2009.
    [124] Joint Chiefs of Staff. Manual for the operation of the joint capabilities integrationand development system (CJCSM3170.01D)[Z]. Washington, D.C.: Joint staff,2009: A-8, F-A-1.
    [125] Joint systems and analysis group of the technical cooperation program. Guide tocapablity-based planning [R].‘Capabilities-based planning: the road ahead’workshop, Alexandria, Military operations research society,2005:19-22.
    [126] Joint Chiefs of Staff. Capabilities-based assessment user's guide version3[Z].Washington, D.C.: Joint staff,2009:83-92.
    [127] Linkov I, Satterstrom F K, Fenton G. Prioritization of capability gaps for jointsmall arms program using multi-criteria decison analysis [J].Journal ofmulti-criteria decision analysis,2009,16:179-185.
    [128] Hristov N, Radulov I, Iliev P, et al. Prioritization Methodology for Developmentof Required Operational Capabilities [C]//Analytical support to defencetransformation, Sofia, Bulgaria: NATO/RTO,2010: RTO-MP-SAS-081-15(1-18).
    [129] Welch K M, Lawton C R. Applying system of systems and systems engineering tothe military modernization challenge[C]//20116th International conference onsystem of systems engineering. Albuquerque, New Mexico, USA.2011:245-250.
    [130]岳超源.决策理论与方法(第一版)[M].北京:科学出版社,2003:40-45.
    [131] Xu Z S.A survey of preference relations [J].International journal of generalsystems,2007,36(2):179-203.
    [132] Xu Zeshui. Multiple-attribute group decision making with different formats ofpreference information on attributes [J].IEEE transactions on systems,man,andcybernetics-part B:cybernetics,2007,37(6):1500-1511.
    [133] Xu Z S. Goal programming modles for obtaining the priority vector of incompletefuzzy preference relation [J].International journal approximate reasoning,2004,36:261-270.
    [134] Gong Z W, Li L S, Zhou F X et al. Goal programming approaches to obtain thepriority vectors from the intuitionistic fuzzy preference relations[J].Computers&Industrial engineering,2009,57:1187-1193.
    [135] Fan Z P, Zhang Y. A goal programming approach to group decision-making withthree formats of incomplete preference relations [J].soft computing,2010,14:1083-1090.
    [136] Tanino T. Fuzzy preference orderings ingroup decision making [J].Fuzzy sets andsystems,1984,12:117-131.
    [137]徐泽水.残缺互补判断矩阵[J].系统工程理论与实践,2004,26(6):93-97,133.
    [138] Carrizosa E, Romero-Morales D. Combining minsum and minmax: a goalprogramming approach [J].Operations Reasearch,2001,49(1):169-174.
    [139] Dopazo E, Ruiz-Tagle M. A parametric GP model dealing with incompleteinformation for group decision-making [J].Applied mathematics and computation.2011,218:514-519.
    [140]田千文.区间型多属性决策判断矩阵的一致性和排序研究及应用[D].重庆:重庆大学,2009.
    [141] Du J H, Wei F J. Some linear programming models for obtaining the priorityvector of interval multiplicative preference relations[C].//Long Beach, IEEE press.2008,199-204.
    [142]姜艳萍,樊治平.一种具有不同粒度语言判断矩阵的群决策方法[J].中国管理科学,2006,14(6):104-108.
    [143] Xu ZS. Deviation measures of linguistic preference relations in group decisionmaking [J].Omega,2005,33:249-254.
    [144] Fan Z P, Zhang Y. A goal programming approach to group decision-making withthree formats of incomplete preference relations [J].Soft Computing,2010,14:1083-1090.
    [145] Herrere F, Martinez L. A2-tuple fuzzy linguistic representation model forcomputing with words [J].IEEE transactions on fuzzy systems,2000,8(6):746-752
    [146] Herrera F, Martinez L. A model based on linguistic2-tuples for dealing withmultigrannular hierarchical linguistic contexts in multi-expert decision making.[J].IEEE Transactions on Systems, man, and cybernetics B: Cyberntecis,2001,31:227-234.
    [147] Bonissone P P, Decker K S. Selecting uncertainty calcui and granularity: anexperiment in trading-off precision and complexity [C]//Kanal L H, Lemmer J F(Eds), Unertainty in artificial intelligence, north-holland,1986:217-247.
    [148] Herrera F, Herrera-Viedma E. A sequential selection process in group decisionmaking with linguistic assessment [J].Information Sciences,1995,85:223-239.
    [149]陈侠,樊治平.一种基于语言判断矩阵的群决策方案排序新方法[J].系统工程,2009,27(12):90-94.
    [150] Fan Z P, Ma J, Jiang Y P.et al. A goal programming approach to group decisonmaking based on multiplicative preference relations and fuzzy preference relations[J].European jouranl of operational research,2006,174:311-321.
    [151] Chiclana F, Herrera E, Herrera-Viedma. Integrating three representation models infuzzy multipurpose decision making based on fuzzy preference relations [J].Fuzzy sets and system,1988,97:33-48.
    [152] Chiclana F, Herrera E, Herrera-Viedma. Integrating multiplicative preferencerelations in a multipose decision-making model based on fuzzy preferencerelations [J], Fuzzy sets and systems2001,122:277-291.
    [153]王凤山,李孝军,马拴柱.现代防空学[M].北京:航空工业出版社,2008.
    [154]张新征,蔡建华.美陆军第4机步师数字化建设[J].外军炮兵,2004(6):3-9.
    [155]豆亚杰.面向元活动分解的武器装备体系能力需求指标方案生成方案研究[D].长沙:国防科学技术大学研究生院,2011:92.
    [156]李涛,郭齐胜,段莉等.数字化部队作战能力评估指标体系构建[J].装甲兵工程学院学报,2008,22(2):14-19.
    [157]新浪军事.资料:美军第一装甲师[EB/OL] http://mil.news.sina.com.cn,2003-10-01/2012-03-01.
    [158]现代兵器(北京).美军数字化先锋:第四机步师.http://war.163.com/10/0318/19/6233SMKH00011232.html/2010-03-18/2012-03-01.
    [159]赵相安,陈洪辉,何明等.基于Petri网的武器装备体系能力需求仿真验证方法[J].系统仿真学报,2009,21(4):1159-1163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700