用户名: 密码: 验证码:
过表达线粒体热激蛋白70抑制水稻悬浮细胞程序性死亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞程序性死亡(PCD)在植物的发育、抗病及植物与环境互作等过程中发挥着极其重要的作用。而线粒体作为细胞重要的细胞器,在植物PCD过程中具有关键性调节功能。本实验室前期研究发现,水稻幼苗在500mM NaCl胁迫下,其根尖细胞出现典型细胞程序性死亡特征。根尖细胞的线粒体蛋白质组分析也表明线粒体热激蛋白70(mtHSP70)在PCD早期的表达量显著上升。
     为了研究mtHSP70在PCD中发挥的生物学功能,本研究以日本晴水稻悬浮细胞系为受体材料,在水稻悬浮细胞中导入未经改造的pCAMBIA1304载体的作为空载体对照(VC),过表达mtHSP70(?)悬浮细胞(OX)为材料制备原生质体,48℃水浴热激处理15min后发现,在28℃恢复培养条件下水稻原生质体随时间延长出现明显的PCD特征,包括DNA片段化、细胞核呈TUNEL阳性、染色质凝集、线粒体膜电势显著降低等。VC原生质体在热处理后,恢复培养2h其基因组DNA可降解出现明显的DNA Ladder,而OX原生质体DNA Ladder出现于恢复培养4h左右。100mM H2O2引发原生质体DNA Ladder (?)勺结果与热诱导相似。热诱导下VC原生质体死亡率6h可达到63.2%,OX仅为39.3%。H2O2处理时VC原生质体死亡率6h即可达到91%,OX也仅为43%。将热处理的原生质体利用Hoechst33342荧光染色观察到热激后细胞核破裂和染色质凝聚等PCD形态学变化,VC细胞核裂解程度较大,OX原生质体恢复培养6h的核裂解程度相当于VC恢复培养12h的状态;经TUNEL染色可以发现,虽然两类原生质体进入PCD的细胞数目随时间延长而都呈增长趋势,但是OX恢复培养24h的阳性率为70%,而VC原生质体的阳性率却已超过90%,这说明过表达mtHSP70可以降低Ca2+或Mg2+依赖性核酸内切酶的活性,延缓了PCD的发生进程;热激处理均可诱导两种类型原生质体的细胞色素c从线粒体释放到细胞质中,Western Blot检测显示细胞色素c释放量15min内随热处理时间延长而增大。
     热激诱导PCD初期,VC原生质体内活性氧爆发并于1.5h和2.5h出现两个爆发峰,而OX原生质体内活性氧的水平稳步上升,避免了短时间内突发的极端氧化伤害;线粒体膜电势测定发现热激诱导的原生质体PCD过程中,线粒体膜电势均有下降,但VC原生质体中线粒体膜电势下降速度较快,表明过表达mtHSP70细胞的线粒体膜完整性高,线粒体损伤程度小;VC原生质体的类Caspase-3活性随恢复培养时间延长而增强,其6h的相对荧光值是OX的8倍,而OX的荧光强度一直保持平稳的本底水平,可能是原生质体通过过表达mtHSP70稳定线粒体膜电势防止促PCD因子的释放而抑制了胞质内类Caspase-3的活化。
     本研究证明了线粒体热激蛋白70通过稳定线粒体膜电势和抑制活性氧爆发,有效延缓了热激诱导下水稻悬浮细胞原生质体PCD的发生。
Programmed cell death (PCD) plays an important role on plant growth and development, disease resistance and the interactions between plant and its environment. Mitochondrion, as one of the key organelles, regulates the main progress of PCD. The preview study established a salt stress-induced PCD model in rice root tip cells, while mtHSP70was up-regulated more than2-fold in mitochondrial proteome after salt stress. In this study, we found that heat shock treatment resulted in some typic PCD progresses in rice protoplasts. A series of relevant studies had carried out to investigate the functions of mtHSP70in PCD. The vector control (VC) and over-expression (OX) mtHSP70rice protoplasts from different suspension cell lines were researched under the treatment of heat shock at48℃for15min and returned to the normal conditon, the both types of protoplasts showed the specific PCD features, such as DNA Ladder, nuclear condense and deformation, TUNEL positive reaction and mitochondrial membrane potential decrease. It was proved that the chromatin condensation, nuclei deformation and genome DNA would degradated under heat shock via Hoechst33342, but the chromatin condensation in OX protoplasts was similar to VC at6h. It was found that the number of TUNEL positive nuclei of OX protoplasts was less than VC under the heat shock treatment, the positive rates of VC and OX were90%and70%, indicating that the activities of Ca2+/Mg2+-dependent endonuclease were decreased. Results indicated that, comparing to VC protoplasts, OX were resistant to PCD in many fields. For OX protoplasts, the thermo treatment could induce the appearance of DNA Ladder at4h, while appeared at2h in VC. Death rate test under H2O2treatment revealed the similar tendency to heat shock treatment. The death rate of heat shock in VC approached63.2%at6h, but OX was39.3%, while100mM H2O2treatment made the death rates of VC and OX rising to91%and43%respectively. Cytochrome c released from mitochondria could be detected immediately after heat shock; the optical density of VC was calculated more than1.0, while OX showed less than0.7.
     H2DCFDA staining suggested that OX protoplasts could avoid the injuries of the oxidative burst as the ROS level remained stability and up-regulated slowly, while the VC protoplasts occurrent bimodal in prophase. The specific probe JC-1displayed that mitochondrial membrane potential decreased fast when heat shock from5min to15min, and OX protoplasts were slower than VC, indicating, attributed to the over expression of mtHSP70, the excellent integrity and low mitochondrial membrane injuries of the OX protoplasts. The Caspase-3-like was specifically activated after heat shock, OX protoplasts showed significantly less Caspase-3-like activity than the VC. The RFU of VC protoplasts was more than8-fold to OX. It indicated mtHSP70over expression may inactivate Caspase-3-like by maintaining the mitochondrial membrane potential.
     All the results above suggested that mtHSP70may delay the plant PCD by maintaining mitochondrial membrane potential and inhibiting cellular ROS bursts in rice suspenssion cells.
引文
Alard, J.E., Dueymes, M., Mageed, R.A., Saraux, A., Youinou, P., and Jamin, C. (2009) Mitochondrial heat shock protein (HSP) 70 synergizes with HSP60 in transducing endothelial cell apoptosis induced by anti-HSP60 autoantibody. Faseb J 23:2772-2779
    Aldemita, R.R., and Hodges, T,K. (1996). Agrobacterium tumefaciens-mediated transformation of jacanica and indica rice varieties.Planta,199:612-618.
    Amir-Shapira, D., Leustek, T., Dalie, B., Weissbach, H., and Brot, N. (1990). HSP70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. Proceedings of the National Academy of Sciences of the United States of America 87,1749-1752.
    Angers, M., Cloutier, J.F., Castonguay, A., and Drouin, R. (2001). Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic acids research 29, E83.
    Aoyagi, S., Sugiyama, M., and Fukuda, H. (1998). BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. FEBS Letters 429,134-138.
    Aravind, L., and Koonin, E.V. (2002). Classification of the caspase-hemoglobinase fold:detection of new families and implications for the origin of the eukaryotic separins. Proteins 46,355-367.
    Assuncao Guimaraes, C., and Linden, R. (2004). Programmed cell deaths. Apoptosis and alternative deathstyles. European journal of biochemistry, FEBS Letters 271,1638-1650.
    Baker, S.J., Newton, A.C., and Gurr, S.J. (2000). Cellular characteristics of temporary partial breakdown of mlo-resistance in barley to powdery mildew. Physiological and Molecular Plant Pathology 56,1-11.
    Balk, J., Leaver, C.J., and McCabe, P.F. (1999). Translocation of Cytochrome c from the mitochondria to the Cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Letters 463,151-154.
    Balk, J., Chew, S.K., Leaver, C.J., and McCabe, P.F. (2003). The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34,573-583.
    Bardwell, J.C., and Craig, E.A. (1984). Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proceedings of the National Academy of Sciences of the United States of America 81,848-852.
    Baumann, F., Milisav, I., Neupert, W., and Herrmann, J.M. (2000). Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces cerevisiae. FEBS Letters 487,307-312.
    Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.I., Cohen, GM., and Green, D.R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2, 469-475.
    Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L., and Jones, R.L. (2002). Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology 129, 1642-1650.
    Bethke, P.C., Lonsdale, J.E., Fath, A., and Jones, R.L. (1999). Hormonally regulated programmed cell death in barley aleurone cells. The Plant Cell 11,1033-1046.
    Bidle, K.A., Haramaty, L., Baggett, N., Nannen, J., and Bidle, K.D. (2010). Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea. Environmental Microbiology 12,1161-1172.
    Boston, R.S., Viitanen, P.V., and Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology 32,191-222.
    Brown, D.G, Sun, X.M., and Cohen, GM. (1993). Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. The Journal of Biological Chemistry 268,3037-3039.
    Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G, Solary, E., and Garrido, C. (2000). HSP27 negatively regulates cell death by interacting with Cytochrome c. Nature Cell Biology 2,645-652.
    Bukau, B., and Horwich, A.L. (1998). The HSP70 and HSP60 chaperone machines. Cell 92,351-366.
    Charette, S.J., Lavoie, J.N., Lambert, H., and Landry, J. (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Molecular and Cellular Biology 20,7602-7612.
    Charriaut, M., and Ben-Ari, Y. (1995). A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7,61-64.
    Chen, S., and Dickman, M.B. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. Journal of Experimental Botany 55,2617-2623.
    Chen, X., Wang, Y., Li, J., Jiang, A., Cheng, Y., and Zhang, W. (2009). Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47,407-415.
    Cheng, M., Lowe, B.A., and Spencer, M. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro cell&.Dev.Biology 40,31-45
    Cheon, S.H., Lee, K.H., Kwon, J.Y., Choi, S.H., Song, M.N., and Kim, D.I. (2009) Enhanced delivery of siRNA complexes by sonoporation in transgenic rice cell suspension cultures. Journal of Microbiology and Biotechnology 19,781-786
    Concannon, C.G., Orrenius, S., and Samali, A. (2001). HSP27 Inhibits Cytochrome c-Mediated Caspase Activation by Sequestering Both Pro-caspase-3 and Cytochrome c. Gene Expression 9, 195-201.
    Craig, E.A., Kramer, J., Shilling, J., Werner-Washburne, M., Holmes, S., Kosic-Smithers, J., and Nicolet, C.M. (1989). SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Molecular and Cellular Biology 9,3000-3008.
    Dahlseid, J.N., Lill, R., Green, J.M., Xu, X., Qiu, Y., and Pierce, S.K. (1994). PBP74, a new member of the mammalian 70-kDa heat shock protein family, is a mitochondrial protein. Molecular Biology of the Cell 5,1265-1275.
    Deepinder, G., Raman, G., and Gosal, S. S. (2006).Role of cysteine in enhancing androgenesis and regeneration of indica rice(Oryza sativa L.).Plant Growth Regul 49,43-47
    De Jong, A.J., Hoeberichts, F.A., Yakimova, E.T., Maximova, E., and Woltering, E.J. (2000). Chemical-induced apoptotic cell death in tomato cells:involvement of caspase-like proteases. Planta 211,656-662.
    del Pozo, O., and Lam, E. (1998). Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8,1129-1132.
    Deocaris, C.C., Kaul, S.C., and Wadhwa, R. (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116-128
    Dong, J.,Teng, W., and Buchholz, W. G. (1996). Agrobacterium-mediated transformation of javanica rice. Mol.Breed,2,267-276.
    Doukhanina, E.V., Chen, S., van der Zalm, E., Godzik, A., Reed, J., and Dickman, M.B. (2006). Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. The Journal of Biological Chemistry 281,18793-18801.
    Downs, C.A., and Heckathorn, S.A. (1998). The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Letters 430,246-250.
    Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes Cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102,33-42.
    Ellis, R.E., Yuan, J.Y., and Horvitz, H.R. (1991). Mechanisms and functions of cell death. Annual Review of Cell Biology 7,663-698.
    Engman, D.M., Kirchhoff, L.V., and Donelson, J.E. (1989). Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Molecular and Cellular Biology 9,5163-5168.
    Fath, A., Bethke, P.C., and Jones, R.L. (2001). Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiology 126,156-166.
    Fath, A., Bethke, P., Beligni, V., and Jones, R. (2002). Active oxygen and cell death in cereal aleurone cells. Journal of Experimental Botany 53,1273-1282.
    Florent, M., Godard, T., Ballet, J.J., Gauduchon, P., and Sola, B. (1999). Detection by the comet assay of apoptosis induced in lymphoid cell lines after growth factor deprivation. Cell Biology and Toxicology 15,185-192.
    Fu, J., Huang, H., Liu, J., Pi, R., Chen, J., and Liu, P. (2007). Tanshinone IIA protects cardiac myoCytes against oxidative stress-triggered damage and apoptosis. European Journal of Pharmacology 568,213-221.
    Fukuda, H. (1997). Tracheary Element Differentiation. The Plant Cell 9,1147-1156.
    Gallois, P., Makishima, T., Hecht, V., Despres, B., Laudie, M., Nishimoto, T., and Cooke, R. (1997). An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J 11,1325-1331.
    Gao, M., and Showalter, A.M. (1999). Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. The Plant Journal 19,321-331.
    Gartner, F., Voos, W., Querol, A., Miller, B.R., Craig, E.A., Cumsky, M.G., and Pfanner, N. (1995). Mitochondrial import of subunit Va of Cytochrome c oxidase characterized with yeast mutants. The Journal of Biological Chemistry 270,3788-3795.
    Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology 119, 493-501.
    Georgopoulos, C. (1992). The emergence of the chaperone machines. Trends in Biochemical Sciences 17,295-299.
    Gething, M.J., and Sambrook, J. (1992). Protein folding in the cell. Nature 355,33-45.
    Gleissberg, S. (2002). Comparative developmental and molecular genetic aspects of leaf dissection. In In Developmental Genetics and Plant Evolution, Q.C.B. Cronk, R.M. Bateman, and J.A. Hawkins, eds (London:Taylor & Francis), pp.404-417.
    Gorczyca, W., Gong, J., and Darzynkiewicz, Z. (1993). Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Research 53,1945-1951.
    Grbic, V., and Bleecker, A.B. (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis. The Plant Journal 8,595-602.
    Greenberg, J.T. (1996). Programmed cell death:a way of life for plants. Proceedings of the National Academy of Sciences of the United States of America 93,12094-12097.
    Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77, 551-563.
    Groover, A., DeWitt, N., Heidel, A., and Jones, A. (1997). Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196,197-211.
    Guaragnella, N., Passarella, S., Marra, E., and Giannattasio, S. (2010). Knock-out of metacaspase and/or Cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Letters 584,3655-3660.
    Gunawardena, A.H., Greenwood, J.S., and Dengler, N.G. (2004). Programmed cell death remodels lace plant leaf shape during development. The Plant Cell 16,60-73.
    Gunawardena, A.H., Pearce, D.M., Jackson, M.B., Hawes, C.R., and Evans, D.E. (2001). Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212,205-214.
    Gupta, S., Agrawal, A., Agrawal, S., Su, H., and Gollapudi, S. (2006). A paradox of immunodeficiency and inflammation in human aging:lessons learned from apoptosis. Immun Ageing 3,5.
    Gupta, S., Bhatia, V., Wen, J.J., Wu, Y., Huang, M.H., and Garg, N.J. (2009) Trypanosoma cruzi infection disturbs mitochondrial membrane potential and ROS production rate in cardiomyoCytes. Free Radical Biology & Medicine 47:1414-1421
    Haneda, T., Fujimura, Y., and lino, M. (2006) Magnetic field exposure stiffens regenerating plant protoplast cell walls. Bioelectromagnetics 27:98-104
    Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004). A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science (New York, N.Y) 305,855-858.
    Hawkins, B.J. Levin, M.D., Doonan, P.J., Petrenko, N.B., Davis, C.W., Patel, V.V., and Madesh, M.(2010) Mitochondrial complex Ⅱ prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. The Journal of Biological Chemistry 285:26494-26505
    He, R., Drury, GE., Rotari, V.I., Gordon, A., Willer, M., Farzaneh, T., Woltering, E.J., and Gallois, P. (2008). Metacaspase-8 Modulates Programmed Cell Death Induced by Ultraviolet Light and H2O2 in Arabidopsis. The Journal of Biological Chemistry 283,774-783.
    He, X., and Kermode, A.R. (2003). Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds. Plant Molecular Biology 52,729-744.
    Herrmann, M., Lorenz, H.M., Voll, R., Grunke, M., Woith, W., and Kalden, J.R. (1994). A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Research 22, 5506-5507.
    Hiei, Y., Ohta, S., and Komari, T. (1994).Efficient transformation of rice(Oryza sativaL.)mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,6:271-282.
    Hoeberichts, F.A., ten Have, A., and Woltering, E.J. (2003). A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217, 517-522.
    Holt, S.E., Aisner, D.L., Baur, J., Tesmer, V.M., Dy, M., Ouellette, M., Trager, J.B., Morin, GB., Toft, D.O., Shay, J.W., Wright, W.E., and White, M.A. (1999). Functional requirement of p23 and HSP90 in telomerase complexes. Genes & Development 13,817-826.
    Honda, H. M. Korge, P.and Weiss, J. N.(2005). Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci,1047,248-258.
    Hoque, M., Mansfield, J., and Bennett, M. (2005). Agrobacterium-mediated transformation of indica genotypes:an assessment of factors affecting the transformation efficiency. Plant Cell, Tissue and Organ Culture,82:45-55.
    Hosokawa, M., Suzuki, S., Umezawa, T., and Sato, Y. (2001). Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 42,959-968.
    Hu, G, Yalpani, N., Briggs, S.P., and Johal, GS. (1998). A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. The Plant Cell 10,1095-1105.
    Huang, F.Y., Philosoph-Hadas, S., Meir, S., Callaham, D.A., Sabato, R., Zelcer, A., and Hepler, P.K. (1997). Increases in Cytosolic Ca2+ in Parsley Mesophyll Cells Correlate with Leaf Senescence. Plant Physiology 115,51-60.
    Huot, J., Houle, F., Rousseau, S., Deschesnes, R.G., Shah, G.M., and Landry, J. (1998). SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. The Journal of Cell Biology 143,1361-1373.
    Jones, A.M. (2001). Programmed cell death in development and defense. Plant Physiology 125,94-97.
    Jung, J.Y., Jeong, Y.J., Jeong, T.S., Chung, H.J., and Kim, W.J. (2008) Inhibition of apoptotic signals in overgrowth of human gingival fibroblasts by cyclosporin A treatment. Arch Oral Biol 53:1042-1049
    Katsuhara, M., and Kawasaki, T. (1996). Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots Plant and Cell Physiology 37,160-173.
    Katsuhara, M., and Shibasaka, M. (2000). Cell Death and Growth Recovery of Barley after Transient Salt Stress. Journal of Plant Research 113,239-243.
    Kaspi, C. I. and Siedow, J. N. (1993) Cross-linking of the cms-T maize mitochondrial pore-forming protein URF13 by N,N'-dicyclohexylcarbodiimide and its effect on URF13 sensitivity to fungal toxins. J Biol Chem 268,5828-5833.
    Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26,239-257.
    Khalimonchuk, O., Ott, M., Funes, S., Ostermann, K., Rodel, G., and Herrmann, J.M. (2006). Sequential processing of a mitochondrial tandem protein:insights into protein import in Schizosaccharomyces pombe. Eukaryotic Cell 5,997-1006.
    Kim, Y.K., Baek, J.M., Park, H.Y., Choi, Y.D., and Kim, S.I. (1994). Isolation and characterization of cDNA clones encoding class I chitinase in suspension cultures of rice cell. Bioscience, Biotechnology, and Biochemistry 58:1164-1166
    Kirchhoff, S.R., Gupta, S., and Knowlton, A.A. (2002). Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105,2899-2904.
    Ko, K., Bornemisza, O., Kourtz, L., Ko, Z.W., Plaxton, W.C., and Cashmore, A.R. (1992). Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. The Journal of Biological Chemistry 267,2986-2993.
    Koukalov, B., Kovarik, A., Fajkus, J., and Sirok, J. (1997). Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Letters 414,289-292.
    Kumaraguru, U., Geryniska, M., and Norman, S. (2010)Immurization with chuper one peptide complex induces low avidity Cytotaxic T lyphoCytes providing transient protec tion against herpes simplex virus infection,J Virol.,76,136-144
    Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M., and Bush, D.S. (1996). Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. The Plant Cell 8,259-269.
    Lee, R.H., and Chen, S.C.G. (2002). Programmed cell death during rice leaf senescence is nonapoptotic. New Phytologist 155,25-32.
    Leustek, T., Dalie, B., Amir-Shapira, D., Brot, N., and Weissbach, H. (1989). A member of the HSP70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proceedings of the National Academy of Sciences of the United States of America 86,7805-7808.
    Lee, S.J., Park, C.I., Park, M.Y., Jung, H.S., Ryu, W.S., Lim, S.M., Tan, H.K., Kwon, T.H., Yang,M.S., and Kim, D.I. (2007) Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures. Protein Expression and Purification 51: 293-302
    Li, J., Jiang, A., and Zhang, W. (2007). Salt stress-induced programmed cell death in rice root tip cells. J INTEGR PLANT BIOL 49,481-486.
    Li, L.Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412,95-99.
    Lijima T. (2006)Mitochondrial membrane potential and ischemic neuronal death. Neurosci Res 55,234-243.
    Lin, Y.J., and Zhang, Q.F. (2005),Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23,540-547
    Lin, J., Wang, Y., and Wang, G (2006). Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Journal of Plant Physiology 163,731-739.
    Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry 55,1151-1191.
    Lindquist, S., and Craig, E.A. (1988). The heat-shock proteins. Annual Review of Genetics 22, 631-677.
    Liu, J., and Shono, M. (2001). Molecular cloning mitochondria and endoplasmic retiunlum locatized small heat shock protein from tomato. Acta Bot Sin 43,138-145.
    Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts:requirement for dATP and Cytochrome c. Cell 86,147-157.
    Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577.
    Locato, V., Gadaleta, C., De Gara, L., and De Pinto, M.C. (2008) Production of reactive species and modulation of antioxidant network in response to heat shock:a critical balance for cell fate. Plant Cell Environ 31,1606-1619
    Maas, C., Reichel, C., Schell, J. and Steinbiss, H.H. (1995) Preparaten and transformation of monocot protoplasts. Method Cell Biol.50:383-399.
    Michaud, S., Marin, R., and Tanguay, R.M. (1997). Regulation of heat shock gene induction and expression during Drosophila development. Cell Mol Life Sci 53,104-113.
    Mittler, R., and Lam, E. (1995). Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. The Plant Cell 7, 1951-1962.
    Mori, M., and Terada, K. (1998). Mitochondrial protein import in animals. Biochim Biophys Acta 1403,12-27.
    Nakagawa, T., Zhu, H., Morishima,N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and Cytotoxicity by amyloid-beta. Nature 403,98-103.
    Nardai, G., Sass, B., Eber, J., Orosz, G., and Csermely, P. (2000). Reactive cysteines of the 90-kDa heat shock protein, HSP90. Archives of Biochemistry and Biophysics 384,59-67.
    Nautiyal, P.C., Shono, M., and Egawa, Y. (2005). Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Scientia Horticulturae 105,393-409.
    Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., and Hancock, J.T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany 53,1237-1247.
    Newmeyer, D.D., Farschon, D.M., and Reed, J.C. (1994). Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353-364.
    O'brin, I.E.W., Baguley, B.C., Murray, B.G., Morris, B.A.M., and Ferguson, I.B. (1998). Early stages of the apoptotic pathway in plant cells are reversible. Plant Journal 13.11-18
    Obara, K., Kuriyama, H., and Fukuda, H. (2001). Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125,615-626.
    Panavas, T., and Rubinstein, B. (1998). Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Science 133,125-138.
    Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S.M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E.S., Kufe, D., and Kharbanda, S. (2000). Negative regulation of Cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. The EMBO Journal 19,4310-4322.
    Park, Y.M., Han, M.Y., Blackburn, R.V., and Lee, Y.J. (1998). Overexpression of HSP25 reduces the level of TNF alpha-induced oxidative DNA damage biomarker,8-hydroxy-2'-deoxyguanosine, in L929 cells. Journal of Cellular Physiology 174,27-34.
    Patel, S., and Dinesh-Kumar, S.P. (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4,20-27.
    Pontier, D., Tronchet, M., Rogowsky, P., Lam, E., and Roby, D. (1998). Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol Plant Microbe Interact 11,544-554.
    Porat, R., Borochov, A., and Halevy, A.H. (1994). Pollination-induced senescence in phalaenopsis petals. Relationship of ethylene sensitivity to activity of GTP-binding proteins and protein phosphorylation. Physiologia Plantarum 90,679-684.
    Pozniakovsky, A.I., Knorre, D.A., Markova, O.V., Hyman, A.A., Skulachev, V.P., and Severin, F.F. (2005) Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast. J Cell Biol 168:257-269
    Qu, G.Q., Liu, X., Zhang, Y.L., Yao, D., Ma, Q.M., Yang, M.Y., Zhu, W.H., Yu, S., and Luo, Y.B. (2009). Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 229,1269-1279.
    Rego, A.C., Vesce, S., and Nicholls, D.G. (2001) The mechanism of mitochondrial membrane potential retention following release of Cytochrome c in apoptotic GT1-7 neural cells. Cell Death and Differentiation 8:995-1003
    Rikhvanov, E.G., Gamburg, K.Z., Varakina, N.N., Rusaleva, T.M., Fedoseeva, I.V., Tauson, E.L., Stupnikova, I.V., Stepanov, A.V., Borovskii, G.B., and Voinikov, V.K. (2007) Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture. Plant J 52: 763-778
    Rogalska, A., Koceva-Chyla, A., and Jozwiak, Z. (2008) Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chemico-biological Interactions 176:58-70
    Rogers, H.J. (2005). Cell death and organ development in plants. Current Topics in Developmental Biology 71,225-261.
    Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J.J., Baker, B., Ausubel, F.M., and Raikhel, N.V. (2004). VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14, 1897-1906.
    Rose, M.D., Misra, L.M., and Vogel, J.P. (1989). KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57,1211-1221.
    Rotari, V.I., He, R., and Gallois, P. (2005). Death by proteases in plants:whodunit. Physiologia Plantarum 123,376-385.
    Sanmartin, M., Jaroszewski, L., Raikhel, N.V., and Rojo, E. (2005). Caspases. Regulating death since the origin of life. Plant Physiology 137,841-847.
    Sapp, M., Ertunc, T., Bringmann, I., Schaffer, A., and Schmidt, B. (2004) Characterization of the bound residues of the fungicide cyprodinil formed in plant cell suspension cultures of wheat. Pest Management Science 60:65-74
    Schild, L. Keilhoff, G. Augustin, W. Reiser, G. and Striggow, F. (2001) Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. Faseb J 15,565-567
    Schmidt, S., Strub, A., Rottgers, K., Zufall, N., and Voos, W. (2001). The two mitochondrial heat shock proteins 70, Sscl and Ssql, compete for the cochaperone Mgel. Journal of Molecular Biology 313,13-26.
    Schnaider, T., Oikarinen, J., Ishiwatari-Hayasaka, H., Yahara, I., and Csermely, P. (1999). Interactions of HSP90 with histones and related peptides. Life Sciences 65,2417-2426.
    Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., Nakajima, N., and Ohashi, Y. (2000). Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. The Plant Cell 12,917-932.
    Sessa, G., D'Ascenzo, M., and Martin, G.B. (2000). Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. The EMBO Journal 19, 2257-2269.
    Shimada, T., Yamada, K., Kataoka, M., Nakaune, S., Koumoto, Y., Kuroyanagi, M., Tabata, S., Kato, T., Shinozaki, K., Seki, M., Kobayashi, M., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2003). Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. The Journal of Biological Chemistry 278, 32292-32299.
    Sichting, M., Mokranjac, D., Azem, A., Neupert, W., and Hell, K. (2005). Maintenance of structure and function of mitochondrial HSP70 chaperones requires the chaperone Hepl. The EMBO Journal 24,1046-1056.
    Stead, A.D., and van Doorn, W.G.(1994). Strategies of flower senescence-a review. In Molecular and Cellular Aspects of Plant Reproduction, R.J. Scott and A.D. Stead, eds (Cambridge:Cambridge University Press), pp.215-328.
    Stevenson, M.A., and Calderwood, S.K. (1990). Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Molecular and Cellular Biology 10,1234-1238.
    Stewart, C.N., Jr. and Via, L.E. (1993).A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748-50.
    Suarez, M.F., Filonova, L.H., Smertenko, A., Savenkov, E.I., Clapham, D.H., von Arnold, S., Zhivotovsky, B., and Bozhkov, P.V. (2004). Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14, R339-340.
    Sun, Y.L., Zhao, Y., Hong, X., and Zhai, Z.H. (1999). Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Letters 462,317-321.
    Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M., and Kroemer, G (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397,441-446.
    Tian, L., Zhang, L., Zhang, J., Song, Y., and Guo, Y. (2009) Differential proteomic analysis of soluble extracellular proteins reveals the cysteine protease and cystatin involved in suspension-cultured cell proliferation in rice. Biochimica et Biophysica Acta 1794:459-467
    Tsunezuka, H., Fujiwara, M., Kawasaki, T., and Shimamoto, K. (2005). Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol Plant Microbe Interact 18,52-59.
    Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases:facts and opportunities. The EMBO Journal 20,4629-4633.
    Tiwari, B.S., Belenghi, B. and Levine, A. (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271-1281
    Um, J.H., Kang, C.D., Hwang, B.W., Ha, M.Y., Hur, J.G, Kim, D.W., Chung, B.S. and Kim, S.H. (2003) Involvement of DNA-dependent protein kinase in regulation of the mitochondrial heat shock proteins. Leuk Res 27:509-516
    Vacca, R.A., de Pinto, M.C., Valenti, D., Passarella, S., Marra, E., and De Gara, L. (2004). Production of Reactive Oxygen Species, Alteraten of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells. Plant Physiology 134,1100-1112.
    van Loo, G., van Gurp, M., Depuydt, B., Srinivasula, S.M., Rodriguez, I., Alnemri, E.S., Gevaert, K., Vandekerckhove, J., Declercq, W., and Vandenabeele, P. (2002). The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death and Differentiation 9, 20-26.
    Vierling, E. (1991). The Roles of Heat Shock Proteins in Plants. Annu. Rev. Plant Physiol Plant Mol. Bioi.42,579-620.
    Wada, S., Khoa, T.V., Kobayashi, Y., Funayama, T., Yamamoto, K., Natsuhori, M., and Ito, N. (2003). Detection of radiation-induced apoptosis using the comet assay. The Journal of Veterinary Medical Science/the Japanese Society of Veterinary Science 65,1161-1166.
    Wadhwa, R., Takano, S., Kaur, K., Deocaris, C.C., Pereira-Smith, O.M., Reddel, R.R. and Kaul, S.C. (2006) Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 118:2973-2980
    Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G (1996a). Apoptosis:A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development. The Plant Cell 8,375-391.
    Wang, M., Oppedijk, B.J., Lu, X., Van Duijn, B., and Schilperoort, R.A. (1996b). Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Molecular Biology 32,1125-1134.
    Watanabe, N., and Lam, E. (2004). Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants:their possible roles as regulator of programmed cell death. Molecular Plant Pathology 5,65-70.
    Whetten, R.W., MacKay, J.J., and Sederoff, R.R. (1998). Recent advances in understanding lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 49,585-609.
    Wigdal, S.S., Kirkland, R.A., Franklin, J.L., Haak-Frendscho, M. (2002) Cytochrome c release precedes mitochondrial membrane potential loss in cerebellar granule neuron apoptosis:lack of mitochondrial swelling. Journal of Neurochemistry 82:1029-103
    Williamson, C.L., Dabkowski, E.R., Dillmann, W.H., and Hollander, J.M. (2008) Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am J Physiol Heart Circ Physiol 294:H249-256
    Williams, G.T. (1991). Programmed cell death:apoptosis and oncogenesis. Cell 65,1097-1098.
    Woltering, E.J., van der Bent, A., and Hoeberichts, F.A. (2002). Do plant caspases exist? Plant Physiology 130,1764-1769.
    Wyllie, A.H. (1980). Glucocorticoid-induced thymoCyte apoptosis is associated with endogenous endonuclease activation. Nature 284,555-556.
    Xanthoudakis, S., Roy, S., Rasper, D., Hennessey, T., Aubin, Y., Cassady, R., Tawa, P., Ruel, R., Rosen, A., and Nicholson, D.W. (1999). HSP60 accelerates the maturaten of pro-caspase-3 by upstream activator proteases during apoptosis. The EMBO Journal 18,2049-2056.
    Xu, F.X., and Chye, M.L. (1999). Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J 17,321-327.
    Xu, Q., and Zhang, L. (2009). Plant caspase-like proteases in plant programmed cell death. Plant Signaling & Behavior 4,902-904.
    Yoshida, S., Kuriyama, H., and Fukuda, H. (2005). Inhibition of transdifferentiation into tracheary elements by polar auxin transport inhibitors through intracellular auxin depletion. Plant Cell Physiol 46,2019-2028.
    You, R.L., and Jensen, W. A. (1985) Ultracytochemical localization of acid phosphatase in nucellar cells of wheat during degeneration. Can J Bot 63,163-178
    Zhu, X., Caplan, J., Mamillapalli, P., Czymmek, K., and Dinesh-Kumar, S.P. (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. The EMBO Journal 29,1007-1018
    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release:a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192,1001-1014
    Zou, Y., Crowley, D.J., and Van Houten, B. (1998). Involvement of molecular chaperonins in nucleotide excision repair. Dnak leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance. The Journal of Biological Chemistry 273, 12887-12892.
    陈浩明,颜长辉,姜晓芳,夏慧莉,朱海珍,吴逸,戴尧仁.(1999).热激诱导烟草悬浮细胞的凋亡.科学通报44,196-200.
    蒋磊,王静,王艳,李韶山,江月玲.(2006).紫外辐射诱导植物细胞DNA损伤的彗星检测.华南师范大学学报(自然科学版),100—105.
    姜晓芳,朱海珍,周军,陈浩明,戴尧仁.(1998).彗星电泳法在植物原生质体凋亡检测中的应用.植物学报40,928-932.
    林久生,王根轩.(2001).渗透胁迫诱导的小麦叶片细胞程序性死亡.植物生理学报27,221-225.
    刘爱新,李多川,王金生,董汉松.(2005). Harpin_(Xoo)诱导烟草过敏性细胞死亡的细胞及分子特征.中国农业科学38,2446-2450.
    纪睿,张正光,王源超,郑小波.(2005).疫霉菌激发子PB90诱导烟草悬浮细胞的凋亡.科学通报50,448-452.
    毛同林,吴晓东,杨世杰.(2001).洋葱根冠外缘细胞编程性死亡过程中的超微结构研究.电子显微学报20,16-20.
    宁顺斌,宋运淳,王玲,刘立华.(2000a).低温胁迫诱导玉米根尖细胞凋亡的形态和生化证据.植物生理学报26,189-194.
    宁顺斌,宋运淳,王玲,刘立华.(2000b).药物诱导的玉米根尖细胞凋亡.植物学报42,693—696.
    沈成国.(1994).植物衰老生理与分子生物学(北京:中国农业出版社),pp.139.
    孙英丽,周军,戴尧仁,翟中和.(1999).VK3诱导的植物细胞凋亡及其机理.科学通报44,2075-2080.
    吴俊华.(2006).植物细胞程序性死亡的研究进展.生命科学仪器4,37—43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700