用户名: 密码: 验证码:
分散剂对纳米悬浮液导热和凝固性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过冷度小或无过冷,高导热系数的纳米悬浮液用作相变储能材料是提高储能系统效率,降低能耗的有效方法。纳米悬浮液的性质在循环冷却和加热过程中保持稳定是将其应用于实际必须具备的前提条件。分散剂的使用是制备出分散稳定纳米悬浮液的重要手段。借助分散剂的作用,较大尺寸的纳米团聚体可在基液中分裂成众多较小尺寸的团聚体或纳米颗粒,这些团聚体或颗粒上的分散剂吸附层能对其表面润湿性进行修饰,进而影响到纳米悬浮液的凝固成核,分散剂吸附层本身的导热系数也将对纳米悬浮液的导热系数产生影响。基于此,本文以水基、石蜡基和月桂酸基纳米悬浮液为研究对象,重点研究了分散剂对这三种纳米悬浮液的导热和凝固结晶生长特性的影响及其作用机制,获得了增强纳米悬浮液热循环稳定性的有效控制手段和条件。
     主要研究工作及结果如下:
     ①采用超声振动与分散剂相结合的方法制备TiO2-水、Graphite-水、Al-石蜡和TiO2-月桂酸纳米悬浮液,采用Zeta电位及粒径分析仪测试纳米悬浮液的Zeta电位和粒径分布、电子透射电镜和场发射扫描电子显微镜测试纳米团聚体的形貌及其分布,研究分散剂种类、浓度和分散剂/纳米颗粒浓度比对各纳米悬浮液分散稳定性的影响。结果表明:阴离子型分散剂增强水基纳米悬浮液分散稳定性的作用最强,其中十二烷基硫酸钠SDS对TiO2-水纳米悬浮液的分散稳定效果最佳,羧甲基纤维素钠CMC对Graphite-水纳米悬浮液的分散稳定效果最佳。SDS/TiO2浓度比是影响TiO2-水纳米悬浮液分散稳定性的重要因素,最佳SDS/TiO2浓度比约为1:1;对于有机TiO2-月桂酸和Al-石蜡纳米悬浮液,具有最佳分散稳定作用的分散剂分别为阴离子型分散剂SDS和阳离子型分散剂十六烷基三甲基溴化铵CTAB。
     ②采用最小热阻力法则和比等效导热系数相等法则建立了考虑分散剂作用的纳米悬浮液静态导热系数模型,该模型同时考虑了纳米颗粒团聚和分散剂吸附层的影响。采用闪光法导热仪测量TiO2-月桂酸纳米悬浮液的固相导热系数,X射线光电子能谱分析仪测量TiO2纳米团聚体表面上分散剂SDS吸附层的厚度,场发射扫描电子显微镜测量TiO2纳米团聚体的大小形貌及其分布,研究分散剂SDS浓度对TiO2-月桂酸纳米悬浮液导热系数的影响及其机理。结果表明:分散剂SDS的加入降低了TiO2-月桂酸纳米悬浮液的导热系数,降低程度与分散剂SDS浓度密切相关。分散剂SDS浓度通过改变TiO2纳米团聚体大小和分散剂SDS吸附层厚度,对TiO2-月桂酸纳米悬浮液的导热系数起作用。当分散剂SDS浓度与TiO2纳米颗粒浓度相当时,分散剂SDS对TiO2-月桂酸纳米悬浮液导热系数的削弱程度达到最大。与现有Maxwell模型、Yu-Choi模型、Xue模型、Xie et al.模型和Leong et al.模型相比,新建模型对TiO2-月桂酸纳米悬浮液固相导热系数的理论计算结果可以与实测结果更好的吻合,预测偏差在5%以内。基于上述结果,采用Hotdisk导热仪分别对TiO2-水纳米悬浮液的固相和液相导热系数进行了测量,探讨纳米团聚体自身对纳米悬浮液导热系数的强化机理。结果表明:TiO2纳米团聚体的热传导和布朗运动均对TiO2-水纳米悬浮液的导热系数有重要的强化作用,随着纳米颗粒浓度的增大,TiO2-水纳米悬浮液导热系数中的静态部分所占权重逐渐增大。
     ③采用差示扫描量热仪DSC测试TiO2-水纳米悬浮液的凝固过程、采用表面张力法测量分散剂SDS在TiO2纳米团聚体表面的吸附量,研究分散剂浓度和冷却速率对TiO2-水纳米悬浮液凝固的相变温度、时间和潜热的影响及其作用机制。结果表明:大冷却速率(≥5℃/min)下,冷却速率是控制TiO2-水纳米悬浮液凝固成核的主导因素,此时TiO2-水纳米悬浮液凝固的相变温度低、相变时间短、相变潜热少;小冷却速率(<5℃/min)下,分散剂控制的TiO2纳米团聚体表面成核在TiO2-水纳米悬浮液的凝固成核中占主导,此时TiO2-水纳米悬浮液凝固的相变温度高、相变时间长、相变潜热多。分散剂SDS浓度通过调节分散剂在TiO2纳米团聚体表面的吸附量,对TiO2-水纳米悬浮液的凝固成核产生影响。当分散剂SDS浓度与TiO2纳米颗粒浓度相当时,分散剂SDS的吸附达到饱和,TiO2-水纳米悬浮液的凝固成核温度达到最高。差示扫描量热法研究TiO2-月桂酸和Al-石蜡纳米悬浮液固-液相变特性的结果显示:TiO2(Al)纳米颗粒的加入降低了月桂酸(石蜡)的相变潜热,分散剂SDBS(CTAB)的使用对此没有明显的改善作用。
     ④Graphite-水和Al-石蜡纳米悬浮液在低温槽内的宏观凝固实验显示,在纳米悬浮液的凝固过程中,纳米颗粒会被凝固界面排斥而聚集在一起,再次溶解后出现沉降,造成纳米悬浮液失效;分散剂对纳米悬浮液在凝固过程中的分散稳定性的改善作用不大。施加超声振动可以得到Al纳米团聚体均匀分布的Al-石蜡纳米悬浮液凝固体,但凝固体中存在的气泡导致其导热系数明显降低。施加磁场可以改善Graphite纳米团聚体在其纳米悬浮液凝固体中的均匀分布。磁场的这种作用与分散剂在Graphite纳米团聚体表面的吸附密切相关。与分散剂SDS相比,分散剂CMC在Graphite纳米团聚体表面的吸附能力更强,Graphite团聚体表面带电荷数更多,磁场增强Graphite-CMC-水纳米悬浮液凝固稳定性的作用更明显。
Nanoparticles suspensions with low or none supercooling degree and high thermalconductivity as the phase change materials is good for increasing system’s energystoring efficiency and reducing energy consumption. Keeping nanoparticles suspensionsstable in the process of cyclic heating and cooling is the precondition for applying it tothe actual application. Adding surfactant is an important method for preparing dispersedstable nanoparticles suspensions. Larger-size nanoparticles may be divided into lots ofsmaller-size nanoparticles and agglomerates by the effect of surfactant. The surfactantadsorption layer on the smaller-size nanoparticles and agglomerates can modify surfacewettability, and then influence the solidification nucleation in nanoparticles suspensions.The thermal conductivity of surfactant adsorption layer may also influence the thermalconductivity of nanoparticles suspensions. Therefore, we take water-based,paraffin-based and lauric acid-based nanoparticles suspensions as the research objects,particularly focus on the influence of surfactants on the thermal conductivity andsolidification crystal growth characteristic of the three nanoparticles suspensions. Andthen effective controlling method and condition of enhancing nanoparticles suspensions’thermal cycle stability have been obtained.
     The main research work and the results are as follows:
     ①TiO2-water, Graphite-water, Al-paraffin and TiO2-lauric acid nanoparticlessuspensions are prepared by the method of ultrasonic vibration and adding surfactant.The zeta potential and size distribution of nanoparticles suspensions are measured byzeta potential and particle size analyzer. The morphology and distribution ofnanoparticles agglomerates are measured by transmission electron microscope and fieldemission scanning electron microscopy. The influences of kinds of surfactant,concentration and concentration ratio of nanoparticles suspensions to the stability ofnanoparticles suspensions are investigated. The results show that anionic surfactant hasthe best effect on enhancing the stability of nanoparticles suspensions; Sodium DodecylSulfonate (SDS) has the best effect on enhancing the stability of TiO2-H2Onanoparticles suspensions and Sodium carboxymethylcellulose (CMC) has the besteffect on enhancing the stability of Graphite-water nanoparticles suspensions. Theconcentration ratio of SDS and TiO2is an important factor of influence the stability ofTiO2-H2O nanoparticles suspensions. The best concentration ratio of SDS and TiO2is 1:1. For Al-paraffin and TiO2-lauric acid nanoparticles suspensions, the best surfactantare cationic surfactant Cetyltrimethyl Ammonium Bromide (CTAB) and anionicsurfactant SDS.
     ②The nanoparticles suspensions static thermal conductivity model whichconsidering the effect of surfactant is built by the methods of the minimum thermalresistance law and criteria of equivalent specific thermal conductivity. The modelinvolves both the effect of the nanoparticles’ aggregation and surfactant adsorption layer.The thermal conductivity of solid-state TiO2-lauric acid nanoparticles suspensions ismeasured by flash method conductometer. The thickness of SDS adsorption layer on thesurface of TiO2agglomerates is measured by X-ray photoelectron energy spectrumanalyzer. The size, morphology and distribution of TiO2agglomerates are measured byfield emission scanning electron microscopy. The concentration influence of SDS to thethermal conductivity of TiO2-lauric acid nanoparticles suspensions and effectmechanism were investigated. The results show the thermal conductivity of TiO2-lauricacid nanoparticles suspensions decline because of adding SDS, and the reduction degreeis closely related to the concentration of SDS. By changing the size of TiO2agglomerates and the thickness of SDS adsorption layer, the concentration of SDSimpacted on the thermal conductivity of TiO2-lauric acid nanoparticles suspensions.When the concentration of SDS and TiO2is comparable, SDS has the most significanteffect on reducing the thermal conductivity of TiO2-lauric acid nanoparticlessuspensions. Comparing to previous models such as Maxwell, Yu-Choi, Xue, Xie et al.,and Long et al, the new nanoparticles suspensions static thermal conductivity modelcould fit the experiment results of TiO2-H2O nanoparticles suspensions thermalconductivity more, within5%deviation. Based on above results, the thermalconductivity of solid-state TiO2-water nanoparticles suspensions is measured byhot-disk conductometer. Strengthening mechanism of thermal conductivity coefficientby nanoparticles aggregation in nanoparticles suspensions were discussed. The resultsshow that the heat conduction and Brownian motion play important role in enhancing hethermal conductivity of TiO2-water nanoparticles suspensions, and the static portion ofthermal conductivity is enhanced with the increasing concentration of nanoparticles.
     ③The solidification process of TiO2-water nanoparticles suspensions is measuredby differential scanning calorimeter (DSC), and the SDS adsorbing capacity on thesurface of TiO2agglomerates is measured by surface tension method to investigate theinfluence of concentration and cooling rate of surfactant on the solidification phase-transition temperature, time and latent heat and effect mechanism of TiO2-H2Onanoparticles suspensions. Results show that the cooling rate is dominant factor ofsolidification nucleation of TiO2-H2O nanoparticle suspensions as a result of lowphase-transition temperature, short time and less latent heat at high cooling rate (≥5℃/min), while the surface nucleation is major factor of solidification nucleation of TiO2-H2O nanoparticle suspensions as a result of high phase-transition temperature, long timeand more latent heat at low cooling rate (<5℃/min). The SDS concentration plays arole in the solidification nucleation of TiO2-water nanoparticle suspensions throughadjusting the SDS adsorbing capacity on the surface of TiO2agglomerates. When theconcentration of SDS and TiO2are the same, SDS adsorption reaches saturate whichleads a peak nucleation temperature.
     ④The macroscopic solidification experiments of Graphite-water and Al-paraffinnanoparticle suspensions in cryostat prove that nanoparticles will aggregate because ofthe rejection of solid-liquid interface and then the precipitate appear leading the failureof nanoparticle suspensions when it melts in the process of solidification, whichillustrates that the surfactant has little effect on enhancing the stability of nanoparticlessuspensions in the process of solidification. Al-paraffin nanoparticle suspensions withhomogeneous distribution can be obtained through ultrasonic vibration, but the thermalconductivity decreases obviously since the bubbles exist in the process of solidification.Graphite agglomerates would disperse in Graphite-water nanoparticle suspensionshomogeneously in a magnetic field. The effect of magnetic field is closely related to theadsorbing of surfactant on the surface of Graphite agglomerates. Compared with SDS,CMC has a stronger ability of adsorbing and more charges on the on the surface ofGraphite agglomerates, and the magnetic field enhances the stability of nanoparticlesuspensions more obviously.
引文
[1] Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storagesystem: a review [J]. Renewable and Sustainable Energy Reviews,2009,13(9):2225-2244.
    [2] Oró E, Gracia A D, Castell A, Farid M M, Cabeza L F. Review on phase change materials(PCMs) for cold thermal energy storage applications [J]. Applied Energy,2012,99:513-533.
    [3] Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials [M].Amsterdam: Elsevier,1999.
    [4] Masuda H, Ebata A,Teramae K, Hishinuma N. Altemation of thermal conductivity andviscosity of liquid by dispersing ultra-fine particles (dispersion of-Al2O3, SiO2and TiO2ultra-fine particles)[J]. Netsu Bussei (Japan),1993,4(4):227-233.
    [5] Lin C.Y., Wang J.C., Chen T.C. Analysis of suspension and heat transfer characteristics ofAl2O3nanofluids prepared through ultrasonic vibration [J]. Applied Energy,2011,88(12):4527-4533.
    [6] Fedele L., Colla L., Bobbo S. Viscosity and thermal conductivity measurements ofwater-based nanofluids containing titanium oxide nanoparticles [J]. International Journal ofRefrigeration,2012,35(5):1359-1366.
    [7]谢华清,王锦昌. SiC纳米粉体悬浮液导热系数研究[J].硅酸盐学报,2001,29(4):361-364.
    [8]李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46.
    [9] Abareshi M, Goharshadi E K, Mojtaba Z S. Fabrication, characterization and measurement ofthermal conductivity of Fe3O4nanofluids [J]. Journal of Magnetism and Magnetic Materials,2010,322(24):3895-3901.
    [10] Hong T K, Yang H S, Choi C J. Study of the enhanced thermal conductivity of Fe nanofluids[J]. Journal of Applied Physics,2005,97(6):064311.
    [11]李新芳,朱冬生,王先菊,汪南,李华,杨硕. Cu-水纳米流体的分散行为及导热性能研究[J].功能材料,2008,39(1):162-165.
    [12] Hwang Y J, Ahn Y C, Shin H S, Lee C G, Kim G T. Investigation on characteristics of thermalconductivity enhancement of nanofluids [J]. Current Applied Physics,2006,6(6):1068-1071.
    [13] Nasiri A., Shariaty-Niasar M., Rashidi A.M., Khodafarin R. Effect of CNT structures onthermal conductivity and stability of nanofluid [J]. International Journal of Heat and MassTransfer,2012,55(5–6):1529-1535.
    [14]李新芳,朱冬生.纳米流体强化相变蓄冷特性的实验研究[J].材料导报(研究篇),2009,23(3):11-16.
    [15] Wu S.Y., Zhu D.S., Li X.F., Li H., Lei J.X. Thermal energy storage behavior of AI2O3-H2Onanofluids [J]. ThermochimicaActa,2009,483:73-77.
    [16]何钦波,童明伟,刘玉东.低温相变蓄冷纳米流体成核过冷度的实验研究[J].制冷学报,2007,28(4):33-36.
    [17] He Q, Wang S, Tong M, Liu Y. Experimental study on thermophysical properties of nanofluidsas phase-change material (PCM) in low temperature cool storage [J]. Energy Conversion andManagement,2012,64:199-205.
    [18] Zhang X J, Wu P, Qiu L M, Zhang X B, Tian X J. Analysis of the nucleation of nanofluids inthe ice formation process [J]. Energy Conversion and Management,2010,51(1):130-134.
    [19]席丽霞.空调用二氧化钛纳米粒子复合相变储能材料[D].上海:上海交通大学,2012.
    [20]唐临利,刘宝林,郝保同,刘连军,徐海峰.纳米微粒对多元醇水溶液过冷度和水合性质的影响[J].低温与超导,2012,40(8):60-63.
    [21] Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparationand characterization [J]. Powder Technology,2009,196(2):89-101.
    [22] Ghadimi A, Saidur R, Metselaar H S C. A review of nanofluid stability properties andcharacterization in stationary conditions [J]. International Journal of Heat and Mass Transfer,2011,54(17):4051-4068.
    [23] Rao Y. Nanofluids: stability, phase diagram, rheology and applications [J]. Particuology,2010,8(6):549-555.
    [24]彭小飞,俞小莉,夏立峰,钟勋.纳米流体悬浮稳定性影响因素[J].浙江大学学报:工学版,2007,41(4):577-580.
    [25] Wusiman K, Jeong H, Tulugan K, Afrianto H. Thermal performance of multi-walled carbonnanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS [J].International Communications in Heat and Mass Transfer,2013,41:28-33.
    [26] Li X F, Zhu D S, Wang X J, Wang N, Gao J W, Li H. Thermal conductivity enhancementdependent pH and chemical surfactant for Cu-H2O nanofluids [J]. Thermochimica Acta,2008,469(1):98-103.
    [27] Eastman J A, Choi S U S, Li S, Yu W. Anomalously increased effective thermal conductivitiesof ethylene glycol-based nanofluids containing copper nanoparticles [J]. Applied PhysicsLetters,2001,78(6):718-720.
    [28] Moghadassi A R, Hosseini S M, Henneke D E. Effect of CuO nanoparticles in enhancing thethermal conductivities of monoethylene glycol and paraffin fluids [J]. Industrial&Engineering Chemistry Research,2010,49(4):1900-1904.
    [29] Wang X, Zhu D. Investigation of pH and SDBS on enhancement of thermal conductivity innanofluids [J]. Chemical Physics Letters,2009,470(1):107-111.
    [30]宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社,2010.
    [31]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [32] Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactants and polymers in aqueoussolution [M]. Chichester: John Wiley&Sons Ltd,2003.
    [33]宋晓岚,吴雪兰,曲鹏.纳米SiO2分散稳定性能影响因素及作用机理研究[J].硅酸盐通报,2005,1:3-7.
    [34]李东东,李金凯,赵蔚琳. SiO2-水纳米流体稳定性及导热性能[J].济南大学学报:自然科学版,2010,24(3):247-250.
    [35] Qiang A, Zhao L, Xu C, Zhou M. Effect of Dispersant on the Colloidal Stability of Nano-sizedCuO Suspension [J]. Journal of Dispersion Science and Technology,2007,28(7):1004-1007.
    [36]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析[J].应用基础与工程科学学报,2003,11(2):167-173.
    [37] Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivityenhancement: a review [J]. Nanoscale research letters,2011,6(1):1-13.
    [38] zerin S, Kaka S, Yaz c o lu A G. Enhanced thermal conductivity of nanofluids: astate-of-the-art review [J]. Microfluidics and Nanofluidics,2010,8(2):145-170.
    [39] Murshed S M S, Leong K C, Yang C. Thermophysical and electrokinetic properties ofnanofluids-a critical review [J]. Applied Thermal Engineering,2008,28(17):2109-2125.
    [40] Wang X Q, Mujumdar A S. A review on nanofluids-part II: experiments and applications [J].Brazilian Journal of Chemical Engineering,2008,25(4):631-648.
    [41] Eastman J A, Choi S U S, Li S, Yu W, Thomson L J. Anomalously increased effective thermalconductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].Applied Physics Letters,2001,78:718-720.
    [42] Keblinski P, Phillpot S R, Choi S U S. Mechanisms of heat flow in suspensions of nano-sizedparticles (nanofluids)[J]. International journal of heat and mass transfer,2002,45(4):855-863.
    [43] Yiamsawasd T, Dalkilic A S, Wongwises S. Measurement of the thermal conductivity of titaniaand alumina nanofluids [J]. Thermochimica Acta,2012,545:48-56.
    [44] Hrishikesh P E, Sarit K D, Sundararajan T, Nair A S. Thermal conductivities of naked andmonolayer protected metal nanoparticle based nanofluids: manifestation of anomalousenhancement and chemical effects [J]. Applied Physics Letters,2003,83(14):2931-2933.
    [45]谢华清,吴清仁,王锦昌,奚同庚,刘岩.氧化铝纳米粉体悬浮液强化导热研究[J].硅酸盐学报,2002,30(3):272-276.
    [46] Li X F, Zhu D S, Wang X J, Wang N, Gao J W, Li H. Thermal conductivity enhancementdependent pH and chemical surfactant for Cu-H2O nanofluids[J]. Thermochimica Acta,2008,469(1):98-103.
    [47] Akyurt M, Zaki G, Habeebullah B. Freezing phenomena in ice–water systems [J]. Energyconversion and management,2002,43(14):1773-1789.
    [48] Mullin J W. Crystallization [M]. Oxford: Butterworth-Heinemann,2001.
    [49]陈国良,姚可夫,寇宏超,惠希东.非经典结晶理论和液态多组元化学短程序问题[J].自然科学进展,2003,13(10):1022-1030.
    [50] Wilson P W, Heneghan A F, Haymet A D J. Ice nucleation in nature: supercooling point (SCP)measurements and the role of heterogeneous nucleation [J]. Cryobiology,2003,46(1):88-98.
    [51] Sangwal K. Additives and crystallization processes: from fundamentals to applications [M].Chichester: John Wiley&Sons Ltd,2007.
    [52] Liu X Y. Heterogeneous nucleation or homogeneous nucleation [J]. The Journal of ChemicalPhysics,2000,112(22):9949-9955.
    [53] Faucheux M, Muller G, Havet M, Lebail A. Influence of surface roughness on the supercoolingdegree: Case of selected water/ethanol solutions frozen on aluminiumsurfaces[J]. Internationaljournal of refrigeration,2006,29(7):1218-1224.
    [54]曲凯阳,江亿.各种因素对过冷水发生结冰的影响[J].太阳能学报,2004,24(6):814-821.
    [55]朱冬生,李新芳,汪南,王先菊.纳米流体相变蓄冷材料的基本特性与应用前景[J].材料导报,2007,21(4):87-91.
    [56] Khodadadi J M, Hosseinizadeh S F. Nanoparticle-enhanced phase change materials (NEPCM)with great potential for improved thermal energy storage [J]. International Communications inHeat and Mass Transfer,2007,34(5):534-543.
    [57] Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acidnanofluids as a phase change material [J]. ThermochimicaActa,2012,533:46-55.
    [58] Kalaiselvam S, Parameshwaran R, Harikrishnan S. Analytical and experimental investigationsof nanoparticles embedded phase change materials for cooling application in modern buildings[J]. Renewable Energy,2012,39(1):375-387.
    [59] Mehnert W, Karsten M. Solid lipid nanoparticles: production, characterization and applications[J]. Advanced Drug Delivery Reviews,2012,64:83-101.
    [60]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003.
    [61] Hwang Y, Lee J K, Jeong Y M, Cheong S I, Ahn Y C, Kim S H. Production and dispersionstability of nanoparticles in nanofluids [J]. Powder Technology,2008,186(2):145-153.
    [62] Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivitycharacteristics of Al2O3-H2O nanofluids [J]. Current Applied Physics,2009,9(1):131-139.
    [63] Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes [J].Journal of Colloid and Interface Science,2003,260(1):89-94.
    [64]张凯.功能性无机/有机复合粒子的制备、表征及应用.成都:四川大学,2005.
    [65] Everett D H. Basic principles of colloid science [M]. London: the Royal Society of Chemistry,1988.
    [66] Warren L J. Principles of mineral flotation [M]. Sydney: Australian Institute of Mining andMetallurgy,1984.
    [67] Ruthven D M. Principles of adsorption and adsorption processes [M]. Toronto: John Wiley&Sons Ltd,1984.
    [68] Napper D H. Polymeric stabilization of colloidal dispersions [M]. London: Academic Press,1984.
    [69]李玲.表面活性剂与纳米技术.北京:化学工业出版社,2004.
    [70]丘永,陈红龄,汪效祖,徐南平.水热法制备纳米TiO2及其等电点的研究[J].高等化学工程学报,2005,19(1):129-133.
    [71] Hwang Y J, Ahn Y C, Shin H S, Lee C G, Kim G T. Investigation on characteristics of thermalconductivity enhancement of nanofluids [J]. Current Applied Physics,2006,6(6):1068-1071.
    [72] Ho C J, Gao J Y. Preparation and thermophysical properties of nanoparticle-in-paraffinemulsion as phase change material [J]. International Communications in Heat and MassTransfer,2009,36:467–470.
    [73] Maxwell J C. A treatise on electricity and magnetism [M]. London: Oxford University Press,1892.
    [74] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. I&EC Fundamentals,1962,1(3):187–191.
    [75] Bruggeman D A G, Calculation of various physics constants in heterogeneous substances IDielectricity constants and conductivity of mixed bodies from isotropic substances [J].Annalen Der Physik,1935,24(7):636-664.
    [76] Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermalconductivity and viscosity of TiO2-water nanofluids [J]. Experimental Thermal and FluidScience,2009,33(4):706-714.
    [77] Li F C, Yang J C, Zhou W W, He Y R, Huang Y M, Jiang B C. Experimental study on thecharacteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-basednanofluids containing multiwalled carbon nanotubes [J]. Thermochimica Acta,2013,556:47-53.
    [78] Murshed S M S, Leong K C, Yang C. Investigations of thermal conductivity and viscosity ofnanofluids [J]. International Journal of Thermal Sciences,2008,47:560-568.
    [79] Keblinski P, Phillpot S R, Choi S U S. Mechanisms of heat flow in suspensions of nano-sizedparticles (nanofluids)[J]. International journal of heat and mass transfer,2002,45(4):855-863.
    [80] Xuan Y, Li Q, Hu W. Aggregation structure and Thermal conductivity of Nanofluids [J]. AIchEJournal,2003,49(4):1038-1043.
    [81] Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivityof nanoparticle fluid mixture [J]. International Journal of Heat and Mass transfer,2005,48:2926-2932.
    [82] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids [J]. Journal ofNanoparticle Research,2004,6:577-588.
    [83] Feng Y, Kleinstreuer C. Nanofluid convective heat transfer in a paralleldisk system [J].International Journal of Heat and Mass Transfer,2010,53:4619-4628.
    [84] Chandrsekar M, Suresh S, Srinivasan R, Chandra A. New analyatical models to investigatethermal conductivity of nanofluids [J]. Journal of Nanoscience and Nanotechnology,2009,36:533-538.
    [85] Vajjha R S, Das D K. Experimental determination of thermal conductivity of nanofluid anddevelopment of new correlation [J]. International Journal of heat and mass Transfer,2009,52:4675-4682.
    [86] Jang S P, Choi S U S. Role of brownian motion in the enhanced thermal conductivity ofnanofluids [J]. Applied Physics letters,2004,84:4316-4318.
    [87] Yang B. Thermal conductivity equations based on brownian motion in suspensions ofnanoparticles (nanofluids)[J]. Journal of Heat transfer,2008,130:042408-1.
    [88] Murshed S M S, Leong K C, Yang C. A combined model for the effective thermal conductivityof nanofluids [J]. Applied Thermal Engineering,2009,29:2477-2483.
    [89] Evans W, Fish J, Keblinsk P. Role of Brownian motion hydrodynamic on nanofluid thermalconductivity [J]. Applied Physics Letters,2006,88:093116.
    [90] Wang X W, Xu X F, Choi S U S. Thermal conductivity of nanoparticle-fluid mixture [J].Journal of Thermalphysics and Heat Transfer,1999,13:474-480.
    [91] Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity ofnanofluids: a renovated Maxwell model [J]. Journal of Nanoparticle Research,2003,5(1-2):167-171.
    [92] Xie X L, Mai Y W, Zhou X P. Dispersion and alignment of carbon nanotubes in polymermatrix: a review [J]. Materials Science and Engineering: R: Reports,2005,49(4):89-112.
    [93] Xue X Y, Chen Y J, Wang Y G. Synthesis and ethanol sensing properties of ZnSnO3nanowires[J]. Applied Physics Letters,2005,86(23):233101-233101-3.
    [94] Leong K C, Yang C, Murshed S M S. A model for the thermal conductivity of nanofluids–theeffect of interfacial layer [J]. Journal of Nanoparticle Research,2006,8(2):245-254.
    [95] Yang L, Du K, A thermal conductivitymodel for low concentrated nanofluids containingsurfactants under various dispersion types [J]. International Journal of Refrigeration,2012,35:1978-1988.
    [96] Bryleva E Y, Vodolazkaya N A, Mchedlov-Petrossyan N O, Samokhina L V, Matveevskaya NA, Tolmachev A V. Interfacial properties of cetyltrimethylammonium-coated SiO2nanoparticles in aqueous media as studied by using different indicator dyes [J]. Journal ofColloid and Interface Science,2007,316(2):712-722.
    [97] Schaffner L, Br¨ugger G, Nyffenegger R, Walter R, Riˇcka J, Kleimann, J, Hotz J, Quellet Ch.Surfactant mediated adsorption of negatively charged latex particles to a cellulose surface [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,286:39-50.
    [98] Svitova T, Hill R M, Radke C J. Adsorption layer structures and spreading behavior ofaqueous non-ionic surfactants on graphite [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2001,183:607-620.
    [99]郑大锋,邱学青,楼宏铭. XPS测定减水剂吸附层厚度[J].化工学报,2008,59(1):256-259.
    [100] Karlsson P M, Anderson M W, Palmqvist A E C. Adsorption of sodium dodecyl sulfate andsodium dodecyl phosphate at the surface of aluminium oxide studied with AFM [J]. CorrosionScience,2010,52:1103-1105.
    [101] Paiva P R P, Monte M B M, Sim R A, Gaspar J C. In situ AFM study of potassium oleateadsorption and calcium precipitate formation on an apatite surface [J]. Minerals Engineering,2011,24:387–395
    [102] Zhu D S, Li X F, Wang N, Wang X J, Gao J W, Li H. Dispersion behavior and thermalconductivity characteristics of Al2O3–H2O nanofluids [J]. Current Applied Physics,2009,9:131-139.
    [103] Hwang Y, Lee J K, Jeong Y M, Cheong S, Ahn Y C, Kim S H. Production and dispersionstability of nanoparticles in nanofluids [J]. Powder Technology,2008,186:145-153.
    [104] Nasiri A, Shariaty-Niasar M, Rashidi A M, Khodafarin R. Effect of CNT structures on thermalconductivity and stability of nanofluid [J]. International Journal of Heat and Mass Transfer,2012,55:1529-1535.
    [105] Davis R H. The effective thermal conductivity of a composite material with sphericalinclusions [J]. International Journal of Thermophysics,1986,7:609-620
    [106] Jeffrey D J. Conduction through a random suspension of spheres [J]. Proceedings of RoyalSociety A,1973,33:355-367.
    [107]陈则韶,钱军,叶一火.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,22(4):416-423.
    [108] Liang J Z, Li F H. Theoretical model of heat transfer for polymer/hollow micro-spherecomposites [J]. Journal of South China Univeristy of Technology: Natural Science Edition,2005,33(10):34-37.
    [109]葛山,尹玉成.激光闪光法测定耐火材料导热系数的原理与方法[J].理化检验:物理分册,2008,44(2):75-78.
    [110] Seeight J. Lange’s handbook of chemistry [M]. New York: McGraw-Hill ProfessionalPublishing,2004.
    [111]谢华清,程曙霞.热针法测量材料导热系数研究[J].应用科学学报,2002,20(1):6-9.
    [112] Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acidnanofluids as a phase change material [J]. Thermochimica Acta,2012,533:46-55.
    [113] Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes(carbon nanotube nanofluids)[J]. Thermochimica Acta,2012,533:46-55.
    [114]王萍,李昌国.结晶学教程[M].北京:国防工业出版社,2006.
    [115]徐祖耀,相变原理[M].北京:科学出版社,1988.
    [116]崔爱莉,王亭杰,金涌,等.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报,2001,22(9):1543-1545.
    [117] Liu XY. Effect of foreign particles: a comprehensive understanding of3D heterogeneousnucleation [J]. Journal of Crystal Growth,2002,237-239:1806-1812.
    [118] Fletcher N H. Size effect in heterogeneous nucleation [J]. The Journal of chemical physics,2004,29(3):572-576.
    [119] Bhatnagar B S, Cardon S, Pikal M J, Bogner R H. Reliable determination offreeze-concentration using DSC [J]. Thermochimica Acta,2005,425:149-163.
    [120] Namburu P, Kulkarni D, Misra D, Das D. Viscosity of copper oxide nanoparticles dispersed inethylene glycol and water mixture [J]. Experimental Thermal and Fluid Science,2007,32(2):397-402.
    [121] Turgut A, Tavman I, Chirtoc M, Schuchmann H P, Sauter C, Tavman S. Thermal conductivityand viscosity measurements of water-based TiO2nanofluids [J]. International Journal ofThermophysics,2009,30(4):1213-1226.
    [122]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度,热扩散系数与Pr数[J].自然科学进展,2004,14(7):799-803.
    [123] Lee S W, Park S D, Kang S, Bang I C, Kim J H. Investigation of viscosity and thermalconductivity of SiC nanofluids for heat transfer applications [J]. International Journal of Heatand Mass Transfer,2011,1:433-438.
    [124] Prasher R, Song D, Wang J. Measurements of nanofluid viscosity and its implications forthermal applications [J]. Applied Physics Letters,2006,89:1331081-3.
    [125]方晓鹏,宣益民,李强.纳米流体传质扩散系数的测定[J].工程热物理学报,2011,32(2):277-280.
    [126] Namburu P K, Kulkarni D P, Dandekar A, Das D K. Experimental investigation of viscosityand specic heat of silicon dioxide nanofuids [J]. Micro&Nano Letters,2007,2(3):67-71.
    [127] Eastman J A, Phillpot S R, Choi S U S, Keblinski P. Thermal transport in nanofluids [J].Annual Review of Materials Research,2004,34:219-246.
    [128] Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport [J]. Materials Today,2005,8(6):36-44.
    [129] Das S K, Choi S U S, Patel H E. Heat transfer in nanofluids: a review [J]. Heat TransferEngineering,2006,27:3-19.
    [130]刘中良,马重芳,孙旋.相变潜热随温度变化对固-液相变过程的影响[J].太阳能学报,2003,24(1):53-57.
    [131]周明松,邱学青,杨东杰.木质素系和萘系分散剂在煤水界面的吸附性能[J].高等学校化学学报,2008,29(5):987-992.
    [132] Fan L S, Hemminger O, Yu Z, et al. Bubbles in nanofluids [J]. Industrial&engineeringchemistry research,2007,46(12):4341-4346.
    [133] Das S K, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids [J]. InternationalJournal of Heat and Mass Transfer,2003,46(5):851-862.
    [134] Hernainz F, Caro A. Variation of surface tension in aqueous solutions of sodium dodecylsulfate in the flotation bath [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2002,196(1):19-24.
    [135] Nú ez-Rojas E, Domínguez H. Computational studies on the behavior of Sodium DodecylSulfate (SDS) at TiO2(rutile)/water interfaces [J]. Journal of colloid andinterface science,2011,364(2):417-427.
    [136] Leng W, Zhou S, Gu G, Wu L. Wettability switching of SDS-doped polyaniline fromhydrophobic to hydrophilic induced by alkaline/reduction reactions [J]. Journal of colloid andinterface science,2012,369(1):411-418.
    [137] Cao M, Song X, Wang J, Wang Y. Adsorption of hexyl-α, ω-bis (dodecyldimethylammoniumbromide) gemini surfactant on silica and its effect on wettability [J]. Journal of colloid andinterface science,2006,300(2):519-525.
    [138] Chwastiak S. Calculation of contact angles from surfactant adsorption isotherms [J]. Journal ofcolloid and interface science,2009,339(1):196-201.
    [139] Gibbs B M, Hasnain S M. DSC study of technical grade phase change heat storage materialsfor solar heating applications [J]. Solar Engineering,1995:1053-1053.
    [140] Halling P J. Salt hydrates for water activity control with biocatalysts in organic media [J].Biotechnology Techniques,1992,6(3):271-276.
    [141]李新芳,朱冬生.纳米流体强化相变蓄冷特性的实验研究[J].材料导报,2009,23(6):11-13.
    [142]冰晶,陈照章,王恒海,黄永红,徐晓斌.交变磁场对含盐溶液冰晶形成的影响[J].应用科学学报,2008,26(2):145-149.
    [143] Schvezov C E. Interaction of particles with an advancing solid/liquid interface [D]. Vancouver:University of British Columbia,1983.
    [144]马立群,舒光冀.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7.
    [145]蒋日鹏,李晓谦,李开烨,张雪.超声对铝合金凝固传热与组织形成的影响与作用机制[J].中南大学学报(自然科学版),2012,43(10):3808.
    [146]何寿杰,哈静,王云明,侯志青.超声化学在纳米材料制备中的应用[J].化学通报,2008,71(11):846-851.
    [147]刘荣光.超声波在铝熔体中的声场分布和空化效应及其对凝固过程影响[D].长沙:中南大学,2007.
    [148]刘清梅.超声波对金属凝固特性及组织影响的研究[D].上海:上海大学,2007.
    [149]王晖,任忠鸣,徐匡迪,黄晖,王秋良,严陆光.强磁场作用下Al-Ni合金中Al3Ni析出相的凝固行为[J].稀有金属材料与工程,2005,34(7):1033-1035.
    [150]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究[D].上海:上海大学,2000.
    [151] Zhong Y B, Ren Z M, Sun Q X, Jiang Z W, Deng K, Xu K D. Pushing/engulfment behavior ofthe particles in front of metallic solid/liquid interface in electromagnetic field [J]. ActaMetallurgica Sinica,2003,39(12):1269-1275.
    [152] Zheng L, Ma X, Hu D, Zhang H, Zhang T, Wan Y. Mechanism and modeling of silicon carbideformation and engulfment in industrial silicon directional solidification growth [J]. Journal ofCrystal Growth,2011,318(1):313-317.
    [153] Nakae H, Wu S. Engulfment of Al2 O3 particles duringsolidification of aluminum matrix composites [J]. Materials Science and Engineering: A,1998,252(2):232-238.
    [154] Lipp G, K rber C. On the engulfment of spherical particles by a moving ice-liquid interface [J].Journal of crystal growth,1993,130(3):475-489.
    [155]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [156] Rutter J W, Chalmers B. A prismatic substructure formed during solidification of metals [J].Canadian Journal of Physics,1953,31(1):15-39.
    [157]谭毅,孙世海,董伟,邢其智,冀明.多晶硅定向凝固过程中固-液界面特性研究[J].材料工程,2012(8):33-38.
    [158] Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilutebinary alloy[J]. Journal of applied physics,2004,35(2):444-451.
    [159]马渊,彭晓峰.单向冷冻过程溶液中冰晶界面的竞争现象[J].化工学报,2008,59(11):2857-2863.
    [160] Cisse J, Bolling G F. A study of the trapping and rejection of insoluble particles during thefreezing of water [J]. Journal of Crystal Growth,1971,10(1):67-76.
    [161] Yemmou M, Brierre A, Azouni M A. Rejection and capture of solid particles by ice [J].Advances in Space Research,1991,11(7):327-330.
    [162] He L Z, Zhang X B, Sun Q X, et al. Effects of Cu and age treatment on susceptibility tointergranular corrosion of Al-Mg-Si alloys [J]. Journal of Nonferrous Metals,2001,11(2):231-235.
    [163]孙秋霞,钟云波,任忠鸣楼磊,邓康,徐匡迪.电磁场对金属凝固界面前沿颗粒行为及分布的影响[J].金属学报,2005,41(3):321-325.
    [164] Uhlmann D R, Chalmers B. Interaction between particles and a solid-liquid interface [J].Journal of Applied Physics,1964,35(10):2986-2991.
    [165] Kaptay G. Interfacial phenomena during melt processing of ceramic particle-reinforced metalmatrix composites: Part I. Interfacial force between a spherical particle and an approachingparticle solid/liquid interface [J]. Materials Science Forum,1996,215-216:467-470.
    [166] Omenyi S N, Neumann A W. Thermodynamic aspects of particle engulfment by solidifyingmelts [J]. Journal of Applied Physics,1976,47(9):3956-3961.
    [167] Nakae H, Wu S. Engulfment of Al2O3particles during solidification of aluminium matrixcomposites [J]. Materials Science and Engineering,1998, A252:232-237.
    [168] Korber C, Rau G. Interaction of particles and a moving ice-liquid interface [J]. Journal ofCrystal Growth,1985,72:649-652.
    [169]王香,曾送岩,张二林.颗粒被凝固前沿排斥的临界速度模型[J].哈尔滨理工大学学报,2000,5(4):70-73.
    [170]于化顺,闵光辉,赵生旭.复合材料凝固过程中颗粒推移距离及其影响因素[J].金属学报,1999,35(7):781-784.
    [171] Potschke J, Rogge V. On the behavior of foreign particles at an advancing solid-liquidinterface [J]. Journal of Crystal Growth,1989,94:726-731.
    [172] Sasikumar R, Ramamohan T R. Critical velocities for particle pushing by movingsolidification fronts [J]. Acta Metallurgica,1989,37(7):2085-2090.
    [173] Stefanescu D M, Moitra A. The influence of buoyant forces and volume fraction of particleson the particle pushing/engulfment transition during directional solidification of Al/SiC andAl/Graphite composites [J]. Metallurgical and materials Transactions A,1990,21:231-235.
    [174] Han Q, Hunt J D. Redistribution of particles during solidification [J]. ISIJ International,1995,35(6):693-697.
    [175] Zubko A M, Lobanov V G, Nikonova V V. Reaction of foreign particles with a crystallizationfront [J]. Soviet Physics Crystallography,1973,18(2):239-245.
    [176] Bolling G F, Cisse J A. Theory for the interaction of particles with a solidifying front [J].Journal of Crystal Growth,1971,10:56-62.
    [177] Cisse J, Bolling G F. A study of the trapping and rejection of insoluble particles during thefreezing of water [J]. Journal of Crystal Growth,1971,10:67-73.
    [178] Cisse J, Bolling G F. The steady-state rejection of insoluble particle by salol growth from themelt [J]. Journal of Crystal Growth,1971,11:25-33.
    [179] Yasuda H, Ohnaka I. Engulfment and pushing of inclusions at solidifying front of organicmaterials [J]. ISIJ International,1996,36:167-171.
    [180] Shinata H, Yin H. In-situ observation of engulfment and pushing of nonmetallic inclusions insteel melt by advancing melt/solid interface [J]. ISIJ International,1998,38(2):149-153.
    [181] Temkin D E, Chernov A A, Melnikova A M. The influence of the thermal conductivity of amacroparticle on its capture by a crystal growing from a melt [J]. Soviet PhysicsCrystallography,1977,22:656-658.
    [182] Sen S, Dhindaw B K. Melt convection effects on the critical velocity of particle engulfment [J].Journal of Crystal Growth,1997,173:574-580.
    [183] Shangguan D, Ahuja S. An analytical model for the interaction between an insoluble particleand an advancing solid/liquid interface. Metallurgical and materials Transactions A,1992,23:669-677.
    [184] Kolin A. An electromagnetokinetic phenomenon involving migration of neutral particles [J].Science,1953,117:134-137.
    [185] Leenov D, Kolin A. Theory of electromagnetophoresis I. Magnetohydrodynamic forcesexperienced by spherical and symmetrically oriented cylindrical particles [J]. Journal ofChemical Physics,1954,22(4):683-688.
    [186] Marty P, Alemany A. Theoretical and experimental aspects of electromagneticseparation-metallurgical applications of magnetohydrohynamics [C]. Proceedings ofSymposium of the International and Applied Mechanics (IUTAM), Cambridge,1982,245-259.
    [187] Shu D, Sun B D. Study of electromagnetic separation of nonmetallic inclusions fromaluminum melt [J]. Metallurgical and materials Transactions A,1999,30(11):2979-2987.
    [188]江志文,任忠鸣,钟云波,邓康.金属液中稳恒电磁力场作用下颗粒迁移特性的初步研究[J].上海有色金属,2000,21(1):1-4.
    [189] Li X, Fautrelle Y, Ren Z M. Effect of a high magnetic field on the microstructure indirectionally solidified Al-12wt%Ni alloy [J]. Journal of Crystal Growth,2007,306:187-194.
    [190] Mao D H, Wang W J, Zhong J, Mao Y. Effects of electromagnetic field on aluminum alloysliquid-solid continuous rheological structure evolution [J]. Materials Science and EngineeringA,2004,385:22-30.
    [191] Eckert S, Willers B, Nikrityuk P A, Eckert K, Michel U, Zouhar G. Application of a rotatingmagnetic field during directional solidificationof Pb-Sn alloys: Consequences on the CET [J].Materials Science and Engineering A,2005,413-414:211-216.
    [192] Li X, Ren Z M, Fautrelle Y. Effect of high magnetic fields on the microstructure indirectionally solidified Bi-Mn eutectic alloy [J]. Journal of Crystal Growth,2007,299:41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700