用户名: 密码: 验证码:
碳纤维天鹅绒阴极及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维天鹅绒阴极具有放气量少和耐烧蚀的特点,是常规天鹅绒阴极的一种重要改进材料,能够更好地满足高功率微波和强激光泵浦的实际应用需求。本论文从碳纤维天鹅绒材料制备、阴极等离子体光学诊断平台建立、碳纤维天鹅绒阴极工作性能研究及其应用等方面开展了系统深入的研究。相关工作对于拓展阴极基础研究、深入认识强流电子束二极管基础物理问题,以及改善天鹅绒阴极应用性能具有重要的理论及现实意义。本论文的研究内容主要包括以下方面:
     1.碳纤维天鹅绒材料制备
     根据碳纤维电导率高的特点,理论分析了良导体纤维在静电场中的动力学特性;采用碳纤维表面改性的方法,解决了碳纤维短切丝在气体环境中的团聚问题;采用在植绒装置中填充N2/SF6混合气体的方法,解决了碳纤维短切丝引起的植绒电极短路问题;制备了碳纤维天鹅绒材料,长度为2.0±0.5mm的碳纤维短切丝均匀分布于基底表面,覆盖率达5%。
     2.强流电子束阴极等离子体光学诊断平台建立
     搭建了作为阴极等离子体光学诊断平台基础的脉冲功率调制器,其输出电压百kV级、脉冲宽度110ns、二极管电流kA级;采用在脉冲功率调制器主开关之后提取高速相机触发信号的方法,避免了主开关百纳秒甚至微秒级动作抖动对高速相机纳秒级同步触发的影响;研制了信号处理器,在5ns时间内获得了抖动小于1.5ns的高速相机同步触发时间基准;采用高压电脉冲延时辅以二极管等离子体发光信号延时的方案,实现了高速相机的纳秒级同步触发;综合采用屏蔽和滤波等电磁兼容措施保证了高速相机在距离脉冲功率调制器5m范围内安全稳定工作;开展了阴极等离子体光学高速照相实验,图像时间分辨率为10ns,空间分辨率为0.167mm/pixel。
     3.碳纤维天鹅绒阴极的工作性能研究
     (1)研究了阴极边缘效应。采用屏蔽环抑制了阴极边缘效应和电子束径向扩张,在此基础上确定了用于阴极性能研究的二极管结构。
     (2)对比研究了常规天鹅绒和碳纤维天鹅绒阴极的等离子体特性。碳纤维天鹅绒阴极的阈值场强为7±1kV/cm,约为常规天鹅绒阴极阈值场强的1/3;碳纤维天鹅绒阴极有利于改善二极管长时间的宏观电稳定性;提出了一种基于光学高速照相和数字图像处理技术的方法,据此计算得到了阴极等离子体二维膨胀速度;在阴极起动阶段,碳纤维天鹅绒阴极等离子体可以在更短的时间内覆盖整个阴极表面;在电流平顶阶段,碳纤维天鹅绒阴极等离子体的轴向膨胀速度从2.3cm/μs下降到1.3cm/μs,相比之下,常规天鹅绒阴极等离子体轴向膨胀速度从7.3cm/μs下降到5.3cm/μs;采用碳纤维天鹅绒阴极避免了电流脉冲末期的波形畸变。
     (3)对比研究了阴极和阳极材料对二极管放气的影响。当阴极电流密度小于230A/cm2时,碳纤维天鹅绒阴极减少了二极管放气量;阳极材料表面经过钝化和阳极化处理后形成了致密的薄膜,减少了二极管放气量。
     (4)对比研究了常规天鹅绒和碳纤维天鹅绒阴极的重复频率工作稳定性。在重复频率20Hz条件下,当电流密度小于100A/cm2时,碳纤维天鹅绒阴极的不稳定度约为常规天鹅绒阴极的1/2;在电流密度为60~70A/cm2条件下,当重复频率相同时,碳纤维天鹅绒阴极工作更为稳定。
     (5)研究了阳极溅射对阴极的烧蚀。根据阳极表面入射电子束功率的时间变化和空间分布特性,修正了Mesyats关于阳极表面热过程研究的模型,据此得到的理论结果可以在更长的时间和更宽的空间范围内分析脉冲电子束辐照条件下阳极表面的热过程;当入射电子束功率达108W/cm2时,铝、不锈钢以及黄铜等阳极材料表面严重烧蚀;阳极溅射会破坏常规天鹅绒阴极表面形貌,造成纤维的碳化和脱落,导致二极管宏观电稳定性变差。
     4.碳纤维天鹅绒材料应用
     (1)开展了碳纤维天鹅绒阴极在MILO中的应用。在电子束参数为600kV、50kA的实验条件下,与常规天鹅绒阴极相比,使用碳纤维天鹅绒阴极不仅减少了MILO输出微波的倍频成分,而且提高了微波的峰值功率。
     (2)开展了碳纤维天鹅绒材料在微波隐身和杂散光抑制领域的应用。研究了碳纤维天鹅绒的微波隐身性能,覆盖率为5%的碳纤维天鹅绒对9.2~11.8GHz微波的反射率为-4.8~-5.0dB;研究了碳纤维天鹅绒对紫外―近红外区杂散光的抑制效应,覆盖率为2%的碳纤维天鹅绒对紫外―近红外光的反射率均小于1.4%。
It has been shown that, in comparison with conventional velvet, carbon fiber velvetcathode is more practical in such applications as high-power microwave generation andpumping of gaseous lasers for low out-gassing and good ablation resistance. In thisdissertation, the related aspects of carbon fiber velvet have been studied systematicallyand profoundly, such as material fabrication, establishment of the platform for opticaldiagnostics of cathode plasma, property investigations and applications. These effortsare of great theoretical and realistic significance for both basic and applied research ofthe carbon fiber velvet. The detailed contents include the followings:
     1. Fabrication of the carbon fiber velvet
     The dynamics of the conductive fibers in electrostatic field were studiedtheoretically. The method based on the surface modification was proposed for thecarbon fiber dispersion in circumstances of gas. The N2/SF6gas mixture was filled intothe electrostatic flocking box to avoid the short circuit between electrodes. The velvetconsists of numerous2.0±0.5-mm-long carbon fibers aligned perpendicularly to thesubstrate. The fiber packing fraction is about5%.
     2. Establishment of the platform for optical diagnostics of cathode plasma
     As the basis of the platform, the pulse power modulator could provide an electricalpulse with voltage of several hundred kV and pulse width of110ns. The diode currentup to kA level could be extracted. The trigger signal for the camera was picked up afterthe main switch of the modulator, which could avoid the disadvantageous influence ofthe jitter time (ns~μs) caused by the breakdown of the gas gap. Then the samplednegative electrical pulse was converted into a TTL signal via a processor within5ns.The jitter time was less than1.5ns. And this was taken as the synchronization time base.The synchronization scheme relying mainly on electrical pulse delay supplemented bylight delay was employed to make sure that the camera could work synchronously withlight production and transportation from the cathode plasma within the time scale ofnanosecond. The shielding and filtering methods were used to make sure that thecamera could work properly and steadily within5meters of the modulator. At last, thecathode plasma imaing experiments were carried out on this platform. The temporal andspatial resolution was10ns and0.167mm/pixel, respectively.
     3. Research of the carbon fiber velvet properties
     (1) Research of the cathode edge effect. It was shown that the cathode edge effectcould be eliminated by using the screening ring. Based on this, the diode structure wassettled.
     (2) Comparison of the cathode plasma characteristics. It was shown that the carbonfiber velvet turned on at the electric field of7±1kV/cm, which was nearly one third of that of the conventional velvet. The long-term electrical stability of the diode could beimproved by using carbon fiber velvet cathode. The2-D expansion velocity of thecathode plasma was investigated by utilizing the digital image processing methods.During the rise time of the current pulse the plasma could cover the entire surface of thecarbon fiber velvet cathode in a shorter time. The value of the axial velocitycomponents of the carbon velvet cathode plasma decreased from2.3cm/μs to1.3cm/μsduring the current flattop. By contrast, the value of the axial velocity components of theconventional velvet cathode plasma decreased from7.3cm/μs to5.3cm/μs. Moreover,the waveform distortion in the latter part of the current could be avoided by using thecarbon fiber velvet cathode.
     (3) Comparison of the effects of the cathode and anode materials on the outgassingof the diode. When the current density was less than230A/cm2, the amounts of gasesgenerated in the diode could be reduced by using the carbon fiber velvet cathode. Thedense passive and anodized coating could be created on the anode surface. And thiscould reduce the amounts of gases generated in the diode.
     (4) Comparison of the pulse-to-pulse instability in the rep-rate mode. When thecurrent density was less than100A/cm2, the instability was about half as many as that ofthe conventional velvet at20Hz rep-rate. When the current density was60~70A/cm2,the carbon velvet cathode was more robust at the same rep-rate.
     (5) Research of the anode splash on the erosion of the velvet cathode. Based on thetemporal variations and spatial distributions of power density of the electron flow, theprevious model put forward by Mesyats was modified. The thermal regime of the anodewas studied theoretically. It was shown that, for the power density of108W/cm2,conditions for intense erosion of the anode material were created. The anode splashdestroyed the surface morphology of the velvet, resulting in the carbonization anddetachment of the fibers. Moreover, this decreased the electrical stability of the diode.
     4. Application of the carbon fiber velvet
     (1) Application of the carbon fiber velvet in MILO. The conventional and carbonfiber velvet cathode were studied utilizing a stainless steel MILO. It was shown that notonly the higher harmonic of the output microwave was suppressed but also the peakpower was increased when the carbon fiber velvet was used in MILO with diode voltageof600kV and beam current of50kA.
     (2) Application of the carbon fiber velvet in microwave stealth and stray-lightsuppression. It was shown that the reflectance values of the carbon fiber velvet withfiber packing fraction of5%was-4.8~-5.0dB in the frequency range of9.2~11.8GHz.The surface of the carbon fiber velvet with fiber packing fraction of2%yieldedreflectance values of less than1.4%for ultraviolet, visible, and near-infrared light.
引文
[1] Miller R B. Introduction to the Physics of Intense Charged Particle Beams [M]. New York:Plenum,1982.
    [2]刘锡三.强流粒子束及其应用[M].北京:国防工业出版社,2007.
    [3]电子管设计手册编辑委员会.微波管电子光学系统设计手册[M].北京:国防工业出版社,1981.
    [4]廖复疆.真空电子技术:信息装备的心脏[M].北京:国防工业出版社,1999.
    [5] Barker R J, Schamiloglu E. High-Power Microwave Sources and Technologies [M].Piscataway, NJ: IEEE Press,2001.
    [6] Benford J, Swegle J A, Schamiloglu E. High Power Microwaves [M]. New York: Taylor&Francis Group,2007.
    [7] Mesyats G A. Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark andthe Arc [M]. M.:Nauka,2000.
    [8] Adler R J, Kiuttu G F, Simpkins E, et al. Improved electron emission by use of a cloth fibercathode [J]. Review of Scientific Instruments,1985,(56):766-767.
    [9] Miller R B. Mechanism of explosive electron emission for dielectric fiber (velvet) cathode [J].Journal of Applied Physics,1998,(84):3880-3889.
    [10] Hegeler F, Friedman M, Myers M C, et al. Reduction of edge emission in electron beamdiodes [J]. Physics of Plasmas,2002,(9):4309-4315.
    [11] Hegeler F, Friedman M, Myers M C, et al. Studies of enhanced edge emission of a large areacathode [J]. IEEE Transactions on Plasma Science,2002,(9):717-720.
    [12]王少恒.天鹅绒阴极发射特性研究[D].绵阳:中国工程物理研究院,1996.
    [13]丁伯南,邓建军,王华岑等.“神龙一号”直线感应电子加速器[J].高能物理与核物理,2005(29):604-610.
    [14]丁伯南,张开志,文龙等.“神龙一号”注入器研制[J].高能物理与核物理,2005(29):219-223.
    [15]夏连胜.天鹅绒阴极强流多脉冲发射特性研究[D].绵阳:中国工程物理研究院,2005.
    [16] Miller R B. Pulse Shortening in High-Peak-Power Reltron Tubes [J]. IEEE Transactions onPlasma Science,1998,(26):340-347.
    [17] Saveliev Y M, Spark S N, Kerr B A, et al. Effect of Cathode End Caps and a CathodeEmissive Surface on Relativistic Magnetron Operation [J]. IEEE Transactions on PlasmaScience,2000,(28):478-484.
    [18] Saveliev Y M, Kerr B A, Harbour M I, et al. Operation of a Relativistic Rising-Sun MagnetronWith Cathodes of Various Diameters [J]. IEEE Transactions on Plasma Science,2002,(30):938-946.
    [19] Shiffler D, Haworth M, Cartwright K, et al. Review of cold cathode research at the airforceresearch laboratory [J]. IEEE Transactions on Plasma Science,2008,(36):718-728.
    [20] Kerr B et al., Carbon velvet cathode implementation on the ORION relativistic magnetron [J].Proc. Inst. Electr. Eng.—Pulsed Power Symposium,2005,6/1–6/6.
    [21] Haworth M D, Cartwright K L, Luginsland J W, et al. Improved electrostatic design for MILOcathodes [J]. IEEE Transactions on Plasma Science,2002,(30):992-997.
    [22]张晓萍.新型磁绝缘线振荡器的研究[D].长沙:国防科学技术大学,2004.
    [23]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科学技术大学,2007.
    [24] Fan Y W, Yuan C W, Zhong H H, et al. Recent progress of the improved MILO [J]. Review ofScientific Instruments,2008,(79):034703.
    [25] Fan Y W, Zhong H H, Li Z Q, et al. Repetition rate operation of an improved magneticallyinsulated transmission line oscillator [J]. Physics of Plasmas,2008,(15):083102.
    [26] Fan Y W, Zhong H H, Li Z Q, et al. A double-band high-power microwave source [J]. Journalof Applied Physics,2007,(102):103304.
    [27] Fan Y W, Zhong H H, Li Z Q, et al. Investigation of an X-band magnetically insulatedtransmission line oscillator [J]. Chinese Physics B,2008,(17):1804-1808.
    [28] Fan Y W, Zhong H H, Li Z Q, et al. A metal-dielectric cathode [J]. Journal of Applied Physics,2008,(104):023304.
    [29] Fan Y W, Zhong H H, Li Z Q, et al. Investigation of a1.2-GHz Magnetically InsulatedTransmission Line Oscillator [J]. IEEE Transactions on Plasma Science,2011,(39):540-544.
    [30] Fan Y W, Zhong H H, Shu T, et al. Complex magnetically insulated transmission lineoscillator [J]. Physics of Plasmas,2008,(15):083108.
    [31] Fan Y W, Zhong H H, Shu T, et al. Theoretical investigation of the fundamental modefrequency of the magnetically insulated transmission line oscillator [J]. Physics of Plasmas,2008,(15):123504.
    [32] Fan Y W, Zhong H H, Yang H W, et al. Analysis and improvement of an X-band magneticallyinsulated transmission line oscillator [J]. Journal of Applied Physics,2008,(103):123301.
    [33] Fan Y W, Zhong H H, Zheng S Y, et al. Simulation investigation of X-band MILO [J]. HighPower Laser and Particle Beams,2006,(18):439-442.
    [34]李志强,钟辉煌,樊玉伟等.S波段锥形磁绝缘线振荡器频率特性[J].强激光与粒子束,2009(21):867-870.
    [35]李志强,钟辉煌,樊玉伟等.S波段锥形磁绝缘线振荡器长脉冲实验研究[J].强激光与粒子束,2008(20):255-259.
    [36]陈代兵,范植开,董志伟等.阶梯阴极型L波段MILO的实验研究[J].强激光与粒子束,2007,(19):820-824.
    [37]陈代兵,范植开,周海京等.波段硬管磁绝缘线振荡器的研制[J].强激光与粒子束,2007(19):1352-1356.
    [38] Xiao R Z, Zhang Y P, Shao H, et al. An Inward-Emitting Magnetically Insulated LineOscillator [J]. IEEE Transactions on Plasma Science,2009,(37):1925-1929.
    [39] Xiao R Z, Sun J, Chen C H, et al. High efficiency annular magnetically insulated lineoscillator-transit time oscillator with three separate frequencies in three bands [J]. Journal ofApplied Physics,2009,(106):033308.
    [40] Xiao R Z, Song W, Song Z M, et al. High efficiency X-band magnetically insulated lineoscillator with a separate cathode.[J]. Physics of Plasmas,2010,(17):043109.
    [41]彭天柱,祝大军,刘盛纲.一种S波段磁绝缘线振荡器的高频特性研究[J].强激光与粒子束,2006(18):2043-2046.
    [42]彭天柱,祝大军,刘盛纲.磁绝缘线振荡器的三维粒子模拟[J].真空电子技术,2006(3):21-23.
    [43] Smith I D, Nett D, Clausen F. Dielectric Cathodes: A review and some recent improvements[J].16th IEEE international Pulsed Power Conference,2007,(1):73-78, Albuquerque, NM.
    [44] Friedman M, Myers M C, Chan Y, et al. Properties of ceramic honeycomb cathodes [J].Applied Physics Letters,2008,(92):141501.
    [45] Friedman M, Myers M C, Hegeler F, et al. Emission of an intense large area electron beamfrom a slab of porous dielectric [J]. Journal of Applied Physics,2004,(96):7714-7722.
    [46] Gleizer J Z, Hadas Y, Yarmolich D, et al. Comment on“Properties of ceramic honeycombcathodes”[J]. Applied Physics letters,2008,(93):036103.
    [47] Myers M C, Hegeler F, Friedman M, et al. Development of a durable, large area cathode forrepetivity, uniform electron beam generator [J].13th IEEE Pulsed Power Conference,2002,
    [48] Friedman M, Myers M C, Hegeler F, et al. High power diode utilizing secondaryemission[P].USA:US2005/0199982A1,2005.
    [49]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [50] Schlise C A. Explosive Emission Cathodes For High Power Microwave Devices: GasEvolution Studies[D].USA:Naval Postgraduate School,2004.
    [51] Garate E, McWilliams R D, Voss D E, et al. Novel Cathode for Field-emission Applications[J]. Review of Scientific Instruments,1995,(66):2528-2532.
    [52] Shiffler D, Albuquerque J. Field emission cold cathode[P].USA:US2004/6683399B2,2004.
    [53] Lynn C F, Neuber A A, Walter J W, et al. Light Emission From CsI-Coated Carbon VelvetCathodes Under Varied Conditions [J]. IEEE Transactions on Plasma Science,2012,(40):3449-3454.
    [54] Shiffler D, Ruebush M, Haworth M, et al. Carbon velvet field-emission cathode [J]. Review ofScientific Instruments,2002,(73):4358-4362.
    [55] http://www.esli.com
    [56] Liu L, Wan H, Zhang J, et al. Fabrication of Carbon-Fiber Cathode for High-PowerMicrowave Applications [J]. IEEE Transactions on Plasma Science,2004,(32):1742-1746.
    [57] Liu L, Li L M, Zhang X P, et al. Efficiency Enhancement of Reflex Triode Virtual CathodeOscillator Using the Carbon Fiber Cathode [J]. IEEE Transactions on Plasma Science,2007,(35):361-368.
    [58] Liu L, Li L M, Xu Q F, et al. Time-and-space resolved measurements of the emissionuniformity of carbon fibre cathode in high-current pulsed discharge [J]. Chinese Physics B,2010,(19):032902.
    [59] Liu L, Li L M, Wen J C, et al. Robust, easily shaped, and epoxy-free carbon-fiber-aluminumcathodes for generating high-current electron beams [J]. Review of Scientific Instruments,2009,(80):023303.
    [60] Liu L, Li L, Zhang X P, et al. Carbon fiber-based cathodes for magnetically insulatedtransmission line oscillator operation [J]. Applied Physics Letters,2007,(91):161504.
    [61] Liu L, Li L, Zhang J, et al. A series of tufted carbon fiber cathodes designed for different highpower microwave sources [J]. Review of Scientific Instruments,2008,(79):064701.
    [62] Li L M, Liu L, Xu Q F, et al. Design of a simple annular electron beam source and itsoperating characteristics in single and repetitive shot modes [J]. Review of ScientificInstruments,2008,(79):094701.
    [63] Li L M, Liu L, Xu Q F, et al. Relativistic electron beam source with uniform high-densityemitters by pulsed power generators [J]. Laser and Particle Beams,2009,(27):335-344.
    [64] Li L M, Liu L, Wen J C, et al. An intense-current electron beam source with low-level plasmaformation [J]. Journal of Physics D: Applied Physics,2008,(41):1-7.
    [65] Li L M, Liu L, Wen J C, et al. Effects of CsI Coating of Carbon Fiber Cathodes on theMicrowave Emission From a Triode Virtual Cathode Oscillator [J]. IEEE Transactions onPlasma Science,2009,(37):15-22.
    [66] Li L M, Liu L, Wan H, et al. Plasma-induced evolution behavior of space-charge-limitedcurrent for multiple-needle cathodes [J]. Plasma Science and Technology,2008,(18):1-8.
    [67] Li L M, Liu L, Cheng G X, et al. Visualization of emitting sites on carbon fiber cathode bysurface treatment in high-current vacuum discharge process [J]. Vacuum,2010,(84):304-309.
    [68] Li L M, Liu L, Chang L, et al. Characteristics of polymer velvet as field emitters underhigh-current pulsed discharge [J]. Applied Surface Science,2009,(255):4563-4568.
    [69]樊玉伟,周恒,钟辉煌等.碳纤维天鹅绒阴极与化纤天鹅绒阴极的比较研究[J].强激光与粒子束,2010(22):587-590.
    [70] Shiffler D, Heggemeier J, LaCour M, et al. Low level plasma formation in a carbon velvetcesium iodide coated cathode [J]. Physics of Plasmas,2004,(11):1680-1684.
    [71] Shiffler D, Heggemeier J, LaCour M, et al. Responce to "Comment on 'Low level plasmaformation in a carbon velvet cesium iodide coated cathode'"[J]. Physics of Plasmas,2004,(11):5732-5733.
    [72] Shiffler D, Heidger S, Cartwright K, et al. Materials characteristics and surface morphology ofa cesium iodide coated carbon velvet cathode [J]. Journal of Applied Physics,2008,(103):013302.
    [73] Shiffler D, Ruebush M, Zagar D, et al. Cathode and anode plasmas in short-pulse explosivefield emission cathodes [J]. Journal of Applied Physics,2002,(91):5599-5603.
    [74] Shiffler D, Luginsland J, Ruebush M, et al. Emission Uniformity and Shot-to-Shot Variationin Cold Field Emission Cathodes [J]. IEEE Transactions on Plasma Science,2004,(32):1262-1266.
    [75] Shiffler D, Ruebush M, LaCour M, et al. Emission uniformity and emission area of explosivefield emission cathodes [J]. Applied Physics Letters,2001,(79):2871-2873.
    [76] Shiffler D, Ruebush M, Zagar D, et al. Emission uniformity and emittance of explosivefield-emission cathodes [J]. IEEE Transactions on Plasma Science,2002,(30):1592-1596.
    [77] Drummy L F, Apt S, Shiffler D, et al. Nanostructure evolution during emission of CsI-coatedfiber cathodes [J]. Journal of Applied Physics,2010,(107):113304.
    [78] Vlahos V, Morgan D, LaCour M, et al. Surface chemical analysis and ab initio investigationsof CsI coated C fiber cathodes for high power microwave sources [J]. Journal of AppliedPhysics,2010,(107):044903.
    [79] Krasik Y E, Dunaevsky A,Felsteiner J. Plasma sources for high-current electron beamgeneration [J]. Physics of Plasmas,2001,(8):2466-2472.
    [80] Krasik Y E, Dunaevsky A,Felsteiner J. Intense electron emission from carbon fiber cathodes[J]. European Physics J.,2001,(D15):345-348.
    [81] Krasik Y E, Dunaevsky A, Krokhmal A, et al. Emission properties of different cathodes atE≤105V/cm [J]. Journal of Applied Physics,2001,(89):2379-2399.
    [82] Krasik Y E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber(velvet) cathodes [J]. Journal of Applied Physics,2005,(98):093308.
    [83] Krasik Y E, Gleizer J Z, Yarmolich D, et al. High current plasma electron sources [J].29thICPIG,2009,
    [84] Krasik Y E, Gleizer J Z, Yarmolich D, et al. Plasma emission sources for high-current electronbeam generation [J]. IEEE Transactions on Plasma Science,2008,(36):768-777.
    [85] Krasik Y E, Gleizer J Z, Yarmolich D, et al. Passive and active plasma emission sources forhigh-current electron beam generation [J]. IEEJ Transactions on Fundamentals and Materials,2007,(127):697-703.
    [86] Krasik Y E, Yarmolich D, Gleizer J Z, et al. Pulsed Plasma Electron Sources [J]. Physics ofPlasmas,2009,(16):057103.
    [87] Litz M S, Golden J. Rep-rate explosive whisker emission cathode investigations [J].Proceeding of SPIE,1994,(2154):110.
    [88]刘智清.提高静电植绒密度的理论与实验研究[D].上海:东华大学,2005.
    [89]王时英.静电植绒织物的性能研究与产品开发[D].上海:东华大学,2004.
    [90]王敏.我国静电植绒行业现状分析及发展策略探讨[D].上海:东华大学,2004.
    [91] http://flocking.org/about/electrostatic-flocking.
    [92]季涛,王汉成,高强.静电技术在纺织生产中的应用[J].纺织科学研究,2002(4):38-42.
    [93]刘永庆.静电植绒(三)[J].印刷技术,2002(1-2):57-59.
    [94] Schenk A, Freudenberg C, Hoffmann G. Setting new standards with low-temperatureprotective gear employing flock insulation [J]. Flock,2002,(28):11-18.
    [95] Hoffmann G. New Flock Research Project at the Institute for Textile and Clothing Technologyof the TU Dresden [J]. Flock,2002,(28):5-8.
    [96] Phys D, Dirks J P. Surface pre-treatment with the gas flame [J]. Flock,2002,(28):9-12.
    [97] Ing D, Hartmann U. Pre-treatment with atmospheric plasma [J]. Flock,2002,(108):6-7.
    [98]波勃科夫B H,格拉佐夫M H (著),许鉴良等译.静电场中纤维充电动力学和运动形式[M].北京:纺织工业出版社,1983.
    [99]崔宝欣.短纤维在静电场中的力学行为[J].聊城师院学报(自然科学扳),1998(11):43-46.
    [100]吴宗汉.基础静电学[M].北京:北京大学出版社,2010.
    [101]王新庆,王淼,李振华.单根纳米导线场发射增强因子的计算[J].物理学报,2005(54):1347-1351.
    [102]杨一明.高功率微波天线近场大气击穿的研究[D].长沙:国防科学技术大学,2010.
    [103]安博,王六定,施易军.碳纳米管场增强因子计算模型研究[J].人工晶体学报,2008(37):946-954.
    [104]黄卫星,李建明,肖泽仪.工程流体力学[M].北京:化学工业出版社,2008.
    [105]窦国仁.紊流力学[M].北京:高等教育出版社,2008.
    [106]陈世民.理论力学简明教程[M].北京:人民教育出版社,1981.
    [107]张洪涛.特种纸用化学纤维在添加助剂的悬浮液中的分散特性[D].广州:华南理工大学,2001.
    [108]张旺玺.聚丙烯腈基碳纤维[M].上海:东华大学出版社,2005.
    [109]车德会,姚广春,华中胜等.用羟乙基纤维素(HEO)改善短碳纤维的分散性[J].东北大学学报(自然科学版),2011(32):1286-1290.
    [110]陈庆国,肖登明,邱毓昌.SF6/N2混合气体的放电特性[J].西安交通大学学报,2001(35):338-341.
    [111] Yang J, Shu T, Fan Y W. Time evolution of the two-dimensional expansion velocitydistributions of the cathode plasma in pulsed high-power diodes [J]. Laser and Particle Beams,2012,(31):129-134.
    [112]杨杰,舒挺,张军.强流电子束二极管等离子体时间分辨光学诊断系统同步触发研究[J].强激光与粒子束,2012(24):963-967.
    [113]白同云,吕晓德.电磁兼容设计[M].北京:北京邮电大学出版社,2001.
    [114]何金良.电磁兼容概论[M].北京:科学出版社,2010.
    [115]刘振祥.水介质螺旋线型长脉冲加速器的研究[D].长沙:国防科学技术大学,2007.
    [116]樊亚军.高功率亚纳秒电磁脉冲产生[D].博士学位论文.西安:西安交通大学,2004.
    [117]薛飞彪,杨建伦,李正宏.紫外探针光信号与加速器负载电流脉冲的精密同步技术[J].强激光与粒子束,2005,(17):149-152.
    [118]江孝国,李成刚,王远.神龙一号电子束束参数测量系统猝发式的精确触发方式研究[J].高能物理与核物理,2006(30):784-787.
    [119]江孝国,黄显宾,李成刚.高速分幅相机与阳加速器的精密电流同步技术[J].强激光与粒子束,2007(19):491-494.
    [120]张三喜,姚敏,孙卫平.高速摄像及其应用技术[M].北京:国防工业出版社,2006.
    [121] Yang J, Shu T, Fan Y W, et al. Time-Resolved Plasma Characteristics in a Short-PulseHigh-Power Diode With a Dielectric Fiber (Velvet) Cathode [J]. IEEE Transactions on PlasmaScience,2012,(40):1696-1700.
    [122] Child C D. Discharge From Hot CaO [J]. Physical Review (Series I),1911,(32):492-511.
    [123] Langmuir I. The Effect of Space Charge and Residual Gases on Thermionic Currents in HighVacuum [J]. Physical Review,1913,(2):450-486.
    [124] Akimov P V, Schamel H, Kolinsky H, et al. The true nature of space-charge-limited currentsin electron vacuum diodes: A Lagrangian revision with corrections [J]. Physics of Plasmas,2001,(8):3788-3798.
    [125] Jaffe G. On the Currents Carried by Electrons of Uniform Initial Velocity [J]. Physical Review,1944,(65):91-98.
    [126] Feng Y, Verboncoeur J P. Consistent solution for space-charge-limited current in therelativistic regime for monoenergetic initial velocities [J]. Physics of Plasmas,2008,(12):112101.
    [127] Feng Y, Verboncoeur J P, Lin M C. Solution for space charge limited field emission currentdensities with injection velocity and geometric effects corrections [J]. Physics of Plasmas,2008,(15):043301.
    [128] Jory H R, Trivelplece A W. Exact Relativistic Solution for the One-Dimensional Diode [J].Journal of Applied Physics,1969,(40):3294-3296.
    [129] Lau Y Y, Chernin D, Colombant D G, et al. Quantum Extension of Child-Langmuir Law [J].Physical Review Letters,1991,(66):1446-1449.
    [130] Lau Y Y, Liu Y, Parker R K. Electron emission: From the Fowler-Nordheim relation to theChild-Langmuir law [J]. Physics of Plasmas,1994,(1):2082-2085.
    [131] Watrous J J, Luginsland J W, Frese M H. Current and current density of a finite-width,space-charge-limited electron beam in two-dimensional, parallel-plate geometry [J]. Physics ofPlasmas,2001,(8):4202-4210.
    [132] Umstattd R J, Luginsland J W. Two-Dimensional Space-Charge-Limited Emission:Beam-Edge Characteristics and Applications [J]. Physical Review Letters,2001,(87):145002.
    [133] Lau Y Y. Simple Theory for the Two-Dimensional Child-Langmuir Law [J]. Physical ReviewLetters,2001,(87):278301.
    [134] Valfells á, Feldman D W, Virgo M, et al. Effects of pulse-length and emitter area on virtualcathode formation in electron guns [J]. Physics of Plasmas,2002,(9):2377-2382.
    [135] Luginsland J W, Lau Y Y, Umstattd R J, et al. Beyond the Child–Langmuir law: A review ofrecent results on multidimensional space-charge-limited flow [J]. Physics of Plasmas,2002,(9):2371-2376.
    [136] Saveliev Y M, Sibbett W, Parkes D M. Perveance of a planar diode with explosive emissionfinite-diameter cathodes [J]. Applied Physics Letters,2002,(81):2343-2345.
    [137] Kostov K G, Barroso J J. Space-charge-limited current in cylindrical diodes with finite-lengthemitter [J]. Physics of Plasmas,2002,(9):1039-1042.
    [138] Oksuz L. Analytical solution of space charge limited current for spherical and cylindricalobjects [J]. Applied Physics Letters,2006,(88):181502.
    [139] Chen X, Dickens J, Hatfield L L, et al. Approximate analytical solutions for thespace-charge-limited current in one-dimensional and two-dimensional cylindrical diodes [J].Physics of Plasmas,2004,(11):3278-3283.
    [140] Pushkarev A, Isakova Y, Sazonov R. Research on the plasma dynamics in a magneticallyself-insulated ion diode with explosive emission potential electrode [J]. Natural Science,2010,(2):419-426.
    [141] Pushkarev A I, Sazonov R V. Research of Cathode Plasma Speed in Planar Diode WithExplosive Emission Cathode [J]. IEEE Transactions on Plasma Science,2009,(37):1901-1907.
    [142] Shiffler D A, Luginsland J W, Umstattd R J, et al. Effects of Anode Material on thePerformance of Explosive Field Emission Diodes [J]. IEEE Transactions on Plasma Science,2002,(30):1232-1237.
    [143] Saveliev Y M, Sibbett W, Parkes D M. On anode effects in explosive emission diodes [J].Journal of Applied Physics,2003,(94):5776-5781.
    [144] Xiao R Z, Sun J, Huo S F, et al. Plasma expansion and impedance collapse in a foil-less diodefor a klystronlike relativistic backward wave oscillator [J]. Physics of Plasmas,2010,(17):123107.
    [145]荀涛.清洁强流真空二极管相关技术研究[D].长沙:国防科学技术大学,2010.
    [146]赵雪龙.磁绝缘线振荡器(MILO)材料放气特性及保真空寿命研究[D].长沙:国防科学技术大学,2012.
    [147] Umstattd R J, Schlise C A, Wang F. Gas Evolution During Operation of a CsI-Coated CarbonFiber Cathode in a Closed Vacuum System [J]. IEEE Transactions on Plasma Science,2005,(33):901-910.
    [148]莫纯昌,陈国平.电真空工艺[M].北京:国防工业出版社,1980.
    [149] Torch02Technical Description and User Manual.内部资料.
    [150]周恒.高阻抗磁绝缘线振荡器的研究[D].长沙:国防科学技术大学,2012.
    [151]俞佐平,陆煜.传热学[M].北京:高等教育出版社,1995.
    [152] Shultis J K, Faw R E. Fundamentals of nuclear science and engineering [M]. New York:Dekker,2002.
    [153]杨海亮,邱爱慈,张嘉生等.不同入射角度下强流脉冲电子束能量沉积剖面和束流传输系数模拟计算[J].强激光与粒子束,2002(14):778-782.
    [154]张若棋,汤文辉,赵国民.影响X光热激波数值模拟结果的若干因素[J].高压物理学报,1998(12):161-167.
    [155]周南,乔登江.脉冲束辐照材料动力学[M].北京:国防工业出版社,2002.
    [156]李惜雯.数学物理方法典型题[M].西安:西安交通大学出版社,2001.
    [157] An W, Krasik Y E, Fetzer R. Characterization of high-current electron beam interaction withmetal targets [J]. Journal of Applied Physics,2011,(110).
    [158]张卫东,冯小云.国外隐身材料研究进展[J].宇航工艺材料,2000(3):2-6.
    [159] Yasuo Sekii, Tomonao Hayashi. Measurements of reflectance and thermal emissivity of ablack surface created by electrostatic flocking with carbon-fiber piles [J]. IEEE Transactionson Dielectrics and Electrical Insulation,2009,(16):649-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700