用户名: 密码: 验证码:
陡化前沿Marx发生器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防和工业应用的需要推动脉冲功率技术向高平均功率和紧凑化的方向发展。陡化前沿Marx发生器(Wave Erection Marx Generator)是该方向发展的重要候选方案之一,在国外已受到广泛关注,而国内尚无研究报道。本文在对陡化前沿Marx发生器进行深入细致的理论分析、电路模拟和实验设计的基础上,研制出一台10级陡化前沿Marx发生器,并开展了初步的应用研究与重频运行实验研究。本文的研究方法和研究结果对于此类脉冲功率发生器的研制具有重要的指导意义,为此类脉冲发生器向更高的性能指标推进和开展更广泛的应用研究奠定了基础。
     论文的研究内容主要包括以下几个方面:
     对陡化前沿Marx发生器进行了细致的理论研究。通过对单元回路中影响气体火花开关过电压因素的分析,发现消除充电隔离元件自身的分散电容与增大开关电极对地分散电容有利于陡化前沿脉冲波形的建立。建立了N级陡化前沿Marx发生器的放电等效回路方程组,通过数值求解发现在单元结构参数确定后,发生器存在最佳级数使输出波形同时具有陡化前沿和近似平顶。综合考虑阻抗与充电均匀性等方面的影响最终确定发生器的级数为10,并针对10级陡化前沿Marx发生器对相关参量进行了分析。分析结果表明,单元回路的电感对发生器输出波形的变化趋势影响不大,但较大的回路电感会降低输出脉冲的幅值,增加输出脉冲的宽度,同时在一定程度上增加脉冲前沿时间;开关电极对地分散电容对陡化前沿脉冲波形的建立起到关键作用,此分散电容应具备一定的数值以实现陡化前沿脉冲波形的建立;此外,计算结果表明开关的顺序导通对陡化前沿脉冲波形的建立非常关键。利用PSpice软件建立了基于自击穿开关模型的10级陡化前沿Marx发生器全电路模型,电路模拟结果与理论计算结果基本一致。
     基于理论分析结果,采用3 nF低电感高压脉冲电容器与无容性的大功率金属电阻分别作为储能元件和隔离元件,研制了一台10级电阻隔离型陡化前沿Marx发生器。该发生器直径0.22 m,长度1.6 m,当充电40 kV时,在90Ω大功率低电感金属膜电阻负载上,输出电压约210 kV,上升前沿约5 ns,脉宽(FWHM)约40 ns,此类型发生器与性能指标在国内为首次报道。通过实验研究发现,同轴结构对陡化前沿Marx发生器的设计与诊断非常重要;在相邻火花开关之间不存在紫外光耦合的情况下,所研制的10级陡化前沿Marx发生器依靠对单元回路中开关过电压方面的合理设计,实现了开关的顺序快速导通,建立了快前沿高压脉冲,如果将来在改进结构中引入紫外光耦合可能会使发生器的性能得到进一步的提高;大功率金属膜电阻负载集成了金属膜电阻的无容性和变阻抗线结构可减少反射两大优点,配合电容分压器使用,相对于硫酸铜水溶液电阻负载能够更好地完成对快前沿高压脉冲信号的测量;通过定义两种阻抗——发生器的集总参数阻抗Z0和分散参数所形成的等效传输线阻抗ZN,对实验结果进行了分析,提出了发生器进一步改进的方案。
     对所研制的10级陡化前沿Marx发生器开展了初步的应用研究。在作为高压触发源的实验中,发现此发生器适应系统同步性要求较高的触发要求;在直接驱动强流场发射二极管的实验中,发现此发生器可以初步完成变压器与传输线相结合的功能,证实了这种发生器用作强流电子束加速器脉冲功率平台的可行性,由于陡化前沿Marx发生器不需要外部储能大电容及液体循环系统等辅助设备,从而为实现强流电子束加速器的小型化探索了一条经济可靠的技术路线;在作为ns量级水击穿脉冲功率平台的实验中,发现该10级陡化前沿Marx发生器适合作为基于水介质传输线的强流电子束加速器电水锤效应研究的缩比实验平台,并得到了一定实验条件下电脉冲能量与冲击波能量之间的转换系数。由以上应用研究可以看出,陡化前沿Marx发生器具备较好的应用前景。
     将10级陡化前沿Marx发生器由原来的电阻隔离型改造为电感隔离型,进而利用恒流充电平台开展了陡化前沿Marx发生器重复频率运行的初步实验研究。实验结果表明,在不对内部开关吹气的情况下,当充电30 kV时,发生器在8.2 Hz重频下稳定工作,输出脉冲的一致性较好,输出电压约为150 kV,电流约为1.8 kA。
Driven by national defense and industrial applications, pulsed power technology has been advancing towards higher average power and more compact structure. A wave erection Marx generator is one of the important candidates for these development trends. It has been well developed by foreign researchers, whereas domestic reports have not been found yet in literature. In this dissertation, a 10-stage wave erection Marx generator is developed based on detailed theoretical analysis, total circuit simulations and experimental design. Preliminary researches are also made on its potential applications and repetitive operation characteristics. These efforts are instructive for the further development of this kind of pulse generator, and also set a good foundation for the realization of higher performance as well as more extensive applications.
     This dissertation mainly consists of the following aspects.
     The wave erection Marx generator is investigated theoretically in detail. Through the analysis of the factors influencing the amplitude of over voltage across gas spark gap in a single stage, it is found that eliminating the coupling stray capacitance between stages and increasing the stray capacitance between the electrode and the ground are favorable for the formation of erected waveform of the Marx generator. Equations describing the equivalent discharging circuit of an N-stage wave erection Marx generator are established and numerically calculated. The results show that under the specific structure parameters of the single stage, the generator has an optimum number of stages to obtain an output pulse with both a fast rise time and a quasi-square waveform. Considering the impedance and the charging uniformity synthetically, the optimum number of stages is chosen to be 10 at last. The effects of parameters on performance of the 10-stage wave erection Marx generator are analyzed. The analysis results show that the single stage circuit inductance slightly affects the variation trend of output voltage waveforms, however a larger inductance will reduce the pulse amplitude, and increase both the pulse width and the rise time; while the stray capacitance between the electrode and the ground is the critical component and it should be of a proper value to form a high voltage pulse with fast rise time on the load. Calculation results also show that the switch-closing in order is very important for the wave erection process. A total circuit model of the 10-stage wave erection Marx generator is developed via PSpice software and detailed simulations are performed based on the model. The simulation results agree well with the above calculation results.
     Based on the theoretical analysis results, a resistively isolated 10-stage wave erection Marx generator is designed and constructed with 3 nF high voltage low inductance capacitors and 50 k? high power solid resistors, respectively, as its energy storage and isolation components. The dimension of this generator isΦ0.22 m×1.6 m. At a 40 kV charging voltage, the generator can deliver a high voltage pulse with amplitude of ~210 kV, rise time of ~5 ns, and pulse width (FWHM) of ~40 ns to the 90Ωmetal film resistor load. It is the first domestic report on this type of pulse generator with such performance. Through experiments it is found that a coaxial structure is important for both the design and the diagnostics of the wave erection Marx generator. Due to proper design with respect to the over voltage across spark gap to realize the spark gaps closing rapidly in order, the generator can produce a fast rise time and high voltage pulse even without the help of ultraviolet (UV) coupling between stages; however its performance may be enhanced with UV coupling introduced by further modification of the generator structure. Compared to the copper sulphate solution load, the metal film resistor load combines such two virtues that nearly without stray capacitance and adopting an impedance tapering structure to reduce wave reflection, thus it can make a more precise measurement in cooperation with a capacitive divider. The output performance of the generator has been analyzed through defining two kinds of impedances, Z0, the lumped impedance of the generator, and ZN, the impedance raised from the effective transmission line formed by stray parameters of the generator. Then a further improvement suggestion of the generator is put forward.
     Preliminary research is made on the application of the 10-stage wave erection Marx generator. When applied as a high voltage trigger, it is found to be suitable for triggering the systems where strict synchronization is required. The generator is successfully utilized to drive a field-emission diode directly, which accomplishes the joint function of a transformer and a pulse forming line (PFL) and verifies the possibility to drive an intense relativistic electron beam (REB) accelerator. This result indicates that the wave erection Marx generator driven REB accelerator may open a new economical and reliable route for the minimization of the REB generators. The 10-stage wave erection Marx generator is also found to be applicable for producing ns range underwater shockwave to simulate the electric water hammer effect of the water transmission line based REB generator in operation. The energy transformation rate of electrical pulse and shockwave is obtained under certain conditions. All the above applications show that the wave erection Marx generator has a promising future.
     The 10-stage wave erection Marx generator is modified from a resistively isolated configuration to an inductively isolated configuration for the investigation on its repetitive operation characteristics. The experimental results show that at a 30 kV charging voltage, the 10-stage wave erection Marx generator can operate stably at 8.2 Hz repetition rate without gas blow-off from the internal spark gaps, producing an output pulse of 150 kV and 1.8 kA.
引文
[1]米夏兹(Mesyats G A).大功率毫微秒脉冲的产生[M].北京:原子能出版社, 1982.
    [2]王淦昌.高功率粒子束及其应用[J].强激光与粒子束, 1989, 1(1): 1-21.
    [3]王莹.高功率脉冲电源[M].北京:原子能出版社, 1991.
    [4] Pai S T and Zhang Q. Introduction to high power pulse technology [M]. Singapore: World Scientific Publishing Co. Pre. Ltd., 1995.
    [5]李传胪.脉冲功率技术及其应用[J].国防科技大学学报增刊, 1995, 17: 1-8.
    [6]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社, 2003
    [7]刘锡三.高功率脉冲技术[M].北京:国防工业出版社, 2005.
    [8] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high-voltage nanosecond pulse generator [J]. IEEE Transactions on Plasma Science, 1997, 25(2): 258-265.
    [9] Korovin S D, Gubanov V P, Gunin A V, et al. Repetitive nanosecond high-voltage generator based on spiral forming line [C]. Pulsed Power Plasma Science, 2001. Digest of Technical Papers, 2: 1249-1251.
    [10] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines [J]. Laser and Particle Beams, 2003, 21: 197-209.
    [11] Eltchaninov A S, Shpak V G, Urike Y Y, et al. RADAN-150 and RADAN-220—A compact pulsed X-ray apparatus [J]. Defectoscopy, 1984, (12): 68-70.
    [12] Mesyats G A, Shpak V G, Yalandin M I, et al. Compact high-current accelerators based on the RADAN SEF-303 pulsed power source [C]. 9th IEEE International Pulsed Power Conference, 1993: 835-838.
    [13] Mesyats G A, Shpak V G, and Yalandin M I. RADAN-EXPERT portable high-current accelerator [C]. 9th IEEE International Pulsed Power Conference, 1995: 539-543.
    [14] Mayes J R, Carey W J, Nunnally W C, et al. The Marx generator as an Ultra Wideband source [C]. Pulsed Power Plasma Science, 2001. Digest of Technical Papers, 2: 1665-1668.
    [15] Mayes J R and Carey W J. The generation of high electric field strength RF energy using Marx generators [C]. Conference Record of the 25th International Power Modulator Symposium, 2002: 236-239.
    [16] Mayes J R, Lara M B, Mayes M G, et al. An Enhanced MV Marx Generator for RF and Flash X-Ray Systems [C]. 15th IEEE International Pulsed Power Conference, 2005: 1302-1305.
    [17] Kubota Y, Kodaira J, and Miyahara A. Study of the rectangular-like output waveforms of a 720 kV coaxial Marx Generator [J]. Japanese Journal of Applied Physics, 1981, 20(12): 2397-2400.
    [18] Matsuzawa H and Akitsu T. Output voltage waveform improvement of the coaxial Marx-type high-voltage generator [J]. Rev. Sci. Insrum., 1985, 56(12): 2287-2289.
    [19] Kekez M M. Simple sub-50 ps rise-time high voltage generator [J]. Rev. Sci. Instrum., 1991, 62(12): 2923-2930.
    [20] Carey W J and Mayes J R. Marx generator design and performance [C]. Conference Record of the 25th International Power Modulator Symposium, 2002: 625-628.
    [21] Platts D. 10 Joule high voltage trigger micro Marx [C]. 3rd IEEE International Pulse Power Conference, 1981: 485-486.
    [22] Platts D. 10-Joule 200kV mini Marx [C]. 5th IEEE International Pulse Power Conference, 1985: 834-836.
    [23] Beverly III R E and Campbell R N. Triggering techniques for a compact Marx generator [J]. Rev. Sci. Instrum., 1994, 65(1): 259-260.
    [24] Platts D, Hockaday M P, Beck D, et al. Compact flash X-ray units [C]. 10th IEEE International Pulsed Power Conference, 1995: 892-896.
    [25] Dragt A J and Elizondo J M. Compact battery-powered, 400-kV, 40-Joule Marx Generator [C]. Pulsed Power Plasma Science, 2001. Digest of Technical Papers, 2: 1555-1558.
    [26] Kekez M M, LoVetri J, Podgorski A S, et al. A 60 Joule, 600kV, 1 ns rise-time Marx system [C]. 7th IEEE International Pulsed Power Conference, 1989: 123-127.
    [27] Kekez M M and Liu J. A 60 Joule, 600 kV, 500 ps risetime, 60 ns pulse width Marx generator [J]. Meas. Sci. Technol., 1994, 5: 1389-1395.
    [28] Kekez M M. A 480 Joule, 650 kV, <3 ns risetime, 500 ns pulse width, compact pulse generator[C]. 11th IEEE international Pulsed Power Conference, 1997: 1524-1529.
    [29] Smith I. The Early History of Western Pulsed Power [J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1585 -1609.
    [30] Martin T H. Summary of the Hermes II Flash X-ray program [R]. 1969, SC-RR-69 -421.
    [31] Ramirez J J, Prestwich K R, Burgess E L, et al. The Hermes III program [C]. 6th IEEE International Pulsed Power Conference, 1987: 294-299.
    [32] Bernstein B and Smith I. Aurora, an electron accelerator [J]. IEEE Transactions on Nuclear Science, 1973, 20 (3): 294-300.
    [33]李玉虎,邱爱慈,许日. 6.4 MV Marx发生器[C].全国高功率粒子束十年文集, 1995: 157-162.
    [34] Cooperstein G, Condon J J, and Boller J R. The Gamble I Pulsed Electron Beam Generator [J]. J. Vac. Sci. Technol., 1973, 10 (6): 961-964.
    [35] Shipman J D. The electrical design of the NRL Gamble II, 100 kilojoule, 50 nanosecond, water dielectric pulse generator used in electron beam experiments [J]. IEEE Transactions on Nuclear Science, 1971, 18(4): 243-246.
    [36]李振荣,车钖刚,赵云畸,等. 10 MV Marx发生器[C].全国高功率粒子束十年文集, 1995: 138-144.
    [37] Martin T H. Pulsed power for fusion [C]. 1st IEEE International Pulsed Power Conference, 1976: ID1-ID12.
    [38] Martin T H, VanDevender J P, Barr G W, et al. Particle beam fusion accelerator (PBFA-I) [J]. IEEE Trans. Nucl. Sci., 1981, 28(3): 3365-3369.
    [39] Turman B N, Martin T H, Neau E L, et al. PBFA II, A 100 TW pulsed power driver for ICF [C]. 5th IEEE International Pulesed Power Conference, 1985: 155-161.
    [40] Spielman R B, Stygar W A, Struve K W, et al. PBFA Z: A 55 TW/4.5 MJ electrical generator [C]. Proceeding of the 1997 Particle Accelerator Conference, 1997, 1:1235-1239.
    [41] Kewish Ralph W Jr. Development of a 600 kV Marx module for a high-density Z-pinch experiment [C]. 3rd IEEE International Pulsed Power Conference, 1981: 384-387.
    [42] Bossamykin V S, Gerasimov A I, Klement’ev A P, et al. System of 500 kV Marx generator for LIA-10 radial lines charging [C]. 9th IEEE International Pulsed Power Conference, 1993: 898-900.
    [43] Shen L G, Li C L, and Liu Y G. 81-7M-01-A two-beams accelerator [C]. 11th IEEE International Pulsed Power Conference, 1997:355-360.
    [44] Cassany B, Desanlis T, Galtie A, et al. High current fast Marx generator and Vircator experiments [C]. Conference Record of the 26th International Power Modulator Symposium, 2004 and 2004High-Voltage Workshop, 441-444.
    [45] Peterkin F E, Hankla B J, Stevens J L, et al. Compact Marx generator test system [C]. Conference Record of the 25th International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop, 399-402.
    [46] Grothaus M G, Moran S L, and Hardesty L W. High-repetition-rate hydrogen Marx generator [C]. Conference Record of the 20th Power Modulator Symposium, 1992: 119-122.
    [47] Heeren T, Wang D Y, Namihira T, et al. Novel Dual Marx Generator for Microplasma Applications [J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1205-1209.
    [48] Kim J H, Ryu M H, Min B D, et al. High voltage pulse power supply using Marx generator & solid-state switches [C]. 32nd Annual Conference of IEEE Industrial Electronics Society, 2005: 1244-1247.
    [49] Wu Y F, Liu K F, Qiu J, et al. Repetitive and high voltage Marx generator using solid-state device [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 937-940.
    [50]周启明,孙庚晨,罗学金,等. 100 kV高压ns陡脉冲源的研制[J].高电压技术, 2002,28(6): 37-39.
    [51]范丽思,刘丽珍,张希军,等.纳秒级电磁脉冲模拟器的研制[J].军械工程学院学报, 2004, 16(6): 58-61.
    [52]王晓军,陈平,杨大为,等.高压陡脉冲发生器的研制[J].强激光与粒子束, 1992, 4(2): 228-232.
    [53]秦卫东,李洪涛,顾元朝,等. 200 kV快脉冲Marx发生器[J].高电压技术, 2002, 28(11): 40, 51.
    [54] Kubota Y, Kawasaki S, Miyahara A, et al. Coaxial Marx generator for producing intense relativistic electron beams [J]. Japanese Journal of Applied Physics. 1974, 13(2): 260-263.
    [55] Obara M, Sakato Y, Lee C H, et al. Low-impedance, coaxial-type Marx generator with a quasi-rectangular output waveform [C]. 2nd IEEE International Pulse Power Conference, l979, 165-171.
    [56] Graham J D, Gale D G, and Sommars W E. Compact 400 kV Marx generator with common switch housing [C]. 11th IEEE International Pulsed Power Conference, 1997: 1519-1523.
    [57] Chen Y J, Neuber A A, Mankowski J, et al. Design and optimization of a compact, repetitive, high-power microwave system [J]. Rev. Sci. Instrum, 2005, 76(10): 104703-1-8.
    [58] Martin B, Raymond P, and Wey J. New model for ultracompact coaxial Marx pulse generator simulations [J]. Rev. Sci. Instrum., 2006, 77(4): 043505-1-7.
    [59] Bischoff R, Charon R, Duperoux J P , et al. Study of an ultra-compact, repetitive Marx generator for HPM applications [C]. Proceedings of the 2nd EAPPC, Vilnius, Lithuania, 2008.
    [60] Beverly III R E and Associates. http://www.reb3.com/pdf/Marx_generators.pdf.
    [61]曾大雄,郭忠华,平家彪.电感隔离型马克思发生器的试验研究[J].高压电器, 1983, (2): 3-9.
    [62]王新新,张卓,肖如泉.重复频率Marx发生器[J].电工技术学报, 1997, 12(6): 59-62.
    [63]刘宏伟,谢卫平,李洪涛,等.紧凑型电感隔离快Marx发生器[J].高电压技术, 2008, 34(7): 1436-1439.
    [64] http://www.apelc.com/marx.html
    [65] Goerz D, Ferriera T, Nelson D, et al. An ultra-compact Marx-type high-voltage generator [C]. Pulsed Power Plasma Science, 2001. Digest of Technical Papers, 1: 628-631.
    [66]周璧华.电磁脉冲及其工程防护[M].北京:国防工业出版社, 2003.
    [67] Takagi K, Kubota Y, and Miyahara A. Characteristics of co-axial Marx generator and its application to electron beam fusion [J]. Japanese Journal of Applied Physics, 1979, 18(6): 1135-1141.
    [68] Kuffel E, Zaengl W S, and Kuffel J. High Voltage Engineerging [M]. Second edition 2000, published by Butterworth-Heinemann: 214-217.
    [69] Fletcher R C. Production, and measurement of Ultra-high speed impulses [J]. Rev. Sci. Instrum., 1949, 20(12): 861-868.
    [70] Fletcher R C. Impulse breakdown in the 10-9-sec. range of air at atmospheric pressure [J]. Physical Review, 1949, 76(10): 1501-1511.
    [71] P Felsenthal and J M Proud. Nanosecond-pulse Breakdown in Gases [J]. Phys.Rev., 1965, 139(6A), 1796-1804.
    [72] Martin T H. Pulse charged gas breakdown [C]. 5th IEEE International Pulsed Power Conference, 1985: 74-83.
    [73] Martin T H. An empirical formula for gas switch breakdown delay [C]. 7th IEEE International Pulsed Power Conference, Monterey, CA, 1989: 73-79.
    [74] Martin T H, Seamen J F, Jobe D O, et a1. Gaseous prebreakdown processes:that are important for pulsed power switching [C]. 8th IEEE International Pulsed Power Conference, 1991: 323-327.
    [75]高景明,刘永贵,殷毅,杨建华.气体火花开关放电的数值模拟[J].强激光与粒子束, 2007, 19(6): 1039-1043.
    [76] Engel T G, Donaldson A L, and Kristiansen M. The pulsed discharge arc resistance and its functional behavior [J]. IEEE Transactions on Plasma Science, 1989, 17(2): 323-329.
    [77]何小平,汤俊萍,孙蓓生,等. 60 kV同轴快沿脉冲源研制与调试[J].强激光与粒子束, 2006, 18(3): 501-504.
    [78]翁明,王桂芹.用火花电阻计算高压毫微秒脉冲放电参量[J].真空电子技术, 1996, (3): 23-26.
    [79] Sorensen T R and Ristic V M. Rise time and time-dependent spark-gap resistance in nitrogen and helium [J]. Journal of Applied Physics, 1977, 48(1): 114-117.
    [80] Kusher M J, Kimura W D, and Byron S R. The resistance of laser-triggered spark gaps [J]. Journal of Applied Physics, 1985, 58(5): 1744-1751.
    [81] Isteni? M, Smith I R, and Novac B M. The resistance of nanosecond spark gaps[C]. IEE Pulsed Power Symposium, 2005.
    [82]殷毅.高功率氢气开关的初步研究[D].国防科技大学硕士学位论文,长沙:国防科技大学研究生院, 2006.
    [83]杨汉武.爆炸磁压缩发生器及其脉冲功率调制研究[D].国防科技大学博士学位论文,长沙:国防科技大学研究生院, 2002.
    [84]李洪涛. Z-pinch加速器闭合开关技术研究[D].中国工程物理研究院博士学位论文,北京:中国工程物理研究院研究生院, 2003.
    [85]李艳,李胜利,李劲.场畸变火花开关电极优化设计及其触发特性[J].高电压技术, 1999, 25(1): 71-74.
    [86]李洪涛,丁伯南,谢卫平,等. 200 kV/100 kA低抖动环轨式多通道场畸变开关[J].强激光与粒子束, 2003, 15(3): 288-292.
    [87]贺臣,何孟兵,李劲.高陡度场畸变开关触发系统的研制[J].高电压技术, 2004, 30(7): 43-46.
    [88]梁天学,丛培天,关颖,等.同轴型场畸变气体火花开关的研制[J].高压电器, 2004, 40(2): 109-111.
    [89]邹丽丽,孙才新,陈维青,等.一种结构紧凑的场畸变型低电感的气体火花开关[J].高压电器,2008, 44(1): 50-52.
    [90] Lehr J M, Abdalla M D, Gruner F R, et al. Development of a hermetically sealed, high-energy Trigatron switch for high repetition rate applications [J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1469-1475.
    [91]罗敏,赵殿林,甘延青,等.高功率重复频率三电极气体开关自击穿特性[J].强激光与粒子束, 2006, 18(8): 1371-1374.
    [92]门涛,高景明,刘列,等.气体触发开关击穿过程的光学测量实验研究[J]. Chinese Physics C, 2008, 32(增刊): 310-312.
    [93] Lu X P and Mounir L. Atmospheric pressure glow discharge in air using a water electrode [J]. IEEE Transactions on Plasma Science, 2005, 33(2): 272-273.
    [94] Tsukamoto S, Namihira T, Hori H, et al. An analysis of pulsed streamer discharge using a high-speed camera [J]. Pulsed Power Plasma Science, 2001, 2: 1822-1825.
    [95] Briels T M P, Veldhuizen E M V, and Ebert U. Branching of positive discharge streamers in air at varying pressures [J]. IEEE Transactions on Plasma Science, 2005: 264-265.
    [96] Schroder G. SF6-N2 gas mixtures-electrical insulation and discharge development under fast oscillating impulse conditions in a non-uniform gap [C]. Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, 2000: 280-283.
    [97] Schulze H P, Lauter M, Rehbein W, et al. Channel spreading during the spark discharge for selected conditions and working fluids [C]. Annual Report of Conference on Electrical Insulation and Dielectric Phenomena, 2003: 297-300.
    [98] Soldera F A, Mucklich F T, Hrastnik K, et al. Description of the discharge process in spark plugs and its correlation with the electrode erosion patterns [J]. IEEE Transactions on Vehicular Technology, 2004, 53(4): 1257-1265.
    [99] Zhang G J, Wang X R, Yan Z, et al. Optical studies of surface discharge under DC voltage in vacuum [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 9(2):187-193.
    [100] Coaker B M, Xu N S, Bower S, et al. Ultra-fast imaging of pulsed-field surface-flashover along an alumina dielectric in vacuum [C]. 10th IEEE International Pulsed Power Conference, 1995, 2: 911-916.
    [101]陈庆国,张乔根,邱毓昌,等. SF6气体中绝缘子沿面放电的发光特性[J].西安交通大学学报, 2000, 34(12): 1-5.
    [102]张乔根,陈庆国,邱毓昌,等.快速振荡电压下SF6气体间隙放电的光电检测[J].电工电能新技术, 2001, (1): 22-26.
    [103] Kumada A, Chiba M, and Hidaka K. Potential distribution measurement of surface discharge developing on insulating material [C]. 11th International Symposium on High Voltage Engineering, 1999, 3: 317-320.
    [104] Hoshi Y, Yoshida H, Yamanaka K, et al. Time delay in laser-guided discharge at low air pressure [J]. IEEE Transactions on Plasma Science, 1996, 24(3): 1137-1146
    [105] Edson W A and Oetzel G N. Capacitance voltage divider for high-voltage pulse measurement [J]. Rev. Sci. Instrum, 1981, 52(4): 604-606.
    [106] Wong C S. Simple nanosecond capacitance capacitive voltage divider [J]. Rev. Sci. Instrum, 1985, 56(5): 767-769.
    [107] Jayaram S. High-divider-ratio fast-response capacitive dividers for high-voltage pulse measurements [J]. IEEE Transactions on Industry Applications, 2000, 36(3): 920-922.
    [108]赵海翔,杨海芳,张源斌.集中式电容分压器分压比稳定性的研究[J].高电压技术, 1998, 24(2): 66-69.
    [109] Barret D M, Byron S R, and Crawford E A, et al. Low inductance capacitance probe for spark gap voltage measurements [J]. Rev. Sci. Instrum, 1985, 56(11): 2111-2115.
    [110]贺元吉,张亚洲,李传胪.一种高压ns级脉冲形成电路[J].高电压技术, 2000, 26(4): 13-15.
    [111]贺元吉.一种测量亚ns级脉冲高电压的电容分压器[J].哈尔滨理工大学学报, 2004, 9(3): 41-43.
    [112]欧阳佳,刘金亮,田亮,等.一种测量ns级脉冲信号的电容分压器[C].第九届高功率粒子束学术交流会议文集, 2004: 277-281.
    [113]刘金亮,怀武龙,霍哲,等.一种测量脉冲高电压的电容分压器[J].强激光与粒子束, 2000, 12(1): 122-124.
    [114] Ekdahl C A. Voltage and current sensor for a high-density Z-pinch experiment [J]. Rev.Sci. Instrum., 1980,51(12): 1645-1648.
    [115]李海燕,蒋国雄.测量强流陡脉冲的ns级Rogowski线圈[J].电工电能新技术, 1989, (2): 40-45.
    [116] Ray W F and Hewson C R. High performance Rogowski current transducers [C]. IEEE LAS Conference Proceedings, Rome, October 2000.
    [117]陈景亮,姚学玲,孙伟.两种典型Rogowski线圈的研制[J].高电压技术, 2004, 30(7): 14-16.
    [118]张明明,张艳,李红斌,等. Rogowski电流互感器的积分器技术[J].高电压技术, 2004, 30(9): 13-16.
    [119] Pellinen D. A high current, subnanosecond response Faraday cup [J]. Rev.Sci.Instrum., 1970, 41(9): 1347-1348.
    [120] Pellinen D and Staggs V. A technique to measure high-power electron beam currents [J]. Rev.Sci.Instrum. 1973, 44(1): 46-49.
    [121] Darling R B, Scheidemann A A, Bhat K N, et al. Micromachined Faraday cup array using deep reactive ion etching [C]. 14th IEEE International Conference on Micro Electro Mechanical Systems, 2001: 90-93.
    [122]邱爱慈,张永民,黄建军,等.几种诊断高能注量电子束参数的方法[J].强激光与粒子束, 2003, 15(5): 489-493.
    [123]袁伟群,栗保明.阻容型分压器在脉冲电容器放电特性研究中的应用[J].南京理工大学学报, 2005, 29(1): 49-51.
    [124]李名加,康强,常安碧. Tesla变压器形成线的电压测量系统设计[J].高电压技术, 2005, 31(2): 58-60.
    [125]何小平,汤俊萍,孙蓓生,等. 60 kV同轴快沿脉冲源研制与调试[J].强激光与粒子束, 2006, 18(3): 501-504.
    [126]高景明,刘永贵,杨建华.一种电容补偿型高压电容分压器的设计[J].高电压技术, 2007, 33(6): 76-79.
    [127]高景明,刘永贵,杨建华.几种高压电容分压器响应时间的分析[C].中国电机工程学会高压专业委员会高电压新技术学组2006年学术年会, 2006: 13-16.
    [128]刘金亮,詹天文,曾乃工,等.用于强流电子束加速器的大功率匹配负载的研制[J].强激光与粒子束, 2007, 19(5): 825-829.
    [129]吕治辉.高功率自击穿气体火花开关多脉冲运行特性研究[D].国防科技大学硕士学位论文,长沙:国防科技大学研究生院, 2005.
    [130] Dolan J E, Bolton H R, and Shapland A J. A 50 ?, 50 kV ceramic disc coaxial load [C]. 10th IEEE International Pulsed Power Conference, 1995: 1443-1448.
    [131] Taylor R S and Leopold K E. UV radiation-triggered rail-gap switches [J]. Rev. Sci. Instrum., 1984, 55(1): 52-63.
    [132]李俊娜,邱爱慈,蒯斌,等.自耦式紫外预电离开关特性[J].强激光与粒子束, 2008, 20(6): 994-998.
    [133]石中玉.紫外线光源及其应用[M].北京:轻工业出版社, 1984.
    [134]何宏达,李育德,刘志军.紫外预电离TEA CO2激光器初始电子密度的分布[J].激光杂志, 2002, 23(6): 22-25.
    [135] IEEE Transactions on Plasma Science的专家审稿意见
    [136]龙霞锋. Marx型脉冲形成网络研究[D].国防科技大学硕士学位论文,长沙:国防科技大学研究生院, 2007.
    [137] Xun T, Zhang J D, Gao J M, et al. Hydrodynamic loading of ceramic components due to electrical discharge in water [C]. 17th International Conference on High-Power Particle Beams, 2008: 553-556.
    [138]孙凤举,许日,曾江涛,等. 1 MV重复频率Marx发生器[J].高压电器, 1999, (2): 53-55.
    [139] Shannon J. A 500 kV rep-rate Marx generator [C]. 2nd IEEE International Pulsed Power Conference, 1979: 226-231.
    [140] O’Malley M W and Buttram M T. Development of a repetitive 1 MV, 22 kJ Marx generator [C]. 6th IEEE International Pulsed Power Conference, 1987: 711-714.
    [141] Lancaster K T, Clark R S, and Buttram M T. A compact, repetitive, 6.5 kilojoule Marx generator [C]. IEEE Conference Record of the 18th Power Modulator Symposium, 1988: 48-51.
    [142] Lloyd S, Chen Y G, McAllister G, et al. A 500 kV rep-rate electron beam generator [C]. 7th IEEE International Pulsed Power Conference, 1989: 766-768.
    [143] Ness R M, Smith B D, Chu, E Y, et al. Compact, megavolt, rep-rated Marx generators [J]. IEEE Transactions on Electron Devices, 1991, 38(4): 803-809.
    [144] Abdullin E N and Morozov A V. Electron accelerator based on repetitive pulsed Marx generator [C]. International Symposium on Discharges and Electrical Insulation in Vacuum, 2002: 368-371.
    [145]秦松林.冲击电压发生器的恒流充电[J].高压电器, 1997, (2): 28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700