用户名: 密码: 验证码:
DBD系统谐振与表面沉积电荷效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用介质阻挡放电(dielectric barrier discharge,DBD)方法能够在大气压或高于大气压条件下产生大空间、高密度的非平衡等离子体,可以在等离子体化学工程、材料表面改性、环境工程等方面获得广泛应用,逐渐成为放电等离子体学科的研究热点之一。然而,由于人们对DBD等离子体开展研究的时间较短,对DBD放电形成演化机理以及应用过程中存在的许多问题了解得还不够深入全面,限制了这一技术的进一步发展。本文结合国家自然科学基金重点资助项目“高气压下强电场电离气体的方法及其应用的基础研究(项目编号:60031001)”,针对DBD系统应用过程中存在的谐振问题与DBD微放电在电介质层表面产生沉积电荷效应问题进行了实验研究,为DBD系统放电参数优化、提高其放电性能提供了实验依据。研究结果表明:
     1.DBD系统存在谐振现象,产生这种现象的原因是由于DBD电介质层等效电容与激励变压器初、次级的总漏感谐振造成的。当系统工作频率高于谐振频率时,系统的放电性能就会下降,若使DBD反应器能在较高的激励频率条件下具有较高的放电性能,必须设法减小激励电源变压器的漏感与电介质层的等效电容;
     2.DBD系统工作于谐振频率时,系统呈阻性,从而可将电源电压直接耦合到DBD的放电间隙中去,既降低了激励变压器的输出电压;又可以利用系统的阻性特征对DBD等离子体的等效电阻进行测量,从而可以进一步诊断DBD中的等离子体演化过程;
     3.微放电是DBD的主要特征之一。DBD对气体的激发与电离就发生在这些微细流光放电里,电离产生的电荷在电场力的作用下会沉积在电介质层表面形成本征电场,这一电场会反作用于放电电荷,从而影响DBD等离子体的演变过程。激励电源电压与频率、电介质材料、DBD结构、媒介气体等均会对电荷沉积效应产生较大影响。高频高压电源激励、窄间隙结构、高纯度薄α-Al_2O_3电介质层可以明显改善放电电荷在电介质层表面的沉积效应,促使等离子体反应向有利于目标产物的方向进行。
Large-volume and high-density non-equilibrium plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure has been paid more attention owing to its wide application in some fields such as plasma chemistry engineering, material surface treatment and environmental engineering, etc. However the study on DBD is done behind time, many problems on evolution mechanism of DBD and its application process are not understood thoroughly, which limited the development of DBD. In this paper, the syntonic of DBD device and the effect of the charges deposited in dielectric layers are studied experimentally based on "Studies on the Ionization of Gas Molecule Using Ultra-Strong Electrical Field Discharge and Its Applications"(No: 69871002) supported by National Natural Science Foundation of China, which supply the experimental basis for optimizing system parameters and improving the characteristic of DBD. The main results of the study are shown as following:
    1.There is the syntonic phenomenon in DBD system, which results from the leak inductance of the transformer (LIT) and the equivalent capacitance of the dielectric layer (ECDL). Discharge characteristic will descend when the system works at above the syntonic frequency. In order to get better discharge characteristic at higher frequency, LIT and ECDL must be reduced and the intrinsic frequency of the system must be higher than the working frequency.
    2.The system assumes resistance when it is working under the condition of resonance, so the supply voltage can be coupled to the discharge gap of DBD directly; the equivalent resistance of DBD plasma can be measured according to the characteristic of resistance, which can diagnose the evolution of DBD plasmas.
    3.Micro-discharge is one of the main characteristics of DBD, in which excitation and ionization of the media gas just occur. With the effect of the applied electric field, charges ionized which produce radial field can deposit in the dielectric layer, which in turn react to the discharge charges and thus influence the evolution processing of DBD plasma. Some factors can affect greatly the effect of charges
    
    
    deposited in layer, such as applied voltage and frequency, dielectric material, DBD configuration and media gas, etc. Using high-frequency power supply, narrow-gap, thin dielectric layer of high-purity a -Al2O3 can improve the effect of charges deposited in layer, and help plasma reaction proceed to the direction of target product.
引文
[1] 吴承康,《我国等离子体工艺研究进展》,物理,1999,28(7):387-393.
    [2] Roth J R. Industrial plasma engineering/Vol. 1: Principles [M], Tennessee, USA: IOP Publishing Ltd, 1995, 286-317.
    [3] Blaustein B D, Fu Y C. Hydrocarbons from H_2+CO and H_2+CO_2 in microwave discharge: Le Chatelier's Principle in discharge reactors of a circulation system, Ibid, 1979, 53(10): 1448-1450.
    [4] Maezono I, Chang J S. Reduction of CO_2 from combustion gases by DC corona torches, IEEE Transactions on Industry Applications, 1990, 26(4): 651-655.
    [5] Zhang Y, Wei C, Cao W M, et al. A plasma-activated Ni/α-Al_2O_3 catalyst for the conversion of CH_4 to syngas, Plasma Chemistry and Plasma Processing, 2000, 20(1): 137-144.
    [6] Edwards J H, Maitra A M. The chemistry of methane reforming with carbon dioxide and its current and potential applications, Fuel Processing Technology, 1995, 42: 269-289.
    [7] Sun B, Masayuki S. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution, Journal of Physics D: Applied Physics, 1999, 32: 1908-1915.
    [8] Xia J F, Gao X X. By-products NOx control and performance Improvement of a packed-bed nonthermal plasma reactor, Plasma Chemistry and Plasma Processing, 2000, 20(2): 225-233.
    [9] Shenton M J, Stevens G C. Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatment, Journal of Physics D: Applied Physics, 2001,34:2761-2768.
    [10] Shenton M J, Lovell-Hoare M C, Stevens G C. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment, Journal of Physics D: Applied Physics, 2001, 34: 2754-2760.
    [11] Mlizuno A, Kisanuki Y. Indoor air cleaning using a pulsed discharge plasma, IEEE Transaction on Industry Applications, 1999, 35(6): 1284-1288.
    [12] 徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996.309-335
    [13] Kogelschatz U. Advanced ozone generation, Process Technologies for Water Treatment [C], New York and London: S. Stucki, 1988, 87-120.
    [14] Blaich L, Friedrich M, ShadiAkhy A H. Development of ozone technology and application, Ozone Science and Engineering, 2001,22(2): 203-216.
    [15] 白希尧,张芝涛,白敏菂等,臭氧产生方法及其应用,自然杂志,2000,22(6):347-354.
    [16] 白希尧,向敏菂,沈丽,高浓度臭氧水溶液研究,中国环境科学,2000,20(4):309-312.
    [17] Lukyanov V B, Eremeev A P, Nesmeyanov A N. Synthesis of oxygen containing organic compounds in electric discharges, Russian J of Phys Chem., 1974, 48(4): 531~533.
    
    
    [18] Finlayson D, Geoffrey J., Manufacture of Aliphatic Aldehydes, US Patent, 1987, (1): 986~885.
    [19] Bai M D, Bai X Y, Zhang Z T et al. Synthesis of Ammonia in a strong electric field discharge at atmosphere pressure, Plasma Chemistry and Plasma Processing, 2000, 20(4): 511-520.
    [20] Changjun Liu, Bingzhang Xue, etc. Methane Conversion to Higher Hydrocarbons in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharge Plasmas, Plasma Chemistry and Plasma Processing, 2001,21 (3): 301-310
    [21] Mamoru Okumoto, Akira Mizuno, Conversion of Methane for Higher Hydrocarbon Fuel Synthesis Using Pulsed Discharge Plasma Method, Catalysis Today, 2001(71): 211-216
    [22] 王保伟,许根慧,介质阻挡放电等离子体催化天然气偶联制C_2烃,中国科学,2002,32(2):140-147
    [23] Yueping Zhang, Yang L, Yu Wang, etc. Plasma Methane Conversion in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharges, Fuel Processing Technology, 2003, 83: 101-109
    [24] 白希尧,张芝涛,白敏冬,高气压强电离放电等离子体学科的形成及应用展望,自然杂志,2000,22(3):156-160
    [25] 白希尧,张芝涛,白敏冬,非平衡等离子体化学研究现状与进展,科学通报,2002,47(5):321-322.
    [26] 杨超,邱高,等离子体表面技术和在有机材料改性应用中的新进展,2001 17(6):30-34
    [27] 秦艳,严立,朱新河,常压介质阻挡放电非平衡等离子体渗氮研究,鞍钢技术,2000(10),pp.38-41
    [28] F Massines and G Gouda, A comparison of Polypropylene-surface treatment by Filamentary, Homogeneous and Glow Discharges in Helium at Atmospheric Pressure, J. Phys. D: Appl. phys. 1998 (31): 3411-3420.
    [29] 肖文德,吴志泉,二氧化硫脱除与回收[M],北京:化学工业出版社,2001,72-128.
    [30] Slack A.V. Sulfur dioxide removal from waste gases, Noyes Data Corporation Noyes Building U.S.A, 1971, 30-89.
    [31] Masuda s. Pulse corona-induced plasma chemical process horizon of new plasma chemical technologies, Pure Appl. Chem. 1988,60(5): 727-731.
    [32] Mok Y S, Ham S W, Nam I S. Evaluation of energy utilization efficiencies for SO_2 and NO removal by pulsed corona discharge process, Plasma Chemistry and Plasma Processing, 1998, 18(4): 535-550.
    [33] Veldnuizen E M V, Zhou L M, Rutgers W R. Combined effects of pulsed discharge removal of NO, SO_2, and NH3 from flue gas, Plasma Chemistry and Plasma Processing, 1998, 18(1):
    
    91-111.
    [34] 刘书海,等离子体烟气脱硫技术现状与关键问题讨论,环境科学,1996,17(2):86-89.
    [35] 朱爱民,宫为民,刘书海,氨与脉冲电晕等离子体脱除SO_2的协同效应,中国环境科学,1997,17(1):37-40.
    [36] 白希尧,冷宏等,加氨脱除SO_2过程的铵盐回收研究,工业安全与防尘,1998,(7):28-31.
    [37] Dhall S K, Sardja. Dielectric barrier discharge for the removal of SO_2 from flues gas, IEEE Transactions on Plasma Science, 1989, 17(2): 205-211.
    [38] Dhall S K, Sardja. Dielectric barrier Discharge for Processing of SO_2/NO_x, J. Appl. Phys, 1991, 69(9): 6319-6324.
    [39] Chang M B. Removal of SO_2 from gas streams using a dielectric barrier discharge and combined plasma photolysis, J. Appl. Phys, 1991, 69(8): 4409-4417.
    [40] Higashi M. Soot elimination and NO_x and SO_x reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics, IEEE Transactions on Plasma Science, 1992, 20(1): 1-11.
    [41] Chang M B. Removal of SO_2 and NO from gas streams with combined plasma photolysis. Journal of Environmental Engineering, 1993, 119: 414-423.
    [42] 高泰荫等,无声放电作用下碳烟氧化的试验研究,东北大学学报,1997,18(1):86-89.
    [43] Snyder H R, Anderson G K. Effect of air and oxygen contenton the dielectric barrier discharge decomposition of chlorobenzene, IEEE Transactions on Plasma Science, 1998, 26(6): 1695-1699.
    [44] 侯键,张振满,介质阻挡放电常压降解哈隆的研究,环境化学,1998,17(1):45—49.
    [45] Kogelschatz U. Ozone synthesis in gas discharge, ⅩⅥ Int. Conf on Phenomena in Ionized Gases (ICPIG ⅩⅥ)[C], DUsseldorf, Germany: 1983, 240-250.
    [46] Kogelschatz U. Advanced ozone generation, Process Technologies for Water Treatment, New York and London: S. Stucki, 1988, 87-120.
    [47] Blaich L, Friedrich M, ShadiAkhy A H. Development of ozone technology and application, Ozone Science and Engineering, 2001,22(2): 203-216.
    [48] Hideaki Fujita and Hirofumi Akagi, Control and performance of a pulse—density-modulated series-resonant inverter for corona discharge processes, 1999,35(3): 621-627.
    [49] Kazuyuki Ohe, Kiyohito Kamiya and Takashi Kimura, Improvement of ozone yielding rate in atmospheric pressure barrier discharges using a time-modulated power supply, IEEE Trans. Plasma Sci. 1999,27(6): 1582-1587.
    [50] 孙岩洲,邱毓昌等,电源频率对介质阻挡放电的影响,高电压技术,2002,28(11):43,53.
    
    
    [51] 张芝涛,鲜于泽等,强电离放电研究,东北大学学报(自然科学版),2002,23(5):507-509.
    [52] B.Eliasson, M.Hirth and U Kogelschatz, Ozone Synthesis from Oxygen in DBD, J. Phys. D: Appl. 1978(20): 1421-1437.
    [53] Baldur Eliasson and Ulrich Kogelschatz, Modeling and Application of Silent Discharge Plasmas, IEEE Trans. Plas.Sci. 1991,19(2): 309-323.
    [54] Jing Li and Shirshak K. Dhali, Simulation of microdischarge in a dielectric-barrier discharge, J. Appl. Phys. 1997,82(9): 4205-4210.
    [55] I. Brauer C. Purwins and J. P. Boeuf, Simulations of self-organized filaments in a dielectric barrier glow discharge plasma, Journal of Applied Physics, 1999,85(11): 7569-7572
    [56] Xudong Xu and Mark J.Kushner, Multiple microdischarge dynamics in dielectric barrier discharges, J. of Appl. Phys. 1998,84(8): 4153-4160.
    [57] Zoran Falkenstein and John J Coogan, Microdischarge behavior in the silent discharge of nitrogen-oxygen and water-air mixtures, J. Phys. D: Appl.Phys.1997 (30): 817-825.
    [58] K. G. Muller, Structures at the electrodes of gas discharges, Phys. Reva. Gen. Phys. 1998, 37(12): 4836-4845
    [59] I.Brauer, C.Punset, H.G. Purwins, and J. P. Boeuf, Simulationsof self-organized filaments in a dielectric barrier glow discharge plasma, J. Appl. Phys. 1999, 85(11): 7569-7572,.
    [60] I. Muller, C. Punset, E. Ammelt, H.G. Purwins, and J. P. Boeuf, Self-organized filaments in dielectric barrier glow discharges, IEEE Trans. Plasma Sci., 1999,27:20-21.
    [61] E. Ammelt, D.Schweng and H.-G. Purwins, Spatio-temporal pattern formation in a lateral high-frequency glow discharge system, Physics Letters A, 1993(179):348-354.
    [62] Ulrich Kogelschatz, Filamentary Patterned and Diffuse Barrier Discharges, IEEE Trans. Plasrna Sci. 2002,30(4): 1400-1408.
    [63] Nikonov V, Bartnikas R and Wertheimer M R. Influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps, IEEE Trans. Plasma Sci.2001, 29(6): 866-874.
    [64] Novak J. P. and Bartnikas R. Effect of dielectric surfaces on the nature of partial discharges, IEEE Trans. Dielectr. Electr. Insul. 2000,7:146-151.
    [65] V Nikonov, R Bartnikas and M R Wertheimer, Surface charge and photoionization effects in short air gaps undergoing discharges at atmospheric pressure, J. Phys. D: 2001,34:2979-2986.
    [66] 李爱文,张承惠,现代逆变技术及其应用,北京:科学出版社,2000,7-45.
    [67] 单庆晓,胡平旺,EXB841对IGBT的过流保护,《电力电子技术》,1998,3:85,50
    [68] 张芝涛,鲜于泽等,电荷电压法测量DBD等离子体的放电参量,物理,2003,7:458-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700