用户名: 密码: 验证码:
高性能管线钢焊接性能及焊接材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题选用多种基材、研制了多种焊丝、采用了不同焊接工艺对我国最新研制的低硫、细晶、高性能的X70及X80管线钢的焊接性能及焊接材料进行了系统的研究。
     对于管线钢的抗裂性能,提出了一个用于预测现代低碳高强管线钢焊接热影响区最高硬度的计算式,并根据试验结果进行了验证。从室温到100℃预热,X70及X80钢焊接热影响区最高硬度(HV_(10))低于248。结果表明,X70及X80钢淬硬倾向小,且硬度满足管线钢抗H_2S应力腐蚀要求。
     采用现有高性能埋弧焊丝及气保焊丝分别对X70、X80钢及与X80钢相当的低CE钢进行了焊接性能试验。现有埋弧焊丝及WER60气保焊丝用于X70钢、WER70气保焊丝用于X80钢均能满足要求,但现有埋弧焊丝用于X80钢性能还不能满足要求,因此需要开发新的埋弧焊丝。
     结合常用的管线钢厚度及焊接工艺,分别研究了埋弧焊及气体保护焊填充金属在焊缝金属中所占的比例,并建立了预测这一比例的较为实用的计算式,作出了埋弧焊填充金属面积与焊缝金属面积比值同钢板厚度与坡口大小比值的关系曲线;作出了气保焊填充金属面积与焊缝金属面积比值同钢板厚度的关系曲线;提出了焊缝强度预测的方法,并利用excel进行高效运算,为实现最终焊缝成分和焊接工艺较为准确的控制奠定了坚实的基础。
     埋弧焊丝的试制以熔敷金属强度作为主要目标,采用正交设计方法,将C含量、Mn含量及Ni、Cr、Mo等合金元素含量的折算总量作为试验因子,并设为两个水平。在焊丝钢中加入微量的Ti和B对焊缝金属进行微合金化。匹配CHF101或CFH105进行焊接熔敷金属试验,新研制的埋弧焊丝强度为560~690MPa,发现焊接熔敷金属强度与焊丝的碳当量有较好的关联性。
     采用新研制的系列埋弧焊丝及不同的焊接工艺对X70钢及X80钢进行了实验室对接试验及实管焊接试验,得到了焊缝性能最佳的焊丝成分,焊丝化学成分有所创新,且使用了资源丰富的Cr元素。X70钢焊缝与焊接热影响区半平台能转变温度VTE均为约-80℃,焊缝冲击功的平均值AKV(-20℃)一般达到200J以上。X80钢接头-20℃各区冲击功不小于127J,焊缝抗拉强度为710~740MPa,接头硬度在技术条件规定的范围内。热处理后,含Cr焊缝强度有所上升。管线钢高速埋弧焊工艺有利于提高对接焊缝的韧性,X80钢及其埋弧焊丝具有优良的工艺适应性。所研制的焊丝性能明显优于现有焊丝,达到国际先进水平。
     埋弧焊对接焊条件与熔敷焊接条件有较大的差别时,对接焊缝强度将会有明显变化。建立了埋弧焊丝与基材的碳当量差值和熔敷金属与对接焊缝强度差值的关联性。对于试验所用的X70钢及X80钢,埋弧焊丝熔敷金属最低强度分别高于560MPa及620MPa时,可以满足对接焊缝强度要求。
     合金元素对低温冲击韧性的影响较为明显。采用Ni、Cr及Mo等多元合金化及Ti、B微合金化的焊缝金相组织含较多针状铁素体,因此焊缝具有较高的强韧性。不仅基材的化学成分,而且基材的组织结构也会对焊缝金属组织性能产生影响,从而会导致不同方向的焊缝之间、不同钢种的焊缝之间的韧性差异。埋弧焊热影响区存在一定的软化,对于低CE高强度钢软化更为明显,但气保焊接头的软化程度即使对于低CE高强钢也是基本上可以接受的。
     X80钢焊接接头金相组织过热区为贝氏体,正火区和不完全正火为贝氏体和铁素体,焊缝组织为针状铁素体加极少量的先共析铁素体。焊接粗晶区晶粒尺寸埋弧焊大于气保焊,大线能量时也较大,但均明显小于传统钢。EBSD分析显示,X80钢具有明显细小的焊缝晶粒,晶粒取向分布也比较均匀,热处理后焊缝针状铁素体有一定的粗化。高韧性断口表面韧窝中含有直径0.5~1.0μm的颗粒,颗粒主要由Ti、Ca等组成。埋弧焊缝冲击断口所含的颗粒直径2~5um,颗粒主要含有Al、Si时,焊缝韧性下降。焊丝中含有较高的Ti及较低的Als是使焊缝中形成以Ti为主的微细质点的关键。
Systematical researches were carried out on the weldability and welding materials of/for the newly developed low sulphur, fine grain and high performance X70 steel and X80 steel by using differnent kinds of steels, developing several grades of welding wires and taking various welding procedures.
     For the cracking susceptibility of pipeline steels,a calculation formula was proposed for the prediction of the maximum hardness on heat affected zone for modern high strength pipeline steels. The formula was checked according to the results of the tests, showing good accordance and good adaptability. Maximum hardness HV_(10) on heat affected zone for either X70 steel or X80 steel, from room temperature to 100℃preheat, is below 240, indicating low hardenability of the steels and good H_2S corrosion resistance of the weld joints as well.
     The current high performance SAW and GMAW wires were used for the welding tests of X70 steel,X80 steel and low CE high strength steel equivilent to X80. The present 10# SAW wire and GMAW wire WER60 for X70 steel and GMAW wire WER70 for X80 can meet the current technical requirements, but 10# SAW wire for X80 steel can’t,so new SAW wires need developing.
     Based on the commonly used wall thicknesses and welding procedures of pipeline steel, the ratios of exotic filling metal to the weld metal in SAW and GMAW were analyzed respectively, and practical calculation formulas for the ratios were set up. According to the calculation results, for SAW, a curve describing the relationship between the ratio of exotic filling metal to the weld metal and the ratio of plate thickness to face root was made; for GMAW, a curve describing the relationship between the ratio of exotic filling metal to the weld metal and the plate thickness was made. A method for a quick prediction of weld strength was proposed with the aid of Excel software,which paved the way for accurate control of the goal composition and the strength of the weld metal.
     By using orthordonal designing,with the strength of weld metal as controlling objective, with C content, Mn content and modified combination of Ni, Cr and Mo,etc. as testing factors set at two levels, and with the addition of Ti and B at micro level, SAW wires were manufactured and studied. Standard SAW welding test was carried out to examine the properties of the weld deposits by use of CHF101 flux and CHF105 flux. The strength of deposit weld metal is from 560MPa to 690MPa and found correspondant well to the CE value of the wire.
     The newly developed SAW welding materials were employed for lab flat SAW and pipe SAW experiments on X70 steel and X80 with different welding procedures and the chemistry of the wire with best mechanical properties was obtained. The compositions of the SAW wires are innovative,and Cr which is abundant in the earth is a main alloying element in these wires. The transition temperatures of half energy of the upper shelf for weld metal and heat affected zone were respectively around -80℃, and the average Charpy impact energy at -20℃generally reach to 200J. The average impact energies in various zones of the joint of X80 steel at -20℃were not lower than 127J,and the strengths of weld metals were from 710 to 740MPa,and the hardnesses of the joints were within the required range. The high speed SAW welding procedure is producible to the improvement of the weld metal toughness. After the weld metal subjected to post welding heat treatment,the strength obviously increased for Cr bearing weld metal. X80 steel and its welding wire exhibit good weldability and good adaptability.These wires have better properties than the current wires,reaching to an internationally advanced level.
     When the procedures vary from wire depositing welding to pipe steel plate butt welding, the strength of the weld metals will also vary.The relationship between the strength variation and the CE difference between the wire and the base metal was set up. For X70 steel and X80 steel examined, if the minimum strengths of deposit metals of the welding wires are 560MPa and 620MPa respectively, they can meet the strength requirements of the butt welds too.
     There exist obvious influences of types of alloying elements on low temperature toughness. Multi-alloyed with Ni and/or Cr and/or Mo and micro-alloyed with Ti and B,
     weld metals feature dominant acicular ferrite microstructure, and have high strength and high toughness. Not only the composition but also the microstructure of base metal exerts influence on the microstructure and properties of weld metal resulting in variations in toughness of weld metals produced in different welding directions or with different base metals.The SAW joints exhibit softened zones especially for low CE high strength steel, But the softening of GMAW joint is acceptable even for low CE high strength steel.
     The microstructures of the welded joint of X80 steel are bainite in coarse-grained HAZ, mix of bainite and ferrite in normalized zone and incompletely normalized zone as well and mix of acicular ferrite and minor prior ferrite in weld metal. The grain size in CGHAZ is coarser in SAW than in GMAW and also coarser in higher linear energy, but significantly smaller than that of traditional steel.EBSD analysis shows that X80 weld metal has obvious finer grain with more uniformly distributed orientation and the acicular ferrite coarsen after heat treatment. In the tough dimples of high toughness fracture surface there are fine particles sized 0.5~1.0μm in diameter, mainly composed of Ti, Ca ,Si and so on. In the dimples of SAW weld fracture surface there are particles sized 2~5μm in diameter, mainly composed of Al, Si, and the weld metal has low toughness. Reletively high Ti and low Als is the key to the formation of Ti-dominant fine particles in weld metal.
引文
[1]张彩军,蔡开科,袁伟霞等.管线钢的性能要求与炼钢生产特点.炼钢,2000,18(5):40~46
    [2]徐平光,白秉哲,方鸿生.高强度低合金中厚钢板的现状与发展.机械工程材料,2001,23(2):4~8
    [3]瞿国鸿.非调质钢的发展及开发策略.重庆钢铁高等专科学校学报. 1993,14(3):12~17
    [4] Corbett K.T., Bowen R.R., Petersen C.W. High Strength Steel Pipeline Economics. In: Proceedings of the International Offshore and Polar Engineering Conference. Honolulu. 2003.2355-2362
    [5] Takechi H., Matsuda H., Tamehiro H..et al. Application of Bainite and Ferrite-martensite Structure for High-strength Heavy-gage Linepipe. Optimization of Processing, Properties, and Service Performance Through Microstructural Control. ASTM Special Technical Publication. 1983. 149-171
    [6]王祖滨,宋青.世纪之交看低合金高强度钢的发展.钢铁,2001,36(9):66~70
    [7] Y.M.Kim,S.K.Kim,Y.J.Lim,et al. Effect of Microstructure on the Yield Ratio and Low Temperature Toughness of Linepipe Steels.ISIJ internatinal, 2002, 42(12): 1571~1577
    [8]梁小凯,孙新军.超细晶钢在不同温度下塑性变形机制的研究.钢铁,2004,39(11):52~56
    [9]董瀚,孙新军,刘清友等.变形诱导铁素体相变—现象与理论.钢铁,2003,38(10):55~67
    [10] J.R.Davis.High-strength low alloy steels.In:Alloying:Understanding the basics.ASM International.Materials Park,Ohio,USA.2001.193~209
    [11]张贵峰,米运卿.超细晶粒钢制备工艺及机制与传统控轧控冷(TMCP)钢的异同.材料导报,2004,18(8):53~55
    [12] M.Okatsu, T.Hayashi, K.Amano. Weldability of advanced extremely-low carbonbainitic steel for thick plates of 570 MPa grade through as-rolled process.Welding Research Abroad, 1999, XLV(9):19~25
    [13] A. K. Lis, J. Lis, L. Jeziorski. Advanced ultra-low carbon bainitic steels with high toughness. Journal of Materials Processing Technology,1997,64:255~266
    [14] I.A.Yakubtsov, J.D.Boyd. Bainite transformation during continuous cooling of low carbon microalloyed steel. Materials Science and Technology,2001,17:296~ 301
    [15] CHOO Wung-Yong. First Stage Achievement of HIPERS-21 Project and Plan of Second Stage.in:the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004.23~38
    [16]张庆国.管线钢的发展趋势及生产工艺评述.河北冶金,2003,5:12~17
    [17]潘家华.我国管道钢管的发展方向.焊管,1998, 21(4):16~20
    [18]崔健.宝钢微合金、低合金钢的发展.中国冶金,2001, 53(8): 32~35
    [19] M.Pontremoli. Metallurgical and Technological Challenges for the Development of High Performance X100-X120 Lilepine Steels. in: Proceedings of the Second International Conference on Advanced Structural Steels. Shanghai. 2004.39~45
    [20]左景伊.应力腐蚀破裂.西安:西安交通大学出版社,1985. 97~98
    [21]胡会军,田正红.抗硫化氢腐蚀管线钢炼钢生产实践.宝钢技术,2003年增刊:8~12
    [22]方英华,孙群,张富强等.精炼过程中钢水喂Si-Ca线Ca处理工艺研究.见: the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004.1189~1194
    [23]黄开文.X80和X100钢级管线钢的合金化原理和生产要点.轧钢,2004, 21(6):55~58
    [24] Liu Xiao, Kang Mokuang. Design of a New Series of Si-Mn-Mo Alloyed Bainitic Steels. In: the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004. 716~719
    [25] Douglas G. Stalheim, Keith R. Barnes, Dennis B. McCutcheon.高强度石油天然气管线钢的合金设计.石油天然气管线工程技术发展、规范及焊接国际研讨会.北京:CITIC-CBMM中信微合金化技术中心,2006.168~202
    [26]孔君华.高钢级X80管线钢工艺、组织与性能的研究.华中科技大学博士学位论文,2005
    [27] API SPEC 5L-1995.管线钢管.
    [28]郑磊,陈玉珊.宝钢X65高强度高韧性管线用板卷钢的生产.焊管,2001,24(1):25~31
    [29]张超.西气东输工程用针状铁素体钢X70的试制.轧钢,2005,22(4):50~52
    [30]忠县―武汉输气管道工程用钢管质量技术补充规定.中国石油管道公司.忠―武输气管线建设项目部.2000.3
    [31]轮南―上海输气管道工程制管用板卷.轮南―上海输气管线工程建设项目部.2000.4
    [32] Q/SY XQ4.西气东输管道工程焊接施工及验收规范
    [33] Q/SY XQ13.西气东输工程用直缝埋弧焊管技术条件
    [34] Q/SY XQ14西气东输工程用螺旋埋弧焊管技术条件
    [35]黄开文.国外高钢级管线钢的研究与使用情况.焊管,2003,26(5):1~10
    [36] Phil Hopkins. The challenges for frontier pipeline projects. In:the Proceedings of Pipe Dreamer’s Conference.Yokohama. 2002. 32~36
    [37] Schwinn V. Production and progress of plates for pipes with strength level of X80 and above. In:the Proceedings of Pipe Dreamer’s Conference. Yokohama. 2002. 339~345
    [38] Fazackerley, W.J., Manuel, P. A. and Christensen, L. FIRST X-80 HSLA PIPELINE IN THE USA.石油天然气管线工程技术发展、规范及焊接国际研讨会光盘版.北京:CITIC-CBMM中信微合金化技术中心,2006
    [39]吴小江,姚永宽.南钢HTP工艺生产高钢级管线钢的实践.石油天然气管线工程技术发展、规范及焊接国际研讨会光盘版.北京:CITIC-CBMM中信微合金化技术中心,2006
    [40] Q/CNPC108-2004. X80管线钢管应用工程用直缝埋弧焊管技术条件
    [41] Q/CNPC107-2004. X80管线钢管应用工程用热轧钢板技术条件
    [42] DNV-SO-F101,2000.海洋管线系统
    [43]冯星安.管道建设和焊接技术的现状及与展前景.石油工程建设,2002,28(6):1~5
    [44] E V. Girardier,C.Eng, Mistract.E. Structural Steel Developments,Welded Structures. November 1990:109~113
    [45] Anderson,T.L.,L.A.Hyatt ,J.C.West. The benefits of new high strength low alloy(HSLA) steels. Welding Journal, 1987,66(9):21~26
    [46] T.Haze.Steel plate with superior toughness for offshore structure,Seitetsu Kenkyn,1987(.326):36~42
    [47]薛振奎,丁海燕.我国油气管道和焊接技术.焊接,2002(11):11~14
    [48]辛希贤,智彦利,徐学利.管线钢焊接粗晶区的韧化方向.焊管,2003,26(5):10~13
    [49]董玉华,高惠临.油气管线钢焊接局部脆化及断裂机理的研究.压力容器,2001, 18(3):26~30
    [50]钱百年.管线钢的局部脆性研究.焊管,1993,6(6):8~12
    [51]王建会.X60管线钢焊接粗晶区组织遗传及韧性的研究.华中理工大学硕士论文,1994
    [52] JEONG Hong-Chul, AN Young-Ho, CHOO Wung-Yong. The Effect of High Nitrogen TiN Particles on the HAZ Microstructure and Toughness. in:the Proceedings of Second International Conference on Advanced Structural Steels.Shanghai.2004.965~968
    [53] SHI Bi, CAO Hangqing. The Effect of Nitrogen Content on the CGHAZ Toughness of Nb-Ti Microalloyed Steels. in: the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004.969~973
    [54] L.N.Pusseogda, A.Dinovizer, D.Horsley. Determination of critical hydrogen curves from slow bend tests. in: the Proceedings of 5th International pipeline conference.Calgary. 2004:1459~1464.
    [55] M.L.Macia, D.P.Fairchild. Evaluation of hydrogen cracking susceptibility in X120 girth welds. In: the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004.1465~1474
    [56] Hart, P.H.M. Resistance to Hydrogen Cracking in Steel Weld Metals. Welding Journal, 1986,65(1): 14s~22s
    [57] Yong-Yi Wang, Steve Rapp.Weldability Of High Strength And Eehanced Hardability Steels.in:the Proceedings of Second International Conference on Advanced Structural Steels. Shanghai. 2004.1521~1528
    [58]王晓香.管线钢焊接常用的几种碳当量公式.焊管,2004,27(2):71-73,76
    [59] L.Meyer,H.de Boer.Welding of HSLA Structural Steel,ASM,Metals Park, Ohio, 1978:42~62
    [60]高惠临,虞毅.关于管线钢的碳当量公式.焊管,2004,27(5):16~18
    [61]郑磊.管线钢的碳含量和碳当量与焊接性的关系.焊管,2004,27(4):72~73
    [62]张文钺.焊接传热学.北京:机械工业出版社,1989
    [63]吕德林,李砚珠.焊接金相分析.北京:机械工业出版社,1986
    [64] Dr.-Ing. Submerged-arc welding of the high-strength fine-grained structural steels S890QL and S960L.Schweissen & Schneiden,September,2000:36~39
    [65] M. Enompto. Nucleation of Ferrous Solid-Solid Phase Transfoemation at Inclusions.中日技术交流资料.武汉:武钢技术中心,2003.9:61~65
    [66]成国光,朱晓霞,彭岩峰等.氮化钛细化洁净钢凝固组织的研究.冶金研究,2002,201~205
    [67]成国光,王明林,杨新娥等.低碳洁净钢氧化钛细化凝固组织的研究.冶金研究,2003,147~152
    [68]成国,彭岩峰.洁净钢氮化钛凝固细化技术的基础.北京科技大学学报,2002.24(3):273-275,279
    [69] Y.Liu, D.L.Olson.The Role of Inclusion in Controlling HSLA Steel Weld Microstructure. Welding Journal,1996,75(6):139s~147s
    [70] R.K.Wilson. Effect of Calcium and Magnesium Treatment on Steel Weldability. Welding Journal,1982,61(6):182s~188s
    [71] G.N.Heintze, R.MC Pherson. Solidification control of Submerged Arc Welds in Steels by Inoculation with Ti. Welding Journal,1986,65(3):71s~82s
    [72] B.BASU, R.RAMAN. Microstructural Variations in a High-Strength Structural Steel Weld under Isoheat Input Conditions. Welding journal, 2002,81(11):239s~248s
    [73]傅杰,周德光,李晶等.低碳超级钢中氧硫氮的控制及其对钢组织性能的影响.冶金研究,2002.130~136
    [74] D.W.MOON,R.W.FONDA, G.SPANOS. Microhardness Variations in HSLA-100 Welds Fabracation with New Ultra-Low-Carbon Weld Consumables. Welding Journal, 2000,79(10):278s~285s
    [75] Y.Ueshima,T.Matsumiya, S. Mizoguchi,et al. Method for Controlling Solidification Segregation of Steel.United States Patent, 4809765,1988.1~13
    [76] Y. Ueshima,T.Matsumiya, S. Mizoguchi,et al. Method for Mitigating Solidification Segregation of Steel.United States Patent 4738301,1988.1~13
    [77]邹增大,李亚江,尹士科.低合金调质高强度钢焊接及工程应用.北京:化学工业出版社, 1999
    [78] PH.BOURGETS,L.JUBIN, P.BOCQUET. Prediction of Mechanical Properties of Weld Metal Based on Some Metallurgical Assumptions. Mathematical Modelling of Weld Phenomena.London:The Institute of Materials,1993.201~212
    [79] H.K.D.H.Bhadeshia. Reliability of Weld Microstructure and Properties Calculations. Welding Journal,2004,83(9):237s~243s
    [80]薛小怀,钱百年等.我国高性能管线钢埋弧焊丝的研究进展.钢铁研究学报,2003,15(4):73~76
    [81]钱百年,国旭明等.高强度管线钢X80的焊接研究.焊接,2002(8):14~17
    [82] G Thewlis. Pipeline welds-effects of pipe material and consumables composition. Joining and Materials,January,1989:25~32 and March, 1989,125~129
    [83] R.C. Kimitsu,H.O.Futtsu, K.S.Futtsu,et al. Line Pipe Metal Arc Welded With Wire Alloy. United States, US005723089,1998.1~5
    [84] N.M. Yamato, H.H.Isehara, M.W.Sagamihara, et al. Method For Submerged-Arc Welding A Very Low Carbon Steel .United States Patent,4430545,1980.1~9
    [85]缪凯,黄治军.WQ490D焊接性能研究报告.武钢研究院,2002
    [86] Erhard Scholz. Welding materials containing little or no molybdenum.1980. UK Patent Application,GB2090615 A
    [87] E.Shigeru,M.Itoh,and M.Sugino,et al.Girth-Welding Process for a Pipe and a High Cellulose Type Coated Electrod. United States Patent,US005272305A. 1993.1~11
    [88] E.Shigeru,M.Itoh,and M.Nakano,et al.Method For Gas-Shielded Arc Welding of APipe And Weld Wire For Use In The Welding Method. United States Patent,US5300751. 1992.1~10
    [89]金时鳞,雷胜利等.高韧性埋弧焊用焊丝.焊管,1997,20(6):21~31
    [90]许祖泽,金时鳞,姚锡仁等.低碳微合金化埋弧焊丝.中国专利,CN 1068528A.1993
    [91]缪凯杨建东王玉涛等.低合金高强度高韧性埋弧焊丝.中国专利,ZL 97 1 04393.0. 2000
    [92]钱百年,国旭明,李丽晶等.一种管线钢用高韧性抗腐蚀埋弧焊丝.中国专利,CN 1273897A. 2000
    [93]廖波,肖福仁,王旭等.适用于低碳微合金钢的高韧性焊丝.中国专利,CN 1385279A. 2002
    [94]钱百年,薛小怀,匡旭明等.一种高强度管线钢埋弧焊用焊丝.中国专利,CN 1376553A. 2000
    [95]史维义,刘志臣.铁道车辆用耐候钢埋弧焊丝的研制.齐厂科技,1989,3:116~122
    [96]陈增祥,薛东林,沈厚珍.核能及石油化工用15MnNi钢埋弧自动焊丝研制.焊接研究与生产,1994,3(4):7~14
    [97]中国焊接协会.气体保护电弧焊用碳钢、低合金钢焊丝.焊接标准汇编(第1版)北京:中国标准出版社,1997. 326~345
    [98] Product Catealog. Lincoln Electric. 2006.56~58
    [99] A.Philips Coldren,Susan R.Fiore and Ronald B.Smith. Welding electrodes for producing low carbon bainitic ferrite weld deposits. United States Patent,5523540. 1996
    [100]田志凌,马成勇,何长红等.超低碳高强度气体保护焊丝材料.中国专利,CN 1413795A,2003
    [101]缪凯,黄治军,刘吉斌等.微钛硼高韧性气体保护焊丝.中国专利,ZL 01 1 28326.2,2004
    [102]缪凯,黄治军,刘吉斌等.低合金高强钢用高韧性气体保护焊丝.中国专利,ZL 01 1 33651.X,2003
    [103] Daka, B.. Hydrogen Assisted Cold Cracking in X80 Steel Weldments made withRutile Flux Cored Wire. Adelaide: the University of Adelaide,2002.93~99
    [104] Cantin and D.G.M. An investigation of the formation of hollow bead defects in pipeline field welds. Adelaide: the University of Adelaide,1997.451~465
    [105] N J Woodward, S Blackman.Diverless Underwater GMA Welding For Pipeline Repair Using A Fillet Welded Sleeve. in: the Proceedings of 5th International pipeline conference, Calgary. 2004. New York:ASME,2004.1475~1513
    [106] J.A.Gianetto, J.T.Bowker. Structure And Properties Of X80 And X100 Pipeline Girth Welds.in: the Proceedings of 5th International pipeline conference. Calgary. 2004. New York:ASME,2004.1485~1498
    [107] R.Muraoka,M.Okatsu. Mechanical Properties Of X80 Grade UOE Pipe For Long-Term Exposure At Elevated Temperature. In: the Proceedings of 5th International pipeline conference. Calgary. 2004. New York:ASME,2004.1805~1812
    [108]涩宁兰X70钢级试验段开工准备会资料.西气东输项目经理部.2000.9
    [109] Jeremy C. Price. Welding Needs Specified for X-80 Offshore Linepipe. The Oil and Gas Journal, 1993, 91(12):95-100
    [110]张文钺主编.焊接熔焊原理及工艺.北京:机械工业出版社,1980
    [111]中国焊接协会.焊接性试验焊接热影响区最高硬度试验方法.焊接标准汇编(第1版)北京:中国标准出版社,1997. 612~614
    [112]章桥新,黄治军,陈淑红. HG70钢的焊接性.材料开发与应用.2001,16(4):19~23
    [113]陈浮.高强钢系列焊接材料及工艺研究.课题总结报告.武钢技术中心.2006
    [114]中国焊接协会.焊接性试验斜Y型坡口焊接裂纹试验方法.焊接标准汇编(第1版)北京:中国标准出版社,1997. 590~596
    [115] Rick Beeson. Pipeline Welding Goes Mechanized. Welding Journal, 1999,78(11):47~50
    [116] Mary Ruth Johnsen. U.S. Pipeline Industry Enters New Era. Welding Journal, 1999,78(11):37
    [117] Hans-Georg Hillenbrand, Kurt A.Hiederhoff, Gunter Hauck,et al. Procedures, Considerations for Welding X-80 Line Pipe Established. The Oil and Gas Journal,95(9):47-53
    [118]张国栋,李志远,王永生等.低合金高强钢焊缝针状铁素体转变动力学及其仿真.电焊机,2002.32(6):9~12
    [119]黄安国,王永生,李志远.低合金钢焊缝中先共析铁素体组织数量的控制.电焊机,2003.33(10):9~14
    [120] Ross Hancock. Welding the World’s Strongest Linepipe in Arctic Conditions. Welding Journal, 2004,83(7):58~62
    [121] E.S.Surian and L.A.de Vedia. All-weld-metal design for AWS E10018M, E11018M and E12018M type electrode. Welding Journal,1999,78(6):217s~228s
    [122] V.Gunaraj and N.Murugan. Prediction of Heat-Affected Zone Characteristics in Submerged Arc Welding of Structural Steel Pepes. Welding Journal,2002,81(3),45s~53s
    [123]许祖泽.焊剂的性能与使用.北京:机械工业出版社,1989
    [124]木本,平野,小山.ラィンパィプ用ガスシ-ルドア-ク溶接ヮィヤ.日本.特平8-290289. 1995. 649~654
    [125]木本,平野,千叶.ラィンパィプ用ガスシ-ルドア-ク溶接ヮィヤ.日本.特开平9-295187
    [126]小西正人,中野利彦.パィプのガスシ-ルドア-ク溶接ヮィヤ.日本.特开平5-57478. 1991. 459~463
    [127] J.P.SNYDER,II, A.W.PENSE. The Effects of Titanium on Submerged Arc Weld Metal.Welding Journal,1982,61(7):201s~211s
    [128] D.L.OLSON,S.LIU,G.R.EDWARDS. Physical Metllurgical Concerns in the Modelling of Weld Metal Transformation. Mathematical Modelling of Weld Phenomena, London:The Institute of Materials,1993.89~107
    [129] E.Surian,J.Trotti, L.A.Cassanelli. Influence of chromium on mechanical properyies and microstructure of weld metal from a high strength SWA electrode. Welding Journal, 1994,73(3):45s~53s
    [130] Chidambaram,P.R.,Jones,J.,and Cao,X.Y.,et al. Modelling of weld metal properties as a function of weld metal composition.in:proceedings of the TMS materials week’95 symposium.Cleveland.1995.123~133
    [131] Thomas, R. D.,Generic system for designation of welding filler metals. Welding Journal,1998,77(2):29~32
    [132]王慧,朱伟编译.酸性条件下X80级高强度管线管.焊管,2005,28(1):61~65
    [133]董俊明,潘希德.微合金元素改善焊缝应力腐蚀破裂性能的研究.第八次全国焊接会议论集.北京:机械工业出版社,1997.499~501
    [134]曹全禹,张义成.数理统计方法.武汉:武钢经济编辑部,1990.19~28
    [135]王雅贞,李承祚.转炉炼钢问答.北京:冶金工业出版社,2004,44~46
    [136]李为卫,王庆国等.X80管线钢埋弧焊焊接材料的选材研究.焊接技术,2005,34(6):48~50
    [137]马俊,李君佐.直缝焊管埋弧焊自动焊内焊多丝焊接规范设置探讨.焊管,2004,27(5):63~64
    [138]缪凯.14MnNbq焊接性能研究报告.武钢研究院档案馆,1996
    [139]李爱萍,尹成先,何小东.X80钢级直缝埋弧焊管力学性能研究.焊管, 2005,28(1):22~24
    [140]张敏,姚成武.我国油气管道高强度钢用埋弧焊接材料研制的思考.焊管, 2005,28(1):38~41
    [141] J BROZDA,M ZEMAN, M LOMOZIK. The weldability of thermomechanically rolled S460ML steel. Welding International, 2000,14(8):21~33
    [142] M LOMOZIK. Effect of the welding thermal cycles on the structural changes in the heat affected zone and its properties in joints in low-alloy steels. Welding International,2000,14(11):8~13.
    [143]何长红,屈朝霞.焊接热循环对X52超细晶钢组织与性能的影响.钢铁研究学报,2000,12(6):33~36
    [144] K.-S.BANG, W.-Y.KIM. Estimation and Prediction of HAZ Softening in Thermomechanically Cobtrolled-Rolled and Accelerated-Cooled Steel. Welding Journal,2000,79(8):174s~179s
    [145] N.M.RAMINI DE RISSONE, H.G.SVOBODA, E.S.SURIAN, et al. Influence of Procedure Variables on C-Mn-Ni-Mo Metal Cored Wire Ferritic All-Weld-Metal. Welding Jounal,2005,85(9):139s~148s
    [146]杨平. EBSD技术在微织构分析中的应用.中国体视学与图像分.2005,10(4):211~224
    [147]陈浩,潘春旭.BHW-35钢焊缝熔敷金属热处理脆化机理研究.机械工程材料, 2002,26(6):19~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700