用户名: 密码: 验证码:
膀胱癌XPC表达缺失参与影响染色体畸变的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     生物细胞基因组DNA不断受到来自环境的各种外源性因素和来自机体的内源性因素损伤,常见的环境因素包括电离辐射、紫外线、化学毒物等,内源性因子如细胞代谢中间产物及毒素等。面对形式多样的各种DNA损伤,DNA修复就成为维持细胞遗传稳定性和高保真性的一种重要机制。如果DNA修复机制发生改变,将导致损伤的DNA不能被修复或不能被正确修复,从而发生突变,突变的产生将最终导致许多遗传性疾病的发生和肿瘤的形成。
     对于不同类型的DNA损伤,机体形成了相应的损伤修复机制。根椐DNA损伤的性质,DNA修复途径大致可以分为:(1)、碱基切除修复;(2)、核苷酸切除修复;(3)、错配修复;(4)、同源重组修复;(5)、非同源末端连接修复和(6)、错误倾向复制。其中,NER途径能够修复多种DNA损伤类型,被认为是维持细胞遗传稳定性的主要途径之一。
     DNA修复过程中最关键的环节是对DNA损伤的识别,DNA损伤识别信号将导致细胞对DNA损伤产生上述不同应答效应。XPC分子是NER修复通路中最早的识别蛋白,同时也是NER发挥生物学效应的限速蛋白。XPC基因最初从着色性干皮病C组(Xeroderma Pigmentosum group C)患者中确立,该病是XPC基因缺陷的遗传病。当XPC与HR23B蛋白结合成紧密的复合体XPC/hHR23B,并结合到损伤位点后,进而募集下游一系列分子,完成NER过程。如果XPC表达缺失或功能异常,使损伤的基因组DNA不能被识别修复,将导致DNA突变的发生。
     分子流行病学和本课题组前期研究发现,XPC表达沉默是膀胱癌中的高频事件之一。膀胱癌在我国男性泌尿生殖系肿瘤中发病率第一,明显高于西方国家,而且近年来有发病率增加和年轻化趋势。膀胱肿瘤具有高复发、高异质性和耐药的生物学行为,肿瘤细胞遗传学研究普遍显示膀胱癌细胞的染色体存在大量包括不同位点的杂合性缺失、扩增和异倍体等染色体畸变,它是所有人类恶性肿瘤的共同特征,代表着染色体的高遗传不稳定性。我们推测,XPC基因变异或表观遗传学改变,可能直接影响该基因表达或蛋白功能,从而影响DNA修复能力,最终导致高突变的发生,高突变发生是原癌基因和抑癌基因易于突变的基础,也是影响膀胱癌发生和染色体畸变(高异质性)的遗传学基础之一。
     染色体畸变是指染色体数目的增减或结构的改变,其结构改变又包括缺失、重复、倒位、易位等。目前对于染色体畸变发生机制的研究多集中在放射等损伤导致的DNA双链断裂研究上。DNA双链断裂(DNA double-strand break,DSB)是对细胞伤害最为严重的一种打击,通常情况下,外源性刺激(电离辐射、γ射线、类辐射药物、拓扑酶抑制剂)及内源性刺激(体内氧化反应产生的自由基)等均会导致这种损伤,一旦损伤不能及时修复,往往会导致染色体的缺失、易位等畸变,从而造成基因组遗传信息的紊乱,最终导致细胞恶变。最近研究发现,XPC不仅作为重要的DNA识别修复蛋白参加NER过程,还可能参与了DNA双链断裂损伤修复(同源重组和/或非同源末端连接修复)的进程,从而影响细胞的命运。
     综上所述,我们认为XPC蛋白除了直接参与核酸切除修复外,作为DNA损伤信号还直接或间接参与了如DSB损伤修复等其他DNA修复机制,其功能障碍或缺失将导致基因组DNA突变、缺失或扩增的发生率增加,从而最终影响细胞的命运(生存还是死亡,或者产生高遗传不稳定性细胞)。这也是为什么膀胱癌中XPC低表达,会导致膀胱癌发生、膀胱癌染色体高遗传不稳定性(异质性)的原因。
     目前国际上对于DNA修复与肿瘤发生关系的研究,是肿瘤研究领域的一大热点。在分子流行病学和分子病理学的层面发现了极有价值的现象,对其机制的揭示将是未来研究的方向。探索发现DNA修复基因在DDR新的信号功能,对于全新理解肿瘤发生和染色体畸变等高遗传不稳定性的分子机制具有重要的理论意义。
     二、目的
     1、构建siRNA沉默XPC的稳定细胞株,进行相关细胞功能学实验,为后续进一步研究XPC缺陷影响染色体畸变的分子机制提供细胞模型;
     2、在DNA双链损伤剂作用下,观察XPC缺失后是否会导致染色体畸变形成,初步验证我们的推断,为下一步阐明其作用机制奠定基础;
     3、探讨XPC缺失后染色体畸变增高是否是由于DSB修复能力降低所致,分析XPC影响DSB修复通路(同源重组修复和非同源末端连接修复)的分子机制,以期最终找到XPC低表达导致膀胱癌染色体高遗传不稳定性的原因。
     三、方法
     1、siRNA沉默XPC细胞模型的建立及其功能验证:
     人工合成XPC干扰序列并将其克隆到能携带siRNA片段的逆转录病毒载体pSilencer5.1-H1-retro上,构建针对人XPC基因特异的RNAi逆转录病毒载体,经测序证实构建成功;瞬时转染HEK293细胞,验证所构建质粒沉默XPC基因表达的效果;通过嘌呤霉素抗性基因,压迫、筛选稳定干扰XPC表达的细胞株;Western blot方法鉴定XPC沉默效果最好的克隆;细胞生长曲线实验观察沉默XPC后,是否影响HEK293细胞的正常生长;以DNA双链损伤剂博来霉素(BLM)和依托泊苷(VP16)处理野生型和XPC低表达细胞,MTT法、克隆形成实验检测其生存曲线及克隆形成率,了解两种细胞对DSB损伤剂的敏感性。
     2、XPC表达缺失影响染色体畸变发生的实验研究:
     以不同浓度的博来霉素和依托泊苷、采取不同方式处理两种细胞,用细胞质分裂阻滞微核试验(CBMNT)观察微核、核质桥、核芽突等反映染色体畸变和遗传不稳定性的指标;用G显带染色体核型分析方法,研究分析染色体易位、缺失与重复等畸变类型;用SupF突变报告基因系统,研究质粒损伤修复后SupF报告基因的突变频率。从不同的遗传学终点探讨XPC缺失后,染色体畸变的变化情况。
     3、XPC表达缺失导致染色体畸变增加的分子机制研究:
     DNA双链损伤剂处理后,于损伤修复后不同的时相点收获细胞,利用细胞免疫荧光技术,研究γ-H2AX等双链损伤修复指示分子foci的形成与消除情况;彗星电泳实验,检测细胞DSB损伤后修复能力的变化;Western blot方法研究DNA双链损伤修复通路(同源重组修复和非同源末端连接修复)中关键分子ATM、ATR、Rad51、BRCA2等与XPC表达是否存在关联,揭示XPC表达缺失导致染色体畸变增加可能的分子机制。
     四、结果
     1、成功构建了siRNA干扰沉默XPC基因表达的稳定细胞株HEK293XPCKD:
     构建针对人XPC基因特异的RNAi逆转录病毒载体pSilencer5.1-H1-siXPC-267及其对照质粒pSilencer5.1-H1-N;瞬时转染HEK293细胞,证实其可在HEK293细胞中有效沉默XPC基因表达;稳定转染筛选,Western blot验证发现以clone8(XPCKDcl.8)的XPC沉默效果最好,将其定为HEK293XPCKD细胞,做为后续实验用细胞模型;观察两种细胞生长曲线,发现沉默XPC后不会影响HEK293细胞的正常生长;以DNA双链损伤剂BLM和VP16处理细胞,MTT法及克隆形成实验发现XPC表达缺陷的稳定细胞株HEK293XPCKD,对DNA双链损伤剂更为敏感,其细胞存活率及克隆形成率呈明显下降趋势,提示XPC可能直接或间接地参与了DSBs损伤修复过程。
     2、XPC表达缺失导致染色体畸率增高:
     以DNA双链损伤剂博来霉素和依托泊苷处理HEK293及HEK293XPCKD细胞,G显带染色体核型分析试验证实XPC缺陷细胞中,染色体易位、缺失、重复等畸变类型增高;CBMNT试验发现,XPC低表达导致在DNA双链损伤时,微核、核质桥、核芽突等反映染色体畸变和遗传不稳定性的指标均大幅度上升;SupF突变报告基因系统提示XPC低表达,会降低细胞对DSB损伤的修复能力,从而导致突变率增加。
     3、XPC表达缺失导致的染色体畸变增加是由于DSB损伤修复能力降低引起的:
     DNA双链损伤剂处理后,彗星电泳实验发现HEK293XPCKD细胞在损伤修复后不同的时相点,存在更多未被修复的DSB,说明其DSB损伤修复能力降低;细胞免疫荧光技术研究γ-H2AX foci发现,其清除动力学发生改变,XPC缺陷细胞表现为更多的γ-H2AX foci聚集;Western blot实验结果,XPC在DSB损伤发生时可被诱导上调,其表达降低不会影响ATM、ATR等分子的表达,但Rad51、BRCA2随着XPC表达降低也出现下降,提示XPC可能通过影响同源重组修复通路的关键分子表达,使HR修复通路下调,从而影响细胞通过这种高保真方式来修复DSB损伤。
     五、结论1.成功构建了siRNA干扰沉默XPC基因表达的稳定细胞株HEK293XPCKD;2.干扰沉默XPC基因表达后,不会影响细胞的正常生长,但会导致XPC表达缺陷细
     胞对DNA双链损伤剂更加敏感;3.在DNA双链损伤剂作用下,XPC表达缺陷细胞中染色体易位、缺失、重复等结构
     畸变类型增加,微核发生率升高,证实XPC低表达会导致染色体畸变率的增高;4. XPC低表达,可降低细胞对DSB损伤的修复能力和修复速率,使DSB不能被及时
     清除,最终导致高突变发生;5. XPC缺陷细胞中核芽突(NBUD)发生率显著升高,同源重组修复通路的关键分子
     Rad51、BRCA2随着XPC表达降低也出现下降,提示XPC缺陷时,HR修复通路可
     能被下调,从而影响细胞通过这种高保真方式修复DSB损伤;6. XPC缺陷细胞中核质桥(NPB)发生率大幅升高,提示在XPC缺失的情况下,非同
     源末端连接(NHEJ)修复通路可能被上调,细胞采取这种有错误倾向的修复方式应
     对DSB损伤,可能是其高遗传不稳定性产生的原因。
1. Background
     Genomic DNA assaults are abundant due to exogenous environmental factors andcontinuously endogenous ongoing metabolic processes inside the cell, for example, ionizingradiation (IR), ultraviolet (UV) radiation, exposure to chemical agents, metabolic productsand toxinum. Therefore, the DNA repair pathways are of vital importance in maintaininggenomic stability and fidelity. If the mechanism of DNA repair changed, the lesions can resultin persistent DNA damage, eventually lead to carcinogenesis or other genomic diseases.
     DNA repair pathways come in many varieties in response to different types of DNAdamage. It can be classified into:(1). base excision repair (BER),(2). nucleotide excisionrepair (NER),(3). Mismatch Repair (MMR),(4). homologous recombination (HR),(5).non-homologous end-joining (NHEJ), and (6). trans-lesion repair. NER pathway is the majorDNA repair pathway that repairs most of the bulky DNA damage generated by UV radiation,chemicals, and chemotherapeutic drugs, making it become one of the most essential repairpathways to keep mammalian cell genomic stability.
     The key step of DNA damage repair is the initial damage recognition. XPC is theprimary DNA damage recognition factor and a rate-limiting factor in NER. It is firstidentified in Xeroderma pigmentosum group C patients, those who lack of human XPC gene.After XPC and HR23B combined into XPC/hHR23B complex and binding to the DNAdamaged site,the complex can recruit the consecutive components of NER to finish the repairprocess. It is assumed that XPC deficiency could cause DNA recognition failure, and finallylead to mutations.
     Molecular epidemiology study and our previous study show that XPC defects have beenfound in many human solid carcinomas, including bladder cancer. Bladder cancer is the mostcommon tumor of urinary system in the Chinese population, and its incidence is significantly higher than in western country. Bladder tumor is characteristed with high recurrence rate,heterogeneity and drug resistance. Chromosome aberrations are frequently found in bladdercancer cells, such as loss of heterogeneity, amplification and aneuploidy, which is a commonhallmark of human cancer. We assumed that XPC defect may change the capacity of DNArepair, which trigger (pre-)oncogenes and inactivate tumor suppressor genes or otherindispensable genes.
     Chromosome aberrations, including chromosome breaks or rearrangements such asdeletion, duplication, inversion and translocation, are reflective of genomic instability. Moststudy about chromosome aberration focused on DNA double-strand breaks caused byradiation. DNA double-strand break is the most severe lesion to genomic DNA. Generally,both exogenous insults (IR,γ-ray, radiomimetic agent and topoisomerase inhibitor) andendogenous insults (free radicals produced by oxidation reaction) can cause this kind ofdamage. If DSBs could not be repaired in time, it will cause genomic instability and inducecell malignant transformation. The accumulated evidences show that XPC may participate inthe repair of DNA double-strand break by HR and/or NHEJ pathway.
     To sum up,we assume that the XPC protein might involve in occurrence of chromosomeaberrations via affecting DSBs repair pathway. In current study, we present evidence thatpossible involvement of XPC defect in changing the capacity of DNA double-strand breakrepair resulted in increased chromosome aberrations in bladder cancer.
     So far, DNA damage response and carcinogenesis has become a hot issue in tumorresearch field, and valuable phenomenons have been found in molecular epidemiology andmolecular pathology studies. The mechanism should be explored further. Finding novelfunctions of DNA damage repair gene in DDR, will contribute to eventually elucidate themechanism of carcinogenesis and high genomic instability.
     2. Objective
     (1). Establish XPC-deficient HEK293cell strain by siRNA technology and followed byidentification of cell functions, to develop a cell model for exploring the mechanism betweenXPC deficient and chromosome aberration.
     (2). Observe whether XPC silencing could enhance chromosome aberration in responseto DNA double-strand break inducers.
     (3). Investigate whether XPC deficient increases chromosome aberration by changing thecapacity of double-strand break repair, and analyse the mechanism of DSB repairpathway choice (HR and/or NHEJ) affected by XPC, eventually find out why XPC defects inbladder cancer could lead to chromosome aberration and genomic instability.
     3. Method
     (1). Construction and identification of XPC-silenced cell model:
     RNAi sequences for XPC is synthesized and cloned into retrovirus vector pSilencer5.1-H1-retro, further identified by DNA sequencing; Transient transfection of HEK293,verification the gene silence effect of the recombinant retrovirus vector; Obtain stableXPC-defect cell strain through the puromycin-resistance gene; Find out the best clone byWestern blot immunoassay; The proliferation ability was investigated by cell growth curve;Treat the wide-type and XPC-defect cells with bleomycin and etoposide, identify thesensitivity of these cells to the DSB agents with MTT assay and clone formation assay.
     (2). Study the relationship between XPC deficient and chromosome aberration:
     Two types of cells are treated by different concentrations of BLM and VP16in differentways: In the cytokinesis-blocked micronucleus test, the markers which indicated chromosomeaberration and genomic instability, like micronucleus, nucleoplasmic bridge and nuclear buds,are observed; Chromosome aberration, such as translocation, deletion and duplication can bestudied by karyotype analysis with G-banding technique; SupF gene mutation report systemcan be used to investigate mutation rate of SupF after DSB damage.
     (3). Investigate whether XPC deficient increases chromosome aberration by changing thecapacity of double-strand break repair:
     Harvest wide-type and XPC-defect cells treated with DSB agent in different time pointafter DNA damage, study the formation and elimination ofγ-H2AX foci; Compare theability of DSB repair in different cell lines by comet assay; Using Western blot immunoassay,to find out the relationship between XPC and some key factors in the DNA double-strandbreak repair pathway(HR and NHEJ), such as ATM, ATR, RAD51, BRCA2andγ-H2AX,and then finally reveal the potential molecular mechanism.
     4. Results
     (1). Stable XPC-defect cell strain HEK293XPCKDwas successfully established:
     Construct human XPC specific RNAi vector pSilencer5.1-H1-siXPC-267and controlvector pSilencer5.1-H1-N; Transient transfection of HEK293,the effect of XPC silencinghas been verified; Stable XPC-defect cell strain Clone8(XPCKDcl.8)is identified byWestern blot immunoassay, and named HEK293XPCKDcell as a cell model for thefollowing study; Compared the growth curve of HEK293and HEK293XPCKD cell, XPCsilencing do not affect the normal growth of cell cultures; MTT and clone formation assayshow the XPC deficient cell is much more sensitive to the DSB agents than wide-type withthe treatment of BLM and VP16, indicating that XPC may directly or indirectly involved inthe DSB repair process.
     (2). XPC deficient increases chromosome aberration after DSB damage:
     HEK293and HEK293XPCKDcell are treated with BLM and VP16at different does.Karyotype analysis with G-banding technique shows that chromosome aberration, such astranslocation, deletion and duplication, significantly increased in XPC deficient cells;CBMNT shows XPC-defect cell exhibit increased frequencies of MNi, NPBs and NBUDswhen compared subjects in the wide-type group; SupF gene mutation report systemdemonstrate that XPC deficient can raise the mutation frequency of SupF gene and decreasethe ability to repair DSBs.
     (3). XPC deficient increases chromosome aberration by changing the capacity ofdouble-strand break repair:
     Harvest wide-type and XPC-defect cells treated with DSB agent in different time pointafter DNA damage, comet assay and immunofluorescence study demonstrate that XPCdeficient can decrease the ability to repair DSBs; Using Western blot immunoassay, we finddecreased expression of some key factors(Rad51and BRCA2) in the HR repair pathway.Since HR is considered to be an error-free DSB repair pathway, XPC deficient may influencethe ability of HR repair.
     5. Conclusions
     (1). Stable XPC-defect cell strain HEK293XPCKDwas successfully established;
     (2). XPC silencing do not affect the normal growth of cell cultures, but increase thesensitivity of XPC-defect cell to the DSB agents;
     (3). In XPC deficient cells, chromosome aberration(such as translocation, deletion andduplication) and frequencies of MNi significantly increased, all these demonstrate that XPCdeficient can raise the rate of chromosome aberration;
     (4). XPC deficient can raise the mutation frequency and decrease the ability to repairDSBs;
     (5). XPC-defect cell exhibit increased frequencies of NBUDs, and decrease theexpression of some key factors(Rad51and BRCA2) in the HR repair pathway. Since HR isconsidered to be an error-free DSB repair pathway, XPC deficient may influence the ability ofHR repair;
     (6). XPC deficiency significantly increased frequencies of NPBs, indicate that NHEJefficiency is up-regulated in the condition of XPC silencing. It could be the reason of highgenomic instability that cell repair DSB damage by this error-prone repair pathway.
引文
1. Lindahl, T., Instability and decay of the primary structure of DNA. Nature,1993.362(6422): p.709-15.
    2. Chapman, J.R., M.R. Taylor, and S.J. Boulton, Playing the end game: DNA double-strand break repair pathway choice. Mol Cell,2012.47(4): p.497-510.
    3. Rouse, J. and S.P. Jackson, Interfaces between the detection, signaling, and repair ofDNA damage. Science,2002.297(5581): p.547-51.
    4. Friedberg, E.C., Out of the shadows and into the light: the emergence of DNA repair.Trends Biochem Sci,1995.20(10): p.381.
    5. Keeney, S. and M.J. Neale, Initiation of meiotic recombination by formation of DNAdouble-strand breaks: mechanism and regulation. Biochem Soc Trans,2006.34(Pt4): p.523-5.
    6. Friedberg, E.C., How nucleotide excision repair protects against cancer. Nat Rev Cancer,2001-R.1(1): p.22-33.
    7. Garinis, G.A., J. Jans, and G.T. van der Horst, Photolyases: capturing the light to battleskin cancer. Future Oncol,2006.2(2): p.191-9.
    8. Kamionka, M. and J. Feigon, Structure of the XPC binding domain of hHR23A revealshydrophobic patches for protein interaction. Protein Sci,2004.13(9): p.2370-7.
    9. Sugasawa, K., et al., A molecular mechanism for DNA damage recognition by thexeroderma pigmentosum group C protein complex. DNA Repair (Amst),2002.1(1): p.95-107.
    10. Sugasawa, K., et al., Xeroderma pigmentosum group C protein complex is the initiator ofglobal genome nucleotide excision repair. Mol Cell,1998.2(2): p.223-32.
    11. Trego, K.S. and J.J. Turchi, Pre-steady-state binding of damaged DNA by XPC-hHR23Breveals a kinetic mechanism for damage discrimination. Biochemistry,2006.45(6): p.1961-9.
    12. Wang, G., et al., Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res,2001.29(8): p.1801-7.
    13. Sugasawa, K., XPC: its product and biological roles. Adv Exp Med Biol,2008.637: p.47-56.
    14. Yokoi, M., et al., The xeroderma pigmentosum group C protein complex XPC-HR23Bplays an important role in the recruitment of transcription factor IIH to damaged DNA. JBiol Chem,2000.275(13): p.9870-5.
    15. Araujo, S.J., E.A. Nigg, and R.D. Wood, Strong functional interactions of TFIIH withXPC and XPG in human DNA nucleotide excision repair, without a preassembledrepairosome. Mol Cell Biol,2001.21(7): p.2281-91.
    16. Yang, J., et al., XPC epigenetic silence coupled with p53alteration has a significantimpact on bladder cancer outcome. J Urol,2010.184(1): p.336-43.
    17. de Verdier, P.J., et al., Genotypes, haplotypes and diplotypes of three XPC polymorphismsin urinary-bladder cancer patients. Mutat Res,2010.694(1-2): p.39-44.
    18. Nahari, D., et al., Mutations in the Trp53gene of UV-irradiated Xpc mutant mice suggesta novel Xpc-dependent DNA repair process. DNA Repair (Amst),2004.3(4): p.379-86.
    19. Hoogervorst, E.M., et al.,2-AAF-induced tumor development in nucleotide excisionrepair-deficient mice is associated with a defect in global genome repair but not withtranscription coupled repair. DNA Repair (Amst),2005.4(1): p.3-9.
    20. Hollander, M.C., et al., Deletion of XPC leads to lung tumors in mice and is associatedwith early events in human lung carcinogenesis. Proc Natl Acad Sci U S A,2005.102(37): p.13200-5.
    21. Sak, S.C., et al., Comprehensive analysis of22XPC polymorphisms and bladder cancerrisk. Cancer Epidemiol Biomarkers Prev,2006.15(12): p.2537-41.
    22. Liu, Y., et al., Poly (AT) polymorphism in the XPC gene and smoking enhance the risk ofprostate cancer in a low-risk Chinese population. Cancer Genet,2012.205(5): p.205-11.
    23. Liu, Y., et al., Interactions between cigarette smoking and XPC-PAT genetic polymorphismenhance bladder cancer risk. Oncol Rep,2012.28(1): p.337-45.
    24. Aguilera, A. and B. Gomez-Gonzalez, Genome instability: a mechanistic view of itscauses and consequences. Nat Rev Genet,2008.9(3): p.204-17.
    25. Frohling, S. and H. Dohner, Chromosomal abnormalities in cancer. N Engl J Med,2008.359(7): p.722-34.
    26. Sonoda, E., et al., Differential usage of non-homologous end-joining and homologousrecombination in double strand break repair. DNA Repair,2006.5(9-10): p.1021-1029.
    27. Okamoto, Y., et al., Oxidative DNA damage in XPC-knockout and its wild mice treatedwith equine estrogen. Chem Res Toxicol,2008.21(5): p.1120-4.
    28. D'Errico, M., et al., New functions of XPC in the protection of human skin cells fromoxidative damage. EMBO J,2006.25(18): p.4305-15.
    29. Randerath, K., et al., Structural origins of bulky oxidative DNA adducts (type III-compounds) as deduced by oxidation of oligonucleotides of known sequence. ChemRes Toxicol,1996.9(1): p.247-54.
    30. Kuraoka, I., et al., Effects of endogenous DNA base lesions on transcription elongationby mammalian RNA polymerase II. Implications for transcription-coupled DNA repairand transcriptional mutagenesis. J Biol Chem,2003.278(9): p.7294-9.
    31. Bernardes de Jesus, B.M., et al., Dissection of the molecular defects caused bypathogenic mutations in the DNA repair factor XPC. Mol Cell Biol,2008.28(23): p.7225-35.
    32. Shimizu, Y., et al., Xeroderma pigmentosum group C protein interacts physically andfunctionally with thymine DNA glycosylase. EMBO J,2003.22(1): p.164-73.
    33. Biard, D.S., et al., Long-term XPC silencing reduces DNA double-strand break repair.Cancer Res,2007.67(6): p.2526-34.
    34. Biard, D., Untangling the relationships between DNA repair pathways by silencing morethan20DNA repair genes in human stable clones. Nucleic Acids Res,2007.35(11): p.3535-50.
    35. Wang, G., et al., The involvement of XPC protein in the cisplatin DNA damagingtreatment-mediated cellular response. Cell Res,2004.14(4): p.303-14.
    36. Wang, G., et al., The involvement of ataxia-telangiectasia mutated protein activation innucleotide excision repair-facilitated cell survival with cisplatin treatment. J Biol Chem,2006.281(37): p.27117-25.
    37. Charbonnier, J.B., et al., Structural, thermodynamic, and cellular characterization ofhuman centrin2interaction with xeroderma pigmentosum group C protein. J Mol Biol,2007.373(4): p.1032-46.
    38. Molinier, J., et al., CENTRIN2interacts with the Arabidopsis homolog of the humanXPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulkyDNA lesions. Plant Mol Biol,2006.61(1-2): p.345-56.
    39. Molinier, J., et al., CENTRIN2modulates homologous recombination and nucleotideexcision repair in Arabidopsis. Plant Cell,2004.16(6): p.1633-43.
    40. Volker, M., et al., Sequential assembly of the nucleotide excision repair factors in vivo.Mol Cell,2001.8(1): p.213-24.
    41. Janicijevic, A., et al., DNA bending by the human damage recognition complexXPC-HR23B. DNA Repair (Amst),2003.2(3): p.325-36.
    42. Jankovic, R., S. Radulovic, and M. Brankovic-Magic, siRNA and miRNA for thetreatment of cancer. J BUON,2009.14Suppl1: p. S43-9.
    43. Gavrilov, K. and W.M. Saltzman, Therapeutic siRNA: principles, challenges, andstrategies. Yale J Biol Med,2012.85(2): p.187-200.
    44. Shegokar, R., L. Al Shaal, and P.R. Mishra, SiRNA delivery: challenges and role ofcarrier systems. Pharmazie,2011.66(5): p.313-8.
    45. Shen, H., T. Sun, and M. Ferrari, Nanovector delivery of siRNA for cancer therapy.Cancer Gene Ther,2012.19(6): p.367-73.
    46. Franceschini, I.A., et al., Efficient gene transfer in mouse neural precursors with abicistronic retroviral vector. J Neurosci Res,2001.65(3): p.208-19.
    47. Pfeiffer, P., W. Goedecke, and G. Obe, Mechanisms of DNA double-strand break repairand their potential to induce chromosomal aberrations. Mutagenesis,2000.15(4): p.289-302.
    48. Nitiss, J.L. and J.C. Wang, Mechanisms of cell killing by drugs that trap covalentcomplexes between DNA topoisomerases and DNA. Mol Pharmacol,1996.50(5): p.1095-102.
    49. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J Immunol Methods,1983.65(1-2): p.55-63.
    50. Fenech, M., Cytokinesis-block micronucleus cytome assay. Nat Protoc,2007.2(5): p.1084-104.
    51. Seidman, M.M., et al., A shuttle vector plasmid for studying carcinogen-induced pointmutations in mammalian cells. Gene,1985.38(1-3): p.233-7.
    52. Mezhevaya, K., T.A. Winters, and R.D. Neumann, Gene targeted DNA double-strandbreak induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenicfollowing repair in human cells. Nucleic Acids Res,1999.27(21): p.4282-90.
    53. Kirsch-Volders, M., et al., The in vitro micronucleus test: a multi-endpoint assay to detectsimultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss andnon-disjunction. Mutat Res,1997.392(1-2): p.19-30.
    54. Fenech, M., et al., Necrosis, apoptosis, cytostasis and DNA damage in humanlymphocytes measured simultaneously within the cytokinesis-block micronucleus assay:description of the method and results for hydrogen peroxide. Mutagenesis,1999.14(6): p.605-12.
    55. Fenech, M., Cytokinesis-block micronucleus assay evolves into a "cytome" assay ofchromosomal instability, mitotic dysfunction and cell death. Mutat Res,2006.600(1-2): p.58-66.
    56. Duan, H., et al., Biomarkers measured by cytokinesis-block micronucleus cytome assayfor evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res,2009.677(1-2): p.93-9.
    57. Thomas, P., K. Umegaki, and M. Fenech, Nucleoplasmic bridges are a sensitive measureof chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagenesis,2003.18(2): p.187-94.
    58. Crott, J.W., et al., The effect of folic acid deficiency and MTHFR C677T polymorphismon chromosome damage in human lymphocytes in vitro. Cancer Epidemiol BiomarkersPrev,2001.10(10): p.1089-96.
    59. Crott, J.W., et al., Methylenetetrahydrofolate reductase C677T polymorphism does notalter folic acid deficiency-induced uracil incorporation into primary human lymphocyteDNA in vitro. Carcinogenesis,2001.22(7): p.1019-25.
    60. Fenech, M., The role of folic acid and Vitamin B12in genomic stability of human cells.Mutat Res,2001.475(1-2): p.57-67.
    61. Shimizu, N., et al., Selective entrapment of extrachromosomally amplified DNA bynuclear budding and micronucleation during S phase. J Cell Biol,1998.140(6): p.1307-20.
    62. Shimizu, N., T. Shimura, and T. Tanaka, Selective elimination of acentric double minutesfrom cancer cells through the extrusion of micronuclei. Mutat Res,2000.448(1): p.81-90.
    63. Haaf, T., et al., Sequestration of mammalian Rad51-recombination protein into micronuclei.J Cell Biol,1999.144(1): p.11-20.
    64. Kraemer, K.H. and M.M. Seidman, Use of supF, an Escherichia coli tyrosine suppressortRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat Res,1989.220(2-3):p.61-72.
    65. Chen, L., et al., Cell cycle-dependent complex formation of BRCA1.CtIP.MRN isimportant for DNA double-strand break repair. J Biol Chem,2008.283(12): p.7713-20.
    66. Konca, K., et al., A cross-platform public domain PC image-analysis program for thecomet assay. Mutat Res,2003.534(1-2): p.15-20.
    67. Skalka, A.M. and R.A. Katz, Retroviral DNA integration and the DNA damage response.Cell Death Differ,2005.12Suppl1: p.971-8.
    68. Ostling, O. and K.J. Johanson, Microelectrophoretic study of radiation-induced DNAdamages in individual mammalian cells. Biochem Biophys Res Commun,1984.123(1): p.291-8.
    69. Singh, N.P., et al., A simple technique for quantitation of low levels of DNA damage inindividual cells. Exp Cell Res,1988.175(1): p.184-91.
    70. Tsuda, S., et al., Detection of pyrimethamine-induced DNA damage in mouse embryoand maternal organs by the modified alkaline single cell gel electrophoresis assay. MutatRes,1998.415(1-2): p.69-77.
    71. Dusinska, M. and A.R. Collins, The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis,2008.23(3): p.191-205.
    72. Bocker, W., et al., Image analysis of comet assay measurements. Int J Radiat Biol,1997.72(4): p.449-60.
    73. McCarthy, P.J., et al., Evaluation of manual and image analysis quantification of DNAdamage in the alkaline comet assay. Mutagenesis,1997.12(4): p.209-14.
    74. Olive, P.L., J.P. Banath, and R.E. Durand, Heterogeneity in radiation-induced DNAdamage and repair in tumor and normal cells measured using the "comet" assay. RadiatRes,1990.122(1): p.86-94.
    75. Rogakou, E.P., et al., DNA double-stranded breaks induce histone H2AX phosphory-lation on serine139. J Biol Chem,1998.273(10): p.5858-68.
    76. Nakamura, A., et al., Techniques for gamma-H2AX detection. Methods Enzymol,2006.409: p.236-50.
    77. Yu, T., et al., Endogenous expression of phosphorylated histone H2AX in tumors inrelation to DNA double-strand breaks and genomic instability. DNA Repair (Amst),2006.5(8): p.935-46.
    1. Chapman, J.R., M.R.G. Taylor, and S.J. Boulton, Playing the End Game: DNADouble-Strand Break Repair Pathway Choice. Molecular cell,2012.47(4): p.497-510.
    2. Keeney, S. and M.J. Neale, Initiation of meiotic recombination by formation of DNAdouble-strand breaks: mechanism and regulation. Biochemical Society Transactions,
    2006.34: p.523-525.
    3. Sonoda, E., et al., Differential usage of non-homologous end-joining and homologousrecombination in double strand break repair. DNA Repair,2006.5(9-10): p.1021-1029.
    4. Chen, L., et al., Cell cycle-dependent complex formation of BRCA1.CtIP.MRN isimportant for DNA double-strand break repair. Journal of Biological Chemistry,2008.283(12): p.7713-7720.
    5. Buis, J., et al., Mre11regulates CtIP-dependent double-strand break repair by interactionwith CDK2. Nature Structural&Molecular Biology,2012.19(2): p.246-252.
    6. Burma, S., B.P.C. Chen, and D.J. Chen, Role of non-homologous end joining (NHEJ) inmaintaining genomic integrity. DNA Repair,2006.5(9-10): p.1042-1048.
    7. Aly, A. and S. Ganesan, BRCA1, PARP, and53BP1: conditional synthetic lethality andsynthetic viability. Journal of Molecular Cell Biology,2011.3(1): p.66-74.
    8. Baumann, P. and S.C. West, Role of the human RAD51protein in homologousrecombination and double-stranded-break repair. Trends in biochemical sciences,1998.23(7): p.247-51.
    9. Cahill, D., B. Connor, and J.P. Carney, Mechanisms of eukaryotic DNA double strandbreak repair. Frontiers in Bioscience,2006.11: p.1958-1976.
    10. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease.Nature,2009.461(7267): p.1071-1078.
    11. Gostissa, M., F.W. Alt, and R. Chiarle, Mechanisms that Promote and SuppressChromosomal Translocations in Lymphocytes, in Annual Review of Immunology, Vol29, W.E. Paul, D.R. Littman, and W.M. Yokoyama, Editors.2011. p.319-350.
    12. Garcia, V., et al., Bidirectional resection of DNA double-strand breaks by Mre11andExo1. Nature,2011.479(7372): p.241-U123.
    13. Burma, S., et al., ATM phosphorylates histone H2AX in response to DNA double-strandbreaks. The Journal of biological chemistry,2001.276(45): p.42462-7.
    14. Lukas, J., C. Lukas, and J. Bartek, More than just a focus: The chromatin response toDNA damage and its role in genome integrity maintenance. Nature Cell Biology,2011.13(10): p.1161-1169.
    15. Bekker-Jensen, S., et al., Spatial organization of the mammalian genome surveillancemachinery in response to DNA strand breaks. Journal of Cell Biology,2006.173(2): p.195-206.
    16. BRCA1and its toolbox for the maintenance of genome integrity.
    17. Shrivastav, M., L.P. De Haro, and J.A. Nickoloff, Regulation of DNA double-strandbreak repair pathway choice. Cell Research,2008.18(1): p.134-147.
    18. Zhang, Y., L.H. Rohde, and H.L. Wu, Involvement of Nucleotide Excision and MismatchRepair Mechanisms in Double Strand Break Repair. Current Genomics,2009.10(4): p.250-258.
    19. Stecklein, S.R., et al., BRCA1and HSP90cooperate in homologous and non-homologousDNA double-strand-break repair and G2/M checkpoint activation. Proceedings of theNational Academy of Sciences of the United States of America,2012.109(34): p.13650-5.
    20. Stark, J.M., et al., Genetic steps of mammalian homologous repair with distinctmutagenic consequences. Molecular and Cellular Biology,2004.24(21): p.9305-9316.
    21. Sugawara, N. and J.E. Haber, Characterization of double-strand break-inducedrecombination: homology requirements and single-stranded DNA formation. Molecularand Cellular Biology,1992.12(2): p.563-75.
    22. Adamo, A., et al., Preventing Nonhomologous End Joining Suppresses DNA RepairDefects of Fanconi Anemia. Molecular cell,2010.39(1): p.25-35.
    23. Hashizume, R., et al., The RING heterodimer BRCA1-BARD1is a ubiquitin ligaseinactivated by a breast cancer-derived mutation. The Journal of biological chemistry,
    2001.276(18): p.14537-40.
    24. You, Z.S. and J.M. Bailis, DNA damage and decisions: CtIP coordinates DNA repair andcell cycle checkpoints. Trends in Cell Biology,2010.20(7): p.402-409.
    25. Yang, H., et al., BRCA2function in DNA binding and recombination from aBRCA2-DSS1-ssDNA structure. Science (Washington D C),2002.297(5588): p.1837-1848.
    26. Aylon, Y., B. Liefshitz, and M. Kupiec, The CDK regulates repair of double-strandbreaks by homologous recombination during the cell cycle. Embo Journal,2004.23(24):p.4868-4875.
    27. Wei, W., et al., A Role for Small RNAs in DNA Double-Strand Break Repair. Cell,2012.149(1): p.101-112.
    28. Ohnishi, T., E. Mori, and A. Takahashi, DNA double-strand breaks: Their production,recognition, and repair in eukaryotes. Mutation Research-Fundamental and MolecularMechanisms of Mutagenesis,2009.669(1-2): p.8-12.
    29. Mimitou, E.P. and L.S. Symington, DNA end resection: Many nucleases make light work.DNA Repair,2009.8(9): p.983-995.
    30. Matos, J., et al., Regulatory Control of the Resolution of DNA RecombinationIntermediates during Meiosis and Mitosis. Cell,2011.147(1): p.158-172.
    31. Mahaney, B.L., K. Meek, and S.P. Lees-Miller, Repair of ionizing radiation-inducedDNA double-strand breaks by non-homologous end-joining. Biochemical Journal,2009.417: p.639-650.
    32. Lee, S.E., et al., Saccharomyces Ku70, mre11/rad50and RPA proteins regulateadaptation to G2/M arrest after DNA damage. Cell,1998.94(3): p.399-409.
    33. Krishna, S., et al., Mre11and Ku regulation of double-strand break repair by geneconversion and break-induced replication. DNA Repair,2007.6(6): p.797-808.
    34. Kim, J.S., et al., Independent and sequential recruitment of NHEJ and HR factors to DNAdamage sites in mammalian cells. Journal of Cell Biology,2005.170(3): p.341-347.
    35. Ira, G., et al., DNA end resection, homologous recombination and DNA damagecheckpoint activation require CDK1. Nature,2004.431(7011): p.1011-1017.
    36. Cheung, J.C.Y. and L.A. Hanakahi, The requirement of a Ku-IP6(inositolhexakisphosphate) complex for efficient repair of DNA double strand breaks bynon-homologous end joining in mammals. Faseb Journal,2007.21(5): p. A292-A292.
    37. Chen, J.J., et al., BRCA1, BRCA2, and Rad51operate in a common DNA damageresponse pathway. Cancer Research,1999.59(7Suppl): p.1752s-1756s.
    38. Helleday, T., The underlying mechanism for the PARP and BRCA synthetic lethality:Clearing up the misunderstandings. Molecular Oncology,2011.5(4): p.387-393.
    39. Hartlerode, A.J. and R. Scully, Mechanisms of double-strand break repair in somaticmammalian cells. Biochemical Journal,2009.423: p.157-168.
    40. Delacote, F., et al., Homologous recombination, non-homologous end-joining and cellcycle: Genome's angels. Current Genomics,2004.5(1): p.49-58.
    41. Cui, X.P., et al., Autophosphorylation of DNA-dependent protein kinase regulates DNAend processing and may also alter double-strand break repair pathway choice. Molecularand Cellular Biology,2005.25(24): p.10842-10852.
    42. Chan, D.W., et al., DNA-dependent protein kinase phosphorylation sites in Ku70/80heterodimer. Biochemistry,1999.38(6): p.1819-28.
    43. Durant, S.T. and J.A. Nickoloff, Good timing in the cell cycle for precise DNA repair byBRCA1. Cell Cycle,2005.4(9): p.1216-1222.
    44. Chen, F., et al., Cell cycle-dependent protein expression of mammalian homologs ofyeast DNA double-strand break repair genes Rad51and Rad52. Mutation research,1997.384(3): p.205-11.
    45. Dianov, G.L., C. Meisenberg, and J.L. Parsons, Regulation of DNA repair byubiquitylation. Biochemistry-Moscow,2011.76(1): p.69-79.
    1. H Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipurksy, J.Darnell, Molecular Biology of the Cell,5th edition, WH Freeman, New York,2004.
    2. T. Lindahl, Instability and decay of the primary structure of DNA, Nature362(1993)709–715.
    3. E.C. Friedberg, Out of the shadows and into the light: the emergence of DNA repair,Trends Biochem. Sci.20(1995)381.
    4. J. Cadet, T. Douki, D. Gasparutto, J.L. Ravanat, Oxidative damage to DNA: formation,measurement and biochemical features, Mutat. Res.531(2003)5–23.
    5. E.C. Friedberg, G.C. Walker, W. Siede, R.D. Wood, R.A. Schultz, T. Ellenberger, DNARepair and Mutagenesis,2nd edition, ASM Press, Washington,2006.
    6. E. Mullaart, P.H. Lohman, F. Berends, J. Vijg, DNA damage metabolism and aging,Mutat. Res.237(1990)189–210.
    7. J. Bartek, J. Lukas, DNA damage checkpoints: from initiation to recovery or adaptation,Curr. Opin. Cell Biol.19(2007)238–245.
    8. H.L. Lo, S. Nakajima, L. Ma, B. Walter, A. Yasui, D.W. Ethell, L.B. Owen, Differentialbiologic effects of CPD and6-4PP UV-induced DNA damage on the induction ofapoptosis and cell-cycle arrest, BMC Cancer5(2005)135.
    9. J. de Boer, J.H. Hoeijmakers, Nucleotide excision repair and human syndromes,Carcinogenesis21(2000)453–460.
    10. L.P. Guarente, L. Partridge, D.C. Wallace, Molecular Biology of Aging,1st edition, ColdSpring Harbor Laboratory Press,2008.
    11. G.A. Garinis, J. Jans, G.T. van der Horst, Photolyases: capturing the light to battle skincancer, Future Oncol.2(2006)191–199.
    12. R. Dip, U. Camenisch, H. Naegeli, Mechanisms of DNA damage recognition and stranddiscrimination in human nucleotide excision repair, DNA Repair (Amst.)3(2004)1409–1423.
    13. M. Yokoi, C. Masutani, T. Maekawa, K. Sugasawa, Y. Ohkuma, F. Hanaoka, Thexeroderma pigmentosum group C protein complex XPC-HR23B plays an important rolein the recruitment of transcription factor IIH to damaged DNA, J. Biol.Chem.275(2000)9870–9875.
    14. S.J. Araujo, E.A. Nigg, R.D. Wood, Strong functional interactions of TFIIH with XPCand XPG in human DNA nucleotide excision repair, without a preassembled repairosome,Mol. Cell Biol.21(2001)2281–2291.
    15. R. Nishi, Y. Okuda, E. Watanabe, T. Mori, S. Iwai, C. Masutani, K. Sugasawa, F.Hanaoka, Centrin2stimulates nucleotide excision repair by interacting with xerodermapigmentosum group C protein, Mol. Cell Biol.25(2005)5664–5674.
    16. M. Araki, C. Masutani, M. Takemura, A. Uchida, K. Sugasawa, J. Kondoh, Y. Ohkuma,F. Hanaoka, Centrosome protein centrin2/caltractin1is part of the xerodermapigmentosum group C complex that initiates global genome nucleotide excision repair, J.Biol. Chem.276(2001)18665–18672.
    17. K. Sugasawa, T. Okamoto, Y. Shimizu, C. Masutani, S. Iwai, F. Hanaoka, A multistepdamage recognition mechanism for global genomic nucleotide excision repair, GenesDev.15(2001)507–521.
    18. K. Sugasawa, Y. Shimizu, S. Iwai, F. Hanaoka, A molecular mechanism for DNAdamage recognition by the xeroderma pigmentosum group C protein complex, DNARepair (Amst.)1(2002)95–107.
    19. J.H. Min, N.P. Pavletich, Recognition of DNA damage by the Rad4nucleotide excisionrepair protein, Nature449(2007)570–575.
    20. D. Hoogstraten, S. Bergink, J.M. Ng, V.H. Verbiest, M.S. Luijsterburg, B. Geverts, A.Raams, C. Dinant, J.H. Hoeijmakers, W. Vermeulen, A.B. Houtsmuller, Versatile DNAdamage detection by the global genome nucleotide excision repair protein XPC, J. CellSci.121(2008)2850–2859.
    21. K. Sugasawa, Y. Okuda, M. Saijo, R. Nishi, N. Matsuda, G. Chu, T. Mori, S. Iwai, K.Tanaka, K. Tanaka, F. Hanaoka, UV-induced ubiquitylation of XPC protein mediated byUV-DDB-ubiquitin ligase complex, Cell121(2005)387–400.
    22. M.E. Fitch, S. Nakajima, A. Yasui, J.M. Ford, In vivo recruitment of XPC to UV-inducedcyclobutane pyrimidine dimers by the DDB2gene product, J. Biol. Chem.278(2003)46906–46910.
    23. J.Y. Tang, B.J. Hwang, J.M. Ford, P.C. Hanawalt, G. Chu, Xeroderma pigmentosum p48gene enhances global genomic repair and suppresses UV-induced mutagenesis, Mol. Cell5(2000)737–744.
    24. V. Rapic-Otrin, M.P. McLenigan, D.C. Bisi, M. Gonzalez, A.S. Levine, Sequentialbinding of UV DNA damage binding factor and degradation of the p48subunit as earlyevents after UV irradiation, Nucleic Acids Res.30(2002)2588–2598.
    25. T.G. Ortolan, L. Chen, P. Tongaonkar, K. Madura, Rad23stabilizes Rad4fromdegradation by the Ub/proteasome pathway, Nucleic Acids Res.32(2004)6490–6500.
    26. J.M. Ng, W. Vermeulen, G.T. van der Horst, S. Bergink, K. Sugasawa, H. Vrieling, J.H.Hoeijmakers, A novel regulation mechanism of DNA repair by damage-induced andRAD23-dependent stabilization of xeroderma pigmentosum group C protein, Genes Dev.17(2003)1630–1645.
    27. M.A. El Mahdy, Q. Zhu, Q.E. Wang, G. Wani, M. Praetorius-Ibba, A.A. Wani, Cullin4A-mediated proteolysis of DDB2protein at DNA damage sites regulates in vivo lesionrecognition by XPC, J. Biol. Chem.281(2006)13404–13411.
    28. K. Sugasawa, XPC: its product and biological roles, Adv. Exp. Med. Biol.637(2008)47–56.
    29. D. Tantin, A. Kansal, M. Carey, Recruitment of the putative transcription-repair couplingfactor CSB/ERCC6to RNA polymerase II elongation complexes, Mol. Cell Biol.17(1997)6803–6814.
    30. D. Tantin, RNA polymerase II elongation complexes containing the Cockayne syndromegroup B protein interact with a molecular complex containing the transcription factor IIHcomponents xeroderma pigmentosum B and p62, J. Biol. Chem.273(1998)27794–27799.
    31. K.A. Henning, L. Li, N. Iyer, L.D. McDaniel, M.S. Reagan, R. Legerski, R.A. Schultz, M.Stefanini, A.R. Lehmann, L.V. Mayne, E.C. Friedberg, The Cockayne syndrome group Agene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNApolymerase II TFIIH, Cell82(1995)555–564.
    32. Y. Nakatsu, H. Asahina, E. Citterio, S. Rademakers, W. Vermeulen, S. Kamiuchi, J.P.Yeo, M.C. Khaw, M. Saijo, N. Kodo, T. Matsuda, J.H. Hoeijmakers, K. Tanaka, XAB2, anovel tetratricopeptide repeat protein involved in transcription-coupled DNA repair andtranscription, J. Biol. Chem.275(2000)34931–34937.
    33. R. Groisman, J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo, R. Drapkin, A.F. Kisselev,K. Tanaka, Y. Nakatani, The ubiquitin ligase activity in the DDB2and CSA complexes isdifferentially regulated by the COP9signalosome in response to DNA damage, Cell113(2003)357–367.
    34. S. Kamiuchi, M. Saijo, E. Citterio, M. de Jager, J.H. Hoeijmakers, K. Tanaka,Translocation of Cockayne syndrome group A protein to the nuclear matrix: possiblerelevance to transcription-coupled DNA repair, Proc. Natl. Acad. Sci. U. S. A.99(2002)201–206.
    35. M. Sunesen, T. Stevnsner, R.M. Brosh Jr., G.L. Dianov, V.A. Bohr, Global genomerepair of8-oxoG in hamster cells requires a functional CSB gene product, Oncogene21(2002)3571–3578.
    36. M. Fousteri, L.H. Mullenders, Transcription-coupled nucleotide excision repair inmammalian cells: molecular mechanisms and biological effects, Cell Res.18(2008)73–84.
    37. M. Fousteri, W. Vermeulen, A.A. van Zeeland, L.H. Mullenders, Cockayne syndrome Aand B proteins differentially regulate recruitment of chromatin remodeling and repairfactors to stalled RNA polymerase II in vivo, Mol. Cell23(2006)471–482.
    38. G. Giglia-Mari, F. Coin, J.A. Ranish, D. Hoogstraten, A. Theil, N. Wijgers, N.G. Jaspers,A. Raams, M. Argentini, P.J. van der Spek, E. Botta, M. Stefanini, J.M. Egly, R.Aebersold, J.H. Hoeijmakers, W. Vermeulen, A new, tenth subunit of TFIIH isresponsible for the DNA repair syndrome trichothiodystrophy group A, Nat. Genet.36(2004)714–719.
    39. N. Goosen, Scanning the DNA for damage by the nucleotide excision repair machinery,DNA Repair (Amst.)9(2010)593–596.
    40. V. Oksenych, F. Coin, The long unwinding road: XPB and XPD helicases in damagedDNA opening, Cell Cycle9(2010)90–96.
    41. A. Zotter, M.S. Luijsterburg, D.O. Warmerdam, S. Ibrahim, A. Nigg, W.A. vanCappellen, J.H. Hoeijmakers, R. van Driel, W. Vermeulen, A.B. Houtsmuller,Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induceddna damage depends on functional TFIIH, Mol. Cell Biol.26(2006)8868–8879.
    42. W.L. de Laat, E. Appeldoorn, N.G. Jaspers, J.H. Hoeijmakers, DNA structural elementsrequired for ERCC1-XPF endonuclease activity, J. Biol. Chem.273(1998)7835–7842.
    43. I.L. Hermanson-Miller, J.J. Turchi, Strand-specific binding of RPA and XPA to damagedduplex DNA, Biochemistry41(2002)2402–2408.
    44. J.O. Andressoo, J.H. Hoeijmakers, J.R. Mitchell, Nucleotide excision repair disorders andthe balance between cancer and aging, Cell Cycle5(2006)2886–2888.
    45. F. Coin, V. Oksenych, V. Mocquet, S. Groh, C. Blattner, J.M. Egly, Nucleotide excisionrepair driven by the dissociation of CAK from TFIIH, Mol. Cell31(2008)9–20.
    46. Y.S. Krasikova, N.I.Rechkunova, E.A. Maltseva, I.O.Petruseva,O.I. Lavrik, Localizationof xeroderma pigmentosum group A protein and replication protein A on damaged DNAin nucleotide excision repair, Nucleic Acids Res.38(2010)8083–8094.
    47. C.J. Park, B.S. Choi, The protein shuffle. Sequential interactions among components ofthe human nucleotide excision repair pathway, FEBS J.273(2006)1600–1608.
    48. M.T. Hess, U. Schwitter, M. Petretta, B. Giese, H. Naegeli, Bipartite substratediscrimination by human nucleotide excision repair, Proc. Natl. Acad. Sci. U. S. A.94(1997)6664–6669.
    49. M. Wakasugi, J.T. Reardon, A. Sancar, The non-catalytic function of XPG protein duringdual incision in human nucleotide excision repair, J. Biol. Chem.272(1997)16030–16034.
    50. L. Staresincic, A.F. Fagbemi, J.H. Enzlin, A.M. Gourdin, N. Wijgers, I. Dunand-Sauthier,G. Giglia-Mari, S.G. Clarkson, W. Vermeulen, O.D. Scharer, Coordination of dualincision and repair synthesis in human nucleotide excision repair, EMBO J.28(2009)1111–1120.
    51. J.E. Cleaver, E.T. Lam, I. Revet, Disorders of nucleotide excision repair: the genetic andmolecular basis of heterogeneity, Nat. Rev. Genet.10(2009)756–768.
    52. A.M. Bhutto, S.H. Kirk, Population distribution of xeroderma pigmentosum, Adv. Exp.Med. Biol.637(2008)138–143.
    53. K.H. Kraemer, M.M. Lee, J. Scotto, DNA repair protects against cutaneous and internalneoplasia: evidence from xeroderma pigmentosum, Carcinogenesis5(1984)511–514.
    54. K.H. Kraemer, Sunlight and skin cancer: another link revealed, Proc. Natl. Acad. Sci. U.S. A.94(1997)11–14.
    55. D.L. Cheo, H.J. Ruven, L.B. Meira, R.E. Hammer, D.K. Burns, N.J. Tappe, A.A. vanZeeland, L.H. Mullenders, E.C. Friedberg, Characterization of defective nucleotideexcision repair in XPC mutant mice, Mutat. Res.374(1997)1–9.
    56. A.T. Sands, A. Abuin, A. Sanchez, C.J. Conti, A. Bradley, High susceptibility toultraviolet-induced carcinogenesis in mice lacking XPC, Nature377(1995)162–165.
    57. R.J. Berg, H.J. Ruven, A.T. Sands, F.R. de Gruijl, L.H. Mullenders, Defective globalgenome repair in XPC mice is associated with skin cancer susceptibility but not withsensitivity to UVB induced erythema and edema, J. Invest. Dermatol.110(1998)405–409.
    58. D.L. Cheo, L.B. Meira, D.K. Burns, A.M. Reis, T. Issac, E.C. Friedberg, Ultraviolet Bradiation-induced skin cancer in mice defective in the Xpc, Trp53, and Apex(HAP1)genes: genotype-specific effects on cancer predisposition and pathology of tumors,Cancer Res.60(2000)1580–1584.
    59. D.L. Cheo, L.B. Meira, R.E. Hammer, D.K. Burns, A.T. Doughty, E.C. Friedberg,Synergistic interactions between XPC and p53mutations in double-mutant mice: neuraltube abnormalities and accelerated UV radiation-induced skin cancer, Curr. Biol.6(1996)1691–1694.
    60. E.C. Friedberg, D.L. Cheo, L.B. Meira, A.M. Reis, Cancer predisposition in mutant micedefective in the XPC DNA repair gene, Prog. Exp. Tumor Res.35(1999)37–52.
    61. E.C. Friedberg, J.P. Bond, D.K. Burns, D.L. Cheo, M.S. Greenblatt, L.B. Meira, D.Nahari, A.M. Reis, Defective nucleotide excision repair in xpc mutant mice and itsassociation with cancer predisposition, Mutat. Res.459(2000)99–108.
    62. D.L. Cheo, D.K. Burns, L.B. Meira, J.F. Houle, E.C. Friedberg, Mutational inactivationof the xeroderma pigmentosum group C gene confers predisposition to2-acetylamin-ofluorene-induced liver and lung cancer and to spontaneous testicular cancer inTrp53/mice, Cancer Res.59(1999)771–775.
    63. M.C. Hollander, R.T. Philburn, A.D. Patterson, S. Velasco-Miguel, E.C. Friedberg, R.I.Linnoila, A.J. Fornace Jr., Deletion of XPC leads to lung tumors in mice and is associatedwith early events in human lung carcinogenesis, Proc. Natl. Acad. Sci. U. S. A.102(2005)13200–13205.
    64. J.P. Melis, S.W. Wijnhoven, R.B. Beems, M. Roodbergen, B.J. van den, H. Moon, E.Friedberg, G.T. van der Horst, J.H. Hoeijmakers, J. Vijg, H. van Steeg, Mouse models forxeroderma pigmentosum group A and group C show divergent cancer phenotypes,Cancer Res.68(2008)1347–1353.
    65. Y. Okamoto, P.H. Chou, S.Y. Kim, N. Suzuki, Y.R. Laxmi, K. Okamoto, X. Liu, T.Matsuda, S. Shibutani, Oxidative DNA damage in XPC-knockout and its wild micetreated with equine estrogen, Chem. Res. Toxicol.21(2008)1120–1124.
    66. M. D’Errico, E. Parlanti, M. Teson, B.M. de Jesus, P. Degan, A. Calcagnile, P. Jaruga, M.Bjoras, M. Crescenzi, A.M. Pedrini, J.M. Egly, G. Zambruno, M. Stefanini, M.Dizdaroglu, E. Dogliotti, New functions of XPC in the protection of human skin cellsfrom oxidative damage, EMBO J.25(2006)4305–4315.
    67. K. Randerath, E. Randerath, C.V. Smith, J. Chang, Structural origins of bulky oxidativeDNA adducts (type II I-compounds) as deduced by oxidation of oligonucleotides ofknown sequence, Chem. Res. Toxicol.9(1996)247–254.
    68. Y. Wang, Bulky DNA lesions induced by reactive oxygen species, Chem. Res. Toxicol.21(2008)276–281.
    69. I. Kuraoka, M. Endou, Y. Yamaguchi, T. Wada, H. Handa, K. Tanaka, Effects ofendogenous DNA base lesions on transcription elongation by mammalian RNApolymerase II. Implications for transcription-coupled DNA repair and transcriptionalmutagenesis, J. Biol. Chem.278(2003)7294–7299.
    70. I. Kuraoka, K. Suzuki, S. Ito, M. Hayashida, J.S. Kwei, T. Ikegami, H. Handa, Y.Nakabeppu, K. Tanaka, RNA polymerase II bypasses8-oxoguanine in the presence oftranscription elongation factor TFIIS, DNA Repair (Amst.)6(2007)841–851.
    71. S.D. Kathe, G.P. Shen, S.S. Wallace, Single-stranded breaks in DNA but not oxidativeDNA base damages block transcriptional elongation by RNA polymerase II in HeLa cellnuclear extracts, J. Biol. Chem.279(2004)18511–18520.
    72. E. Larsen, K. Kwon, F. Coin, J.M. Egly, A. Klungland, Transcription activities at8-oxoGlesions in DNA, DNA Repair (Amst.)3(2004)1457–1468.
    73. S. Tornaletti, L.S. Maeda, R.D. Kolodner, P.C. Hanawalt, Effect of8-oxoguanine ontranscription elongation by T7RNA polymerase and mammalian RNA polymerase II,DNA Repair (Amst.)3(2004)483–494.
    74. A. Viswanathan, P.W. Doetsch, Effects of nonbulky DNA base damages on Escherichiacoli RNA polymerase-mediated elongation and promoter clearance, J. Biol. Chem.273(1998)21276–21281.
    75. G.M. Pastoriza, A. Sarasin, Transcription-coupled repair of8-oxoguanine in human cellsand its deficiency in some DNA repair diseases, Biochimie85(2003)1073–1082.
    76. M. Pastoriza-Gallego, J. Armier, A. Sarasin, Transcription through8-oxoguanine in DNArepair-proficient and Csb()/Ogg1() DNA repair-deficient mouse embryonic fibroblasts isdependent upon promoter strength and sequence context, Mutagenesis22(2007)343–351.
    77. J.T. Reardon, T. Bessho, H.C. Kung, P.H. Bolton, A. Sancar, In vitro repair of oxidativeDNA damage by human nucleotide excision repair system: possible explanation forneurodegeneration in xeroderma pigmentosum patients, Proc. Natl. Acad. Sci. U. S. A.94(1997)9463–9468.
    78. P.J. Brooks, D.S. Wise, D.A. Berry, J.V. Kosmoski, M.J. Smerdon, R.L. Somers, H.Mackie, A.Y. Spoonde, E.J. Ackerman, K. Coleman, R.E. Tarone, J.H. Robbins, Theoxidative DNA lesion8,5’-(S)-cyclo-2’-deoxyadenosine is repaired by the nucleotideexcision repair pathway and blocks gene expression in mammalian cells, J. Biol. Chem.275(2000)22355–22362.
    79. P.J. Brooks, The case for8,5’-cyclopurine-2’-deoxynucleosides as endogenous DNAlesions that cause neurodegeneration in xeroderma pigmentosum, Neuroscience145(2007)1407–1417.
    80. P.J. Brooks, The8,5’-cyclopurine-2’-deoxynucleosides: candidate neurodegenerativeDNA lesions in xeroderma pigmentosum, and unique probes of transcription andnucleotide excision repair, DNA Repair (Amst.)7(2008)1168–1179.
    81. B.M. Bernardes de Jesus, M. Bjoras, F. Coin, J.M. Egly, Dissection of the moleculardefects caused by pathogenic mutations in the DNA repair factor XPC, Mol. Cell Biol.28(2008)7225–7235.
    82. Y. Shimizu, S. Iwai, F. Hanaoka, K. Sugasawa, Xeroderma pigmentosum group C proteininteracts physically and functionally with thymine DNA glycosylase, EMBO J.22(2003)164–173.
    83. F. Miao, M. Bouziane, R. Dammann, C. Masutani, F. Hanaoka, G. Pfeifer, T.R.O’Connor,3-Methyladenine-DNA glycosylase (MPG protein) interacts with humanRAD23proteins, J. Biol. Chem.275(2000)28433–28438.
    84. S.N. Kassam, A.J. Rainbow, Deficient base excision repair of oxidative DNA damageinduced by methylene blue plus visible light in xeroderma pigmentosum group Cfibroblasts, Biochem. Biophys. Res. Commun.359(2007)1004–1009.
    85. J. Tuo, P. Jaruga, H. Rodriguez, V.A. Bohr, M. Dizdaroglu, Primary fibroblasts ofCockayne syndrome patients are defective in cellular repair of8-hydroxyguanine and8-hydroxyadenine resulting from oxidative stress, FASEB J.17(2003)668–674.
    86. H. de Waard, J. de Wit, T.G. Gorgels, A.G. van den, J.O. Andressoo, M. Vermeij, H. vanSteeg, J.H. Hoeijmakers, G.T. van der Horst, Cell type-specific hypersensitivity tooxidative damage in CSB and XPA mice, DNA Repair (Amst.)2(2003)13–25.
    87. J. Tuo, C. Chen, X. Zeng, M. Christiansen, V.A. Bohr, Functional crosstalk betweenhOgg1and the helicase domain of Cockayne syndrome group B protein, DNA Repair(Amst.)1(2002)913–927.
    88. J. Tuo, P. Jaruga, H. Rodriguez, M. Dizdaroglu, V.A. Bohr, The cockayne syndromegroup B gene product is involved in cellular repair of8-hydroxyadenine in DNA, J. Biol.Chem.277(2002)30832–30837.
    89. T. Thorslund, C. von Kobbe, J.A. Harrigan, F.E. Indig, M. Christiansen, T. Stevnsner,V.A. Bohr, Cooperation of the Cockayne syndrome group B protein andpoly(ADP-ribose) polymerase1in the response to oxidative stress, Mol. Cell Biol.25(2005)7625–7636.
    90. H.K. Wong, M. Muftuoglu, G. Beck, S.Z. Imam, V.A. Bohr, D.M. Wilson III, Cockaynesyndrome B protein stimulates apurinic endonuclease1activity and protects againstagents that introduce base excision repair intermediates, Nucleic Acids Res.35(2007)4103–4113.
    91. F. Le Page, E.E. Kwoh, A. Avrutskaya, A. Gentil, S.A. Leadon, A. Sarasin, P.K. Cooper,Transcription-coupled repair of8-oxoguanine: requirement for XPG, TFIIH, and CSBand implications for Cockayne syndrome, Cell101(2000)159–171.
    92. G. Dianov, C. Bischoff, M. Sunesen, V.A. Bohr, Repair of8-oxoguanine in DNA isdeficient in Cockayne syndrome group B cells, Nucleic Acids Res.27(1999)1365–1368.
    93. S.Y. Liu, C.Y. Wen, Y.J. Lee, T.C. Lee, XPC silencing sensitizes glioma cells to arsenictrioxide via increased oxidative damage, Toxicol. Sci.116(2010)183–193.
    94. H.R. Rezvani, A.L. Kim, R. Rossignol, N. Ali, M. Daly, W. Mahfouf, N. Bellance, A.Taieb, H. de Verneuil, F. Mazurier, D.R. Bickers, XPC silencing in normal humankeratinocytes triggers metabolic alterations that drive the formation of squamous cellcarcinomas, J. Clin. Invest.121(2011)195–211.
    95. H.R. Rezvani, R. Rossignol, N. Ali, G. Benard, X. Tang, H.S. Yang, T. Jouary, H. deVerneuil, A. Taieb, A.L. Kim, F. Mazurier, XPC silencing in normal humankeratinocytes triggers metabolic alterations through NOX-1activation-mediated reactiveoxygen species, Biochim. Biophys. Acta1807(2011)609–619.
    96. S.A. Langie, A.M. Knaapen, J.M. Houben, F.C. van Kempen, J.P. de Hoon, R.W.Gottschalk, R.W. Godschalk, F.J. van Schooten, The role of glutathione in the regulationof nucleotide excision repair during oxidative stress, Toxicol. Lett.168(2007)302–309.
    97. L.B. Meira, A.M. Reis, D.L. Cheo, D. Nahari, D.K. Burns, E.C. Friedberg, Cancerpredisposition in mutant mice defective in multiple genetic pathways: uncoveringimportant genetic interactions, Mutat. Res.477(2001)51–58.
    98. S.T. Kim, D.S. Lim, C.E. Canman, M.B. Kastan, Substrate specificities and identificationof putative substrates of ATM kinase family members, J. Biol. Chem.274(1999)37538–37543.
    99. R.T. Abraham, Cell cycle checkpoint signaling through the ATM and ATR kinases,Genes Dev.15(2001)2177–2196.
    100. G. Wang, L. Chuang, X. Zhang, S. Colton, A. Dombkowski, J. Reiners, A. Diakiw, X.S.Xu, The initiative role of XPC protein in cisplatin DNA damaging treatment-mediatedcell cycle regulation, Nucleic Acids Res.32(2004)2231–2240.
    101. S.L. Colton, X.S. Xu, Y.A. Wang, G. Wang, The involvement of ataxia-telangiectasiamutated protein activation in nucleotide excision repair-facilitated cell survival withcisplatin treatment, J. Biol. Chem.281(2006)27117–27125.
    102. A. Ray, S.N. Mir, G. Wani, Q. Zhao, A. Battu, Q. Zhu, Q.E. Wang, A.A. Wani, HumanSNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex,promotes nucleotide excision repair by influencing ATM recruitment and downstreamH2AX phosphorylation, Mol. Cell Biol.29(2009)6206–6219.
    103. Y. Auclair, R. Rouget, E.A. Drobetsky, ATR kinase as master regulator of nucleotideexcision repair during S phase of the cell cycle, Cell Cycle8(2009)1865–1871.
    104. Y. Auclair, R. Rouget, e.B. Affar, E.A. Drobetsky, ATR kinase is required for globalgenomic nucleotide excision repair exclusively during S phase in human cells, Proc. Natl.Acad. Sci. U. S. A.105(2008)17896–17901.
    105. X. Wu, S.M. Shell, Y. Liu, Y. Zou, ATR-dependent checkpoint modulates XPA nuclearimport in response to UV irradiation, Oncogene26(2007)757–764.
    106. S.M. Shell, Z. Li, N. Shkriabai, M. Kvaratskhelia, C. Brosey, M.A. Serrano, W.J. Chazin,P.R. Musich, Y. Zou, Checkpoint kinase ATR promotes nucleotide excision repair ofUV-induced DNA damage via physical interaction with xeroderma pigmentosum groupA, J. Biol. Chem.284(2009)24213–24222.
    107. B.J. Hwang, J.M. Ford, P.C. Hanawalt, G. Chu, Expression of the p48xerodermapigmentosum gene is p53-dependent and is involved in global genomic repair, Proc. Natl.Acad. Sci. U. S. A.96(1999)424–428.
    108. S. Adimoolam, J.M. Ford, p53and DNA damage-inducible expression of the xerodermapigmentosum group C gene, Proc. Natl. Acad. Sci. U. S. A.99(2002)12985–12990.
    109. S.A. Amundson, A. Patterson, K.T. Do, A.J. Fornace Jr., A nucleotide excision repairmaster-switch: p53regulated coordinate induction of global genomic repair genes,Cancer Biol. Ther.1(2002)145–149.
    110. Y.H. Wu, T.C. Wu, J.W. Liao, K.T. Yeh, C.Y. Chen, H. Lee, p53dysfunction byxeroderma pigmentosum group C defects enhance lung adenocarcinoma metastasis viaincreased MMP1expression, Cancer Res.70(2010)10422–10432.
    111. Z. Chen, J. Yang, G. Wang, B. Song, J. Li, Z. Xu, Attenuated expression of xerodermapigmentosum group C is associated with critical events in human bladder cancercarcinogenesis and progression, Cancer Res.67(2007)4578–4585.
    112. D. Nahari, L.D. McDaniel, L.B. Task, R.L. Daniel, S. Velasco-Miguel, E.C. Friedberg,Mutations in the Trp53gene of UV-irradiated Xpc mutant mice suggest a novelXpc-dependent DNA repair process, DNA Repair (Amst.)3(2004)379–386.
    113. A.M. Reis, D.L. Cheo, L.B. Meira, M.S. Greenblatt, J.P. Bond, D. Nahari, E.C. Friedberg,Genotype-specific Trp53mutational analysis in ultraviolet B radiation-induced skincancers in Xpc and Xpc Trp53mutant mice, Cancer Res.60(2000)1571–1579.
    114. X.S. Xu, L. Wang, J. Abrams, G. Wang, Histone deacetylases (HDACs) in XPC genesilencing and bladder cancer, J. Hematol. Oncol.4(2011)17.
    115. Z. Hu, Y. Wang, X. Wang, G. Liang, X. Miao, Y. Xu, W. Tan, Q. Wei, D. Lin, H. Shen,DNA repair gene XPC genotypes/haplotypes and risk of lung cancer in a Chinesepopulation, Int. J. Cancer115(2005)478–483.
    116. G.Y. Lee, J.S. Jang, S.Y. Lee, H.S. Jeon, K.M. Kim, J.E. Choi, J.M. Park, M.H. Chae,W.K.Lee, S. Kam, I.S. Kim, J.T. Lee, T.H. Jung, J.Y. Park, XPC polymorphisms andlung cancer risk, Int. J. Cancer115(2005)807–813.
    117. G. Francisco, P.R. Menezes, J. Eluf-Neto, R. Chammas, XPC polymorphisms play a rolein tissue-specific carcinogenesis: a meta-analysis, Eur. J. Hum. Genet.16(2008)724–734.
    118. L. Qiu, Z. Wang, X. Shi, Z. Wang, Associations between XPC polymorphisms and riskof cancers: a meta-analysis, Eur. J. Cancer44(2008)2241–2253.
    119. P.J. de Verdier, S. Sanyal, J.L. Bermejo, G. Steineck, K. Hemminki, R. Kumar,Genotypes, haplotypes and diplotypes of three XPC polymorphisms in urinary-bladdercancer patients, Mutat. Res.694(2010)39–44.
    120. P. Vineis, M. Manuguerra, F.K. Kavvoura, S. Guarrera, A. Allione, F. Rosa, A. DiGregorio, S. Polidoro, F. Saletta, J.P. Ioannidis, G. Matullo, A field synopsis onlow-penetrance variants in DNA repair genes and cancer susceptibility, J. Natl. CancerInst.101(2009)24–36.
    121. H. Shen, E.M. Sturgis, S.G. Khan, Y. Qiao, T. Shahlavi, S.A. Eicher, Y. Xu, X. Wang,S.S. Strom, M.R. Spitz, K.H. Kraemer, Q. Wei, An intronic poly (AT) polymorphism ofthe DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: acase-control study, Cancer Res.61(2001)3321–3325.
    122. M.S. Marin, M.F. Lopez-Cima, L. Garcia-Castro, T. Pascual, M.G. Marron, A. Tardon,Poly (AT) polymorphism in intron11of the XPC DNA repair gene enhances the risk oflung cancer, Cancer Epidemiol. Biomarkers Prev.13(2004)1788–1793.
    123. D. Palli, S. Polidoro, M. D’Errico, C. Saieva, S. Guarrera, A.S. Calcagnile, F. Sera, A.Allione, S. Gemma, I. Zanna, A. Filomena, E. Testai, S. Caini, R. Moretti, M.J.Gomez-Miguel, G. Nesi, I. Luzzi, L. Ottini, G. Masala, G. Matullo, E. Dogliotti,Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer,Mutagenesis25(2010)569–575.
    124. J. Gil, D. Ramsey, A. Stembalska, P. Karpinski, K.A. Pesz, I. Laczmanska, P.Leszczynski, Z. Grzebieniak, M.M. Sasiadek, The C/A polymorphism in intron11of theXPC gene plays a crucial role in the modulation of an individual’s susceptibility tosporadic colorectal cancer, Mol. Biol. Rep.(2011)[Epub ahead of print], PubMed PMID:21559836.
    125. D.N. Seril, J. Liao, G.Y. Yang, C.S. Yang, Oxidative stress and ulcerativecolitis-associated carcinogenesis: studies in humans and animal models, Carcinogenesis24(2003)353–362.
    126. D. Chang, F. Wang, Y.S. Zhao, H.Z. Pan, Evaluation of oxidative stress in colorectalcancer patients, Biomed. Environ. Sci.21(2008)286–289.
    127. Y. Soini, K.M. Haapasaari, M.H. Vaarala, T. Turpeenniemi-Hujanen, V. Karja, P.Karihtala,8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinarybladder carcinoma, Int. J. Clin. Exp. Pathol.4(2011)267–275.
    128. E.I. Salim, K. Morimura, A. Menesi, M. El Lity, S. Fukushima, H. Wanibuchi, Elevatedoxidative stress and DNA damage and repair levels in urinary bladder carcinomasassociated with schistosomiasis, Int. J. Cancer123(2008)601–608.
    129. A. Romanenko, K. Morimura, H. Wanibuchi, E.I. Salim, A. Kinoshita, M. Kaneko, A.Vozianov, S. Fukushima, Increased oxidative stress with gene alteration in urinarybladder urothelium after the Chernobyl accident, Int. J. Cancer86(2000)790–798.
    130. H.J. Sung, W. Ma, M.F. Starost, C.U. Lago, P.K. Lim, M.N. Sack, J.G. Kang, P.Y. Wang,P.M. Hwang, Ambient oxygen promotes tumorigenesis, PLoS ONE6(2011) e19785.
    131. J. Yang, Z. Xu, J. Li, R. Zhang, G. Zhang, H. Ji, B. Song, Z. Chen, XPC epigeneticsilence coupled with p53alteration has a significant impact on bladder cancer outcome, J.Urol.184(2010)336–343.
    132. G. Giglia, N. Dumaz, C. Drougard, M.F. Avril, L. Daya-Grosjean, A. Sarasin, p53mutations in skin and internal tumors of xeroderma pigmentosum patients belonging tothe complementation group C, Cancer Res.58(1998)4402–4409.
    133. P. Castillo, M. Bogliolo, J. Surralles, Coordinated action of the Fanconi anemia andataxia telangiectasia pathways in response to oxidative damage, DNA Repair (Amst.)10(2011)518–525.
    134. S.C. Wang, C.C. Wu, Y.Y. Wei, J.H. Hong, C.S. Chiang, Inactivation of ataxiatelangiectasia mutated gene can increase intracellular reactive oxygen species levels andalter radiation-induced cell death pathways in human glioma cells, Int. J. Radiat. Biol.87(2011)432–442.
    135. Z. Guo, S. Kozlov, M.F. Lavin, M.D. Person, T.T. Paull, ATM activation by oxidativestress, Science330(2010)517–521.
    136. C.E. Helt, W.A. Cliby, P.C. Keng, R.A. Bambara, M.A. O’Reilly, Ataxia telangiectasiamutated (ATM) and ATM and Rad3-related protein exhibit selective target specificitiesin response to different forms of DNA damage, J. Biol. Chem.280(2005)1186–1192.
    137. Y.H. Wu, J.H. Tsai Chang, Y.W. Cheng, T.C. Wu, C.Y. Chen, H. Lee, Xerodermapigmentosum group C gene expression is predominantly regulated by promoterhypermethylation and contributes to p53mutation in lung cancers, Oncogene26(2007)4761–4773.
    138. T.A. Nguyen, S.D. Slattery, S.H. Moon, Y.F. Darlington, X. Lu, L.A. Donehower, Theoncogenic phosphatase WIP1negatively regulates nucleotide excision repair, DNARepair (Amst.)9(2010)813–823.
    139. B. Zhou, H. Wu, W. Li, W. Liu, D. Luo, Microarray analysis of microRNA expression inskinofXpc(+/)miceandwild-typemice, Ir. J.Med.Sci.(2010)[Epubaheadofprint].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700