用户名: 密码: 验证码:
商用车冷却模块匹配设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着发动机功率密度和车辆节能减排要求的不断强化,车辆冷却系统的设计要求也越来越高。对商用车而言,动力舱内冷却风扇与散热器组之间的匹配,以及其它零部件的空间布局直接影响系统的散热性能。因此有必要深入研究系统协同工作时,各部件的流动传热规律及其对整体性能的影响,用以指导现有商用车冷却系统的匹配设计与优化。
     本文以流体力学、传热学基本理论为指导,借助各种试验手段,重点研究影响商用车冷却系统流动传热性能的主要因素及其机理,并应用相关成果,完成商用车冷却模块的匹配设计与验证。主要研究内容包括:
     散热器模块的协同匹配分析利用风洞试验台,开展各空间布置因素对散热器模块流动与传热性能影响规律研究,结合场协同理论指导散热器模块在风道内的匹配布置。
     冷却模块气流分配的不均匀特性分析搭建商用车冷却模块试验装置,研究典型冷却模块气流分配的不均匀特性,采用多孔介质模型和有效单元数法分析气流的不均匀分配对散热器流动传热性能的影响;结合冷却模块结构特征发展了一种冷却风流量测试技术。
     动力舱流动传热性能的试验研究自主开发商用车热管理系统道路测试装置,并以此为工具,对车辆动力舱的流动传热性能进行实车测试,分析研究动力舱格栅结构参数对冷却系统性能的影响规律。
     商用车冷却模块匹配设计方法对比分析模块风洞试验、台架试验、整车道路试验和数值仿真方法的特点,及其对冷却系统性能的预测精度,综合应用研究成果开发商用车冷却模块匹配设计软件,并通过整车试验验证匹配设计方法的精度。
     通过以上研究发现:
     1.对于采取串联布置的吸风式冷却模块而言,冷却空气的流动路径和均匀性对沿程阻力产生主要影响,散热器组纵向相对位置的变化对后排散热器的换热性能存在明显影响。应尽量减少前端部件投影在散热器表面的遮挡面积、合理的选取散热器之间的间距,并适当减少包裹;用冷热侧流体温差场的均匀性原则指导散热器模块的匹配优化有利于提高散热器的散热性能。
     2.冷却风扇以及导风罩的导风作用使流经散热器模块的冷却气流产生不均匀分布,随着风扇转速的提高,其不均匀性也更显著。散热器迎风面的流动不均匀系数在低雷诺数范围内随着Re的增大而增大。现有散热器f因子试验关联式对不均匀流动的散热器模块同样具有一定预测精度,但是其预测误差包含了由气流不均匀分布产生的影响。多孔介质模型和有效单元数法的理论分析和试验结果表明,与均匀气流相比,气流的不均匀分配将导致散热器流动阻力增大和传热有效度下降。
     3.动力舱格栅、散热器以及风扇等部件的流动特性各不相同,各部件协同匹配形成系统的流动分布特性和规律。随着风扇转速的增大,系统流速上升,各段沿程阻力的数值及所占比例均产生明显变化。进风格栅叶片通道参数对冷却风流量和系统散热量均产生较明显的影响,在系统匹配和优化中应进行合理设计。
     4.散热器模块风洞试验、台架试验和整车道路试验方法对冷却系统及部件的性能测试各有优势,结合本文研究成果开发的商用车冷却模块匹配设计软件则可充分利用数值计算和试验测试的各种结果,有效提高系统设计的精度。
Due to the enhancement of engine power density and requirements of energy-saving and emission reduction, more strict requirements have been placed on the match and design of vehicle cooling system. In commercial vehicle's engine compartment, the heat transfer performance is directly influenced by the match of cooling fan and heat exchanger module, and other parts'spatial arrangement. Therefore, it is necessary to invest the underhood parts'flow and heat transfer characteristics and there effects on cooling system performance. It is the key to the match design and optimization of vehicle cooling system.
     Based on the theories of fluid dynamics and heat transfer, this dissertation completed the research on the main factors of the flow of engine compartment and heat transfer performance using kinds of experiment methods. The results could be combined to numerical calculation method to provide a guidance on the match design of commercial vehicle cooling module. The main contents are as follows:
     The synergistic optimization analysis of heat exchanger module. Research was complet-ed using heat exchanger wind tunnel test platform on effects and variation regulation of different installation on the flow and heat transfer performance of heat exchangers. The field synergy principle could be used to guide the optimized placement of heat exchanger module in engine compartment.
     The air flow non-uniform distribution analysis of cooling module. The testing platform of commercial vehicle cooling module was established to analyze the air flow non-uniform distribution of heat exchanger with typical fan and shroud. Porous medium model and ε-NTU method was used to analyze the effect of flow maldistribution on heat exchanger's pressure drop and heat dissipation. And a measurement technology on cooling air was researched on the testing system.
     Underhood flow and heat transfer characteristics experiment research. The road test technology and method of commercial vehicle's thermal management system was developed, and the system was established to research a typical passenger car's underhood flow and heat transfer performance and also its influence factor of vehicle grille parameters.
     The research on match and design of commercial vehicle cooling module. Based on the research mathods and results of heat exchanger module wind tunnel test, cooling module experiment, vehicle thermal management system road test and numerical simulation, the cooling module's match and design methodology and software was developed. The match accuracy was finally verified by the vehicle road testing.
     The following conclusions were achieved through the researched mentioned above:
     As for the inducing cooling module with series placement, the flow path and homogeneity of cooling air had main effects on flow resistance, and the lengthways relative position of radiators could have certain effects on the performance of backward radiators. Hence, the projection area of front component on radiator's cover should be reduced, and the distance between radiators should be reasonably selected, also the encapsulation should be reduced, thus decreasing the pressure drop of the cooling air flow. The uniform distribution of temperature difference field of the heat transfer fluids could effectively improve the radiator's performance.
     The cooling air flowing through radiator module was influenced by cooling fan and shroud to show non-uniform distribution. And the non-uniform distribution would become even more obvious with the rise of fan speed. The non-uniform coefficient on the windward area of radiators would increase with the rise of Reynolds number at low range. The experiment relevance equation of radiator f factor has certain prediction accuracy on radiators module, however, the effects caused by the non-uniform distribution of cooling air should be considered. Compared with uniform flow, the analysis based on Porous medium model and ε-NTU method showed that the non-uniform flow of the system would lead to an increase of flow resistance and a decrease of heat transfer efficiency, and it is identical with the test result.
     Influenced by the different flow perfprmance of grille, radiator, fan and kinds of air duct parts, the underhood air flow characteristic is complicated. With the rise of fan speed, the flow velocity of the system increased, and the number of resistance and its proportion would have obvious variation. The blade parameters of intake grille could have evident effect on the system flow resistance and vehicle heat dissipation so that the structure parameters should be reasonably designed during the system match and optimization.
     Heat exchanger module wind tunnel test, cooling module experiment, vehicle thermal management system road test and numerical simulation are different approaches to reasarch vehicle cooling system. The match and design method according to the investigation results of this dissertation takes full advantage of numerical caculation and test technology. The flexible application of this method could improve the system design accuracy effectively.
引文
[1]周龙保,主编.内燃机学[M].北京:机械工业出版社,2005.
    [2]徐骋志.中国正成为全球最具潜力的商用车市场[J].公路运输文摘,2003,(12):4-5.
    [3]KPMG International. The European Commercial Vehicle Industry in the Age of Globalizat--ion[R]. Swiss,2007.
    [4]王福民.1978—-2009年我国商用车市场分析及预测[J].商用汽车,2010,(03):23-25.
    [5]赵正华,晏雄,汤仲平,等.中国商用车市场现状及发展趋势[J].润滑油与燃料,2010,20(5):12-16.
    [6]柯雯.从2008IAA看全球商用车发展六大趋势[J].专用汽车,2008,(11):32-35.
    [7]罗锦陵.商用车的可持续发展[J].汽车与配件,2010,(08):8.
    [8]Tang A. S.. Kuli Presentation with magna powertrain[R]. Shanghai,2008.
    [9]成晓北,潘立,鞠洪玲.现代车用发动机冷却系统研究进展[J].车用发动机,2008,(01):1-7.
    [10]王世震.汽车构造[M].北京:机械工业出版社,2005.
    [11]Hucho W. H.. Aerodynamics of Road Vehicles[M].4th ed., SAE International, Warrendale. 1998.
    [12]于莹潇,袁兆成,田佳林,等.现代汽车热管理系统研究进展[J].汽车技术,2009,(08):1-7.
    [13]章慧锦,李仁业,译.车辆冷却系统设计手册[M].北京:国防工业出版社,1984.
    [14]SAE/IMechE Vehicle Thermal Management Systems Conference (VTMS) [EB/OL]. http://www.expoua.com/Event/lang/en/id/75578/,1993
    [15]U.S. Department of Energy. Technology Roadmap for the 21st Century Truck Program [EB/OL]. http://www.osti.gov/bridge/,2000.12.
    [16]U.S. Department of Energy.21st Century Truck partnership:Roadmap and thchinical white papers[R]. Washington,2006.12.
    [17]蔡增基,龙天渝,主编.流体力学泵与风机[M].4版.北京:中国建筑工业出版社,1999.
    [18]陶文铨,杨世铭,编著.传热学[M].北京:高等教育出版社,1998.
    [19]Eichiseder W. Optimization of Heat Management of Vehicles Using Simulation Tools[C]. VTMS4 Conference, London UK,1999.
    [20]Raman S. Badekar, Jitendra S. Mahajan, Sunil G. Kakaye, et al. Development of Control System for Electrical Radiator Fan using Dual Sensor & Microprocessor Based Electronic Unit[J]. SAE technical paper,2006-01-1035
    [21]Peter A. Kershaw, G. Clarke Oberheide. Improved electric fan speed control for A/C condencer and engine cooling systems[J]. SAE technical paper,910645.
    [22]D.A.Allen, M.P.Lasecki. Thermal management evolution and controlled coolant flow[J]. SAE technical paper,2001-01-1732.
    [23]Eduardo Gubbiotti Ribeiro, Ayres Pinto de Andrade Filho, Joao Luiz de Carvalho Meira. Electric Water Pump for Engine Cooling[J]. SAE technical paper,2007-01-2785.
    [24]Elena Cortona, Christopher H. Onder. Engine Thermal Management with Electric Cooling Pump[J]. SAE technical paper,2000-01-0965.
    [25]Chastain J. H., Wagner J. R.. Advanced Thermal Management for Internal Combustion Engines-Valve Design, Component Testing and Block Redesign[J]. SAE technical paper, 2006-01-1232.
    [26]Clough M J. Precision cooling of a engine[J]. SAE technical paper,931123.
    [27]Robinson K., Campbell N. A. F., Hawley J. G.. A Review of Precision Engine Cooling[J]. SAE technical paper,1999-01-0578.
    [28]Frank Melzer, Ullrich Hesse,Gerta Rocklage, et al. Thermomanagement[J]. SAE technical paper,1999-01-0238.
    [29]Martin W. Wambsganss. Thermal Management Concepts for Higher-Efficiency Heavy Vehicles[J]. SAE technical paper,1999-01-2240.
    [30]Chanwoo Park, Jon Zuo, Paul Rogersr, et al. Two-Phase Flow Cooling for Vehicle Thermal Management[J]. SAE technical paper,2005-01-1769.
    [31]AP N. S., Golm N. C.. New concept of engine cooling system (NewCool)[J]. SAE technical paper,971775.
    [32]Ap N. S., A. Maire, P. Jouanny, J. C. Le Prigent. Economical Engine Cooling System[J]. SAE technical paper,2001-01-1708.
    [33]Pretscher M., AP N. S.. Nucleate Boiling Engine Cooling System-Vehicle Study [J]. SAE technical paper,931132.
    [34]Matthieu Chanfreau, Alex Joseph, Darren Butler, et al. Advanced Engine Cooling Thermal Management System on a Dual Voltage 42V-14V Minivan[J]. SAE technical paper, 2001-01-1742.
    [35]Matthieu Chanfreau, Bertrand Gessier, Alain Farkh, et al. The Need for an Electrical Water Valve in a THErmal Management Intelligent System (THEMISTM)[J]. SAE technical paper, 2003-01-0274.
    [36]Ngy-Srun Ap, Michelle Tarquis. Innovative Engine Cooling Systems Comparison [J]. SAE technical paper,2005-01-1378.
    [37]J. Kern, P. Amros. Concepts for a controlled optmized vehicle engine cooling system[J]. SAE technical paper,971816.
    [38]Ngy-Srun Ap, Philippe Jouanny, Michel Potier, et al. UltimateCoolingTM System for New Generation of Vehicle[J]. SAE technical paper,2005-01-2005.
    [39]Robert W. Page, Hnatczuk, Jeffrey Kozierowski. Thermal Management for the 21st Century Improved Thermal Control & Fuel Economy in an Army Medium Tactical Vehicle[J]. SAE technical paper,2005-01-2068.
    [40]Robert D. Chalgren Jr., David J. Allen. Light Duty Diesel Advanced Thermal Management [J]. SAE technical paper,2005-01-2020.
    [41]Robert D. Chalgren Jr.Thermal Comfort and Engine Warm-Up Optimization of a Low-Flow Advanced Thermal Management System [J]. SAE technical paper,2004-01-0047.
    [42]Robert D. Chalgren Jr., Lawrence Barron Jr.. Development and Verification of a Heavy Duty 42/14V Electric Powertrain Cooling System[J].SAE technical paper,2003-01-3416.
    [43]Amir Jokar, Mohammad H. Hosni,Steven J. Eckels. New Generation Integrated Automotive Thermal System[J].SAE technical paper,2005-01-3476.
    [44]Jorg Soldner, Werner Zobel, Michael Ehlers, et al. A Compact Cooling System (CCSTM): The Key to Meet Future Demands in Heavy Truck Cooling[J]. SAE technical paper, 2001-01-1709.
    [45]Zhigang Yang, Jeffrey Bozeman, Fred Z. Shen, et al. CFRM Concept at Vehicle Idle Conditions[J]. SAE technical paper,2003-01-0613.
    [46]Zhigang Yang, Jeffrey Bozeman, Fred Z. Shen, et al. CFRM Concept for Vehicle Thermal System[J]. SAE technical paper,2002-01-1207.
    [47]U. Kruger, S. Edwards, E. Pantow, R. Lutz, et al. High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards[J]. SAE technical paper, 2008-01-1199.
    [48]Robert D. Chalgren, Gordon G. Parker, Oner Arici, et al. A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation[J]. SAE technical paper,2002-01-0076.
    [49]John Vetrovec. Engine Cooling System with a Heat Load Averaging Capability [J]. SAE technical paper,2008-01-1168.
    [50]Avequin S., Potier M., Mahe C., et al. Engine Cooling Multi-Exchanger [J].SAE Paper 2001-01-1749.
    [51]罗建曦,张扬军.节温器对发动机热系统动态性能的影响[J].清华大学学报:自然科学版,2004,44(5):701-704
    [52]张钊,张扬军,诸葛伟林.发动机电控冷却系统性能仿真研究[J].汽车工程,2005,27(3):296-299.
    [53]田颖,金振华,张扬军,等.汽车热管理试验台测试系统研究[J].车用发动机,2009,(02):82-84.
    [54]杨胜.汽车热管理系统半物理仿真试验平台研究[D].清华大学,2004.
    [55]张扬军,李希浩,黄海燕,等.燃料电池汽车动力系统热管理[J].汽车工程,2003,(06):561-565.
    [56]田颖,聂圣芳,张扬军,等.燃料电池发动机热管理试验台测试系统软件开发[J].汽车工程,2007,(04):318-320.
    [57]陈潇,汪茂海,张扬军,等.车用燃料电池发动机热管理系统研究[J].车用发动机,2006,(06):12-15.
    [58]罗建曦,张扬军,涂尚荣.车用燃料电池发动机试验台热管理系统设计[J].车用发动机,2003,(04):32-33,38.
    [59]田颖,聂圣芳,张扬军,等.燃料电池发动机热管理试验台测试系统的开发[J].车用发动机,2004,(06):45-47,50.
    [60]郭新民,邢娟,袁燕利,等.汽车发动机电动冷却风扇控制系统的研究[J].汽车电器,1996,(05):13-15.
    [61]卢广锋.汽车发动机冷却水泵电力驱动与控制系统的研究[D].山东农业大学,2002.
    [62]郭新民,翟丽.汽车发动机智能冷却系统的研究[J].内燃机工程,2001,22(1):15-16,22
    [63]翟丽,齐自成,王新源,等.汽车发动机冷却系统的单片机控制[J].农机化研究,2001,(02):38-39,46.
    [64]谭建勋,沈瑜铭,齐放,等.工程机械热管理系统试验平台的开发[J].工程机械,2005,(01):41-44.
    [65]陆国栋,夏立峰,俞小莉.客车优化布置冷却组[P].CN200610048994.x,2008.01.09.
    [66]陆国栋,俞小莉,陈不非,等.动力装置智能化热管理系统[P].CN200710070992.5,2008.03.12.
    [67]韩松,陆国栋,俞小莉,等.工程机械冷却系统支架[P].CN200910097273.1,2009.11.04.
    [68]韩松,陆国栋,俞小莉,等.智能型工程机械冷却系统[P].CN200910097274.6,2009.11.04.
    [69]陆国栋,俞小莉,夏立峰,中冷器位置对柴油发电机冷却组性能的影响[J].农业机械学报,2007,02(38):69-71.
    [70]韩树,蔡锋,骆清国,等.军用履带车辆柴油机冷却系统研究与发展综述[J].内燃机,2007,(05):5-8.
    [71]韩树,蔡锋,骆清国,等.车用发动机冷却系统控制仿真研究综述[J].内燃机,2008,(05):1-4.
    [72]韩树,骆清国,张更云,等.高功率密度柴油机智能化冷却系统控制策略[J].装甲兵工程学院学报,2010,(05):28-31.
    [73]仲韵,倪计民,顾宁,等.汽车分离循环式冷却系统的仿真分析[J].车用发动机,2008,(03):36-39,44.
    [74]齐斌,倪计民,顾宁,等.发动机热管理系统试验和仿真研究[J].车用发动机,2008,(04):40-43.
    [75]顾宁,倪计民,仲韵,等.基于KULI的发动机热管理瞬态模型的参数设置与仿真[J].计 算机应用,2009,(07):1963-1965,1977.
    [76]曹旭.发动机热管理仿真与试验研究[D].上海交通大学,2008
    [77]苏忆.汽车发动机冷却系统智能控制技术研究[D].硕士论文,南京理工大学,2006.
    [78]彭其泽.燃料电池发动机水热管理系统研究[D].武汉理工大学,2007.
    [79]朱高辉.质子交换膜燃料电池发动机冷却系统仿真与废热利用[D].武汉理工大学,2010.
    [80]李正秋,蒋燕青.燃料电池汽车整车热管理方案研究[J].交通节能与环保,2008,(04):31-34.
    [81]李忠华,杜传进,侯献军.质子交换膜燃料电池热管理研究[J].华东电力,2007,(02)19-22.
    [82]刘小波.质子交换膜燃料电池水热管理系统模拟研究[D].华南理工大学,2010.
    [83]Duncan B. D., Senthooran S., Hendriana D., et al. Multi-Disciplinary Aerodynamics Analysis for Vehicles:Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck[J]. SAE technical paper, 2007-01-0100.
    [84]R. Subhashini, B. Balaji, B. Bhairava Murthy, et al. Minimization of Hot Air Re-circulation in Engine Cooling System[J]. SAE technical paper,2009-01-1153.
    [85]Williams J, Vemaganti G. CFD Quality-A Calibration Study for Front-End Cooling Airflow[J]. SAE Transactions.980039,1998:234-247.
    [86]SAE J2082, cooling flow measurement techniques. Report SAE J2082, June 1992, SAE, Warrendale, Pennsylvania.
    [87]Takashi Oguma, Hidetsugu Takada, Yukihiro Hayashi, et al. Radiator cooling flow measure ment method with propeller type anemometer [J]. JSAE Review,1995,16(3):314.
    [88]Takahashi H., Ogino S., Nishimura T., et al. Experimental Analysis for the Improvement of Radiator Cooling Air Intake and Discharge[J]. SAE Technical Paper,920787,1992.
    [89]T. Hormann, B. Lechner, W. Puntigam, et al. Numerical and Experimental Investigation of Flow and Temperature Fields around Automotive Cooling Systems[J]. SAE technical paper, 2005-01-2006.
    [90]Olson M. E.. Aerodynamic Effects of Front End Design on Automobile Engine Cooling Systems[J]. SAE Technical Paper 760188.1976.
    [91]Williams J. An automotive front-end design approach for improved aerodynamics and cooling [J]. SAE Transactions,850281,1985,94(2):662-685.
    [92]Taylor D. O., Chu A C.. Wind tunnel investigation of the effects of installation parameters on truck cooling system performance [J]. SAE technical paper,760832.
    [93]A Costelli, P Gabriele, D Giordanengo. Experimental analysis of the air circuit for engine cooling systems[J]. SAE Technical Paper 800033,1980.
    [94]Schaub U. W., Charles H.N.. Ram Air Effects on the Air Side Cooling System Performance of a Typical North American Passenger Car[J]. SAE Technical Paper 800032,1980.
    [95]Oler J. W., Roseberry C. M., Jordan D. P., et al. Ram-Recovery Coefficient Correlations for Automotive Cooling Airflows[J]. SAE technical paper,910309.
    [96]Ngy Srun AP. A Simple Engine Cooling System Simulation Model[J]. SAE technical paper, 1999-01-0237.
    [97]Ngy Srun Ap, Pascal Guerrero, Philippe Jouanny. Influence of Front End Vehicle, Fan and Shroud on the Heat Performance of A/C Condenser and Cooling Radiator[J]. SAE technical paper,2002-01-1206.
    [98]Shimonosono H., Shibata Y., Fujitani K.. Optimization of the Heat Flow Distribution in the Engine Compartment[J]. SAE technical paper,930883.
    [99]Winnard D., Venkateswaran G.. Underhood thermal management by controlling air flow[J]. SAE technical paper,951013.
    [100]Fred Browand, Bogdan Marcu, Christian Sharpe. The Influence of Close-following Upon the Cooling Module Air Flow[J]. SAE technical paper,981941.
    [101]Changhua Lin, Jeffrey W. Saunders, Simon Watkins. Effect of Cross-Winds on Motor Car Engine Cooling[J]. SAE technical paper,970138.
    [102]F. Chometon, P. Gillieron. Assessment of Engine Cooling Performance by Measurement of Cooling Airflow Drag in Aerodynamic Wind Tunnels[J]. SAE technical paper,980428.
    [103]P. Gillieron, F. Chometon. Reduction of Cooling Air Drag of Road Vehicles:An Analytical Approach[J].SAE technical paper,2001-01-1266.
    [104]Tanja Ivanic, Patrick Gillieron. Reduction of the Aerodynamic Drag Due to Cooling Systems:An Analytical and Experimental Approach[J]. SAE technical paper,2005-01-1017
    [105]Williams J., Karanth D., Oler, W. Cooling inlet aerodynamic performance and system resistance[J]. SAE technical paper,2002-01-0256,2002.
    [106]Williams J.. Aerodynamic Drag of Engine-Cooling Airflow With External Interference [J]. SAE technical paper,2003-01-0996.
    [107]Barnard R. H.. Theoretical and experimental investigation of the aerodynamic drag due to automotive cooling systems[J], Proc Institute of Mechanical Engineers Vol.214 Part D, 2000:919-927.
    [108]Hussein Jama, Simon Watkins, Chris Dixon. Reduced Drag and Adequate Cooling for Passenger Vehicles Using Variable Area Front Air Intakes[J]. SAE technical paper, 2006-01-0342.
    [109]Tatsuya Ohshima, Katsunori Hamatani, Masatoshi Ninoyu, et al. Influence of the cooling air flow outlet on the aerodynamic characteristics [J]. JSAE Review,1998,19(2):137-142.
    [110]毕小平,黄小辉,王普凯.装甲车辆动力舱温度场试验研究[J].装甲兵工程学院学报, 2009,(02):26-28.
    [111]刘西侠,毕小平,赵以贤.用于装甲车辆动力舱试验台的传感器设计[J].传感器技术,2003,(07):19-21.
    [112]黄小辉,毕小平,王普凯.坦克动力舱体温度场数值仿真与实验验证[J].红外,2008,(12):18-23.
    [113]王普凯,毕小平,黄小辉.装甲车辆动力装置部件温度的网络化预测方法[J].兵工学报,2008(06):641-644.
    [114]张毅.车辆散热器模块流动与传热问题的数值分析与试验研究[D].博士学位论文,浙江大学,2006.
    [115]陆国栋,俞小莉,张毅,夏立峰.轮式装载机冷却组优化匹配的风洞试验[J].农业机械学报,2006,(03):17-19,26.
    [116]张毅,俞小莉,陆国栋,夏立峰,蒋平灶.装载机散热器模块进出口位置匹配试验[J].农业机械学报,2007,(01):41-44.
    [117]张毅,俞小莉,陆国栋,夏立峰,蒋平灶.安装参数影响散热器模块性能的风洞研究[J].汽车工程,2006,(05):455-459.
    [118]张毅,俞小莉,陆国栋,夏立峰.并联结构换热器模块中冷却空气流量的分配[J].汽车工程,2006,(11):1001-1004.
    [119]陆国栋,俞小莉,张毅,夏立峰.间距对轮式装载机冷却组性能影响的风洞试验[J].浙江大学学报(工学版),2007,(04)574-576.
    [120]朱正.坦克战斗车辆冷却系统风道阻力特性的试验测试研究[J].测试技术学报,1996,(02):89-94.
    [121]李亮,王剑,李培京,等.特种车辆动力舱温度场试验研究[J].车辆与动力技术,2009,(01):43-46.
    [122]王湘卿,李中华.坦克装甲车辆散热系统的设计与试验[J].车辆与动力技术,2007,(03):1-6.
    [123]董军启.车辆冷却系统空气侧特性研究[D].博士学位论文,上海交通大学,2008.
    [124]袁侠义.汽车发动机舱热管理研究与改进[D].硕士学位论文,湖南大学,2010
    [125]Mohamed Ashmawey, Helmut Berneburg, Winfried Hartung, et al. A Numerical Evaluation of the Thermal Effect of the New V6 Engine on the Underhood Environment of the 1993 Opel Vectra [J]. SAE technical paper,930295.
    [126]Sami D. Habchi, Simon Y. Ho, J. Elder, et al. Airflow and Thermal Analysis of Underhood Engine Enclosures [J]. SAE technical paper,940316.
    [127]Masanori Dohi, Yoshifusa Sudou, Hideya Noguchi, et al. Airflow Simulation in Engine Compartment by CFD Analysis[J]. SAE technical paper,982803.
    [128]Ramesh Andra, Evangelos Hytopoulos, Kurichi Kumar, et al. The Effect of Boundary and Geometry Simplification on the Numerical Simulation of Front-End Cooling[J]. SAE technical paper,980395.
    [129]P. Gillieron, S. Samuel, F. Chometon. Potential of CFD in Analysis Under-Bonnet Airflow Phenomena[J]. SAE technical paper,1999-01-0802.
    [130]John Moffat. Coupling of 1-D and 3-D CFD Models to Predict Transient Hydraulics in an Engine Cooling Circuit[J]. SAE technical paper,2002-01-1285.
    [131]Toshio Takeuchi, Naoya Kakishita, Itsuhei Kohri. The Prediction of Refrigeration Cycle Performance with Front End Air Flow CFD Analysis of an Automotive Air Conditioner[J]. SAE technical paper,2002-01-0512.
    [132]Edinilson Alves Costa, Marcio Goncalves Pinto. Cooling and Airflow Management Development for Trucks Considering Pass-by-Noise[J]. SAE technical paper,2002-01-2226
    [133]Edinilson Alves Costa. CFD Approach on Underhood Thermal Management of Passanger Cars and Trucks[J]. SAE technical paper,2003-01-3577.
    [134]Anders Jerhamre, Anders Jonson. Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars[J]. SAE technical paper,2004-01-0051.
    [135]Anders Jonson. Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model[J]. SAE technical paper,2005-01-2052.
    [136]H. Knaus, C. Ottosson, F. Brotz, et al. Cooling Module Performance Investigation by Means of Underhood Simulation[J]. SAE technical paper,2005-01-2013.
    [137]Francesco Fortunato, Fulvio Damiano,Luigi Di Matteo, et al. Underhood Cooling Simulation for Development of New Vehicles [J]. SAE technical paper,2005-01-2046.
    [138]Ales Alajbegovic, Raja Sengupta,Wilko Jansen. Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry[J]. SAE technical paper,2006-01-3478
    [139]Ales Alajbegovic, Bing Xu, Alex Konstantinov, et al. Simulation of Cooling Airflow under Different Driving Conditions [J]. SAE technical paper,2007-01-0766.
    [140]Bhaskar Bhatnagar, Dan Schlesinger,Ales Alajbegovic, et al. Simulation of Class 8 Truck Cooling System:Comparison to Experiment under Different Engine Operation Conditions [J]. SAE technical paper,2007-01-4111.
    [141]Clinton L. Lafferty, Ales Alajbegovic, Kevin Horrigan. Under-hood Thermal Simulation of a Class 8 Truck[J]. SAE technical paper,2007-01-4280.
    [142]Rajneesh Singh, Fred Shen. CFD-based Robust Optimization of Front-end Cooling Airflow[J]. SAE technical paper,2007-01-0105.
    [143]Fei Wang. A New System Restriction Simulation Method for Underhood Airflow CFD Analysis[J]. SAE technical paper,2007-01-0768.
    [144]C. H. Tai, C. G. Cheng, C. Y. Liao. A Practical and Simplified Airflow Simulation to Assess Underhood Cooling Performance[J].SAE technical paper,2007-01-1402.
    [145]Vivek Kumar, Sangeet Kapoor, Gyan Arora, et al. A Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis[J]. SAE technical paper,2009-01-1150.
    [146]Thomas Hallqvist. The Cooling Airflow of Heavy Trucks-a Parametric Study[J]. SAE technical paper,2008-01-1171.
    [147]Timo Kuthada, Jochen Wiedemann. Investigations in a Cooling Air Flow System under the Influence of Road Simulation[J]. SAE technical paper,2008-01-0796.
    [148]Tim Juan. Investigation and Assessment of Factors Affecting the Underhood Cooling Air Flow Using CFD[J]. SAE technical paper,2008-01-2658.
    [149]Cesareo de La Rosa Siqueira, Marcello Motta. Numerical Simulation of a Bus Underhood Flow[J]. SAE technical paper,2003-01-3522.
    [150]毕小平,赵以贤,刘西侠,李海军.基于集总参数法的坦克发动机热性能模型[J].燃烧科学与技术,2004,(01):13-16.
    [151]鲍积润,毕小平.坦克动力舱空气流动与传热影响因素的仿真研究[J].装甲兵工程学院学报,2005,(01):62-65.
    [152]黄小辉,毕小平.计算流体力学在车辆冷却风道设计中的应用[J].兵工学报,2008(11):1281-1285.
    [153]索文超,毕小平,吕良栋.履带车辆动力舱空气流场的CFD模拟与试验研究[J].装甲兵工程学院学报,2009,(02):29-32.
    [154]罗建曦.汽车热管理系统集成空气侧热流体分析研究[D].清华大学,2004.
    [155]李云龙,王湘卿,王敬,等.车辆动力舱冷却风道流场的仿真研究[J].车辆与动力技术,2005,(03):27-31.
    [156]李振平,凌云,王剑,等.坦克动力舱空气流场仿真研究[J].车辆与动力技术,2008,(03).
    [157]韩恺,赵长禄,张付军,等.基于一维CFD仿真技术的装甲车辆冷却空气系统设计[J].北京理工大学学报,2010(04):415-419.
    [158]袁侠义,谷正气,杨易,等.汽车发动机舱散热的数值仿真分析[J].汽车工程,2009,(09):843-847,853.
    [159]蒋光福.汽车发动机舱散热特性研究[J].汽车科技,2006,(05):18-23.
    [160]Kling. Truck cooling system airflow[J]. SAE technical paper,580089.
    [161]Emmenthal K. D., Hucho W. H.. A Rational Approach to Automotive Radiator Systems Design[J]. SAE Technical Paper,740088.1974.
    [162]Damodaran V., Rahman M.. Front-end Cooling Airflow Performance Prediction Using Vehicle System Resistance[J]. SAE technical paper,2003-01-0273.
    [163]Frank G. Rising. Engine cooling system design for heavy duty trucks[J]. SAE technical paper,770023.
    [164]Hugues Cheron, Jean-Paul Moulin, Matt Orlando.Modular Systems:A New Architecture for the Front of the Car[J]. SAE technical paper,1999-01-0844.
    [165]Joao Ricardo de Aquino, Francois Fourcade.Technology of Front End Module to Automotive Vehicles[J]. SAE technical paper,2003-01-3669.
    [166]Peter Kanefsky, Valerie Nelson, Mary Ranger.A Systems Engineering Approach to Engine Cooling Design[J]. SAE technical paper,1999-01-3780.
    [167]Satomi Muto, Tatsuo Sugimoto, Akira Utikawa, et al.Development of a Cooling Module Containing a Radiator and a Condenser Part 1:Product Design[J]. SAE technical paper, 2001-01-1018.
    [168]Shinya Sugiura, Taketoshi Toyama, Satomi Mutou, et al.Development of a Cooling Module Containing a Radiator and a Condenser Part 2:Alloy Development[J]. SAE technical paper,2001-01-1019.
    [169]L. Valaszkai, B. Jouannet.Cooling System Optimization for Euro4-EPA/02 Heavy Duty Trucks[J]. SAE technical paper,2000-01-0964.
    [170]Clive Hughes, Chad Mitts, Frederic Jacquelin, et al.Heavy Duty Truck Cooling System Design Using Co-Simulation[J]. SAE technical paper,2001-01-1707.
    [171]Franz W. Koch, Frank G. Haubner.Cooling System Development and Optimization for DI Engines[J]. SAE technical paper,2000-01-0283.
    [172]Chad Lehner, Gordon Parker, Oner Arici, et al.Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation[J]. SAE technical paper,2001-01-0336
    [173]J. A. Sidders, D. G.Tilley. Optimizing Cooling System Performance Using Computer Simulation[J]. SAE technical paper,971802.
    [174]John R. Callister, Timothy M. Costa, Albert R. George.The design of automobile and racing car cooling systems[J]. SAE technical paper,971835.
    [175]Tetsuya Sakai, Shinichi Ishiguro, Yoshifusa Sudoh, et al.The optimum design of engine cooling system by computer simulation[J]. SAE technical paper,942270.
    [176]Itsuhei Kohri, Toshio Takeuchi, Yukio Matsushima. Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance[J]. SAE technical paper,2000-05-0344.
    [177]K. Johannessen, J. Saunders, J. Sheridan, et al. Comparison between experimental and numerical methods for evaluating car cooling system design[C]. Melbourne Graduate fluids conference, Melbourne, Australia,2001:65-68.
    [178]Gerald Seider, Fabiano Bet, Thomas Heid, et al.A Numerical Simulation Strategy for Complex Automotive Cooling Systems [J]. SAE technical paper,2001-01-1722.
    [179]Bernhard Uhl, Friedrich Brotz, Jurgen Fauser, et al.Development of Engine Cooling Systems by Coupling CFD Simulation and Heat Exchanger Analysis Programs [J]. SAE technical paper,2001-01-1695.
    [180]Jerry Higgins, Harry Oberg, Carl Persaud.Cooling System Development & Validation For The Urban Bus[J]. SAE technical paper,2001-01-2814.
    [181]Sadek Rahman, Richard Sun.Robust Engineering of Engine Cooling System[J]. SAE technical paper,2003-01-0149.
    [182]Christoph Stroh, Rudolf Reitbauer, Joachim Hanner.Increasing the Reliability of Designing a Cooling Package by Applying Joint 1D/3D Simulation[J]. SAE technical paper, 2006-01-1571.
    [183]Babalal Mulani, Narayan Jadhav, K. Gopalakrishna. Design of Commercial Vehicle Cooling Packages[J]. SAE technical paper,2008-01-0264.
    [184]L. Gattei, R. Rossi, E. Cardile.A Numerical Simulation Tool for Automotive Cooling System Design[J]. SAE technical paper,2008-01-0398.
    [185]Wei Ding, Jack Williams, Dinakara Karanth, et al.CFD Application in Automotive Front-End Design[J]. SAE technical paper,2006-01-0337.
    [186]P Dube, A Mulemane, V Damodaran.A Numerical Approach to Develop the Front End Cooling Package in a Vehicle Using Predicted Engine Fan Performance Data and Vehicle System Resistances[J]. SAE technical paper,2007-01-0542.
    [187]Timothy C. Scott, Dhananjay S. Joshi.Engine Cooling Module Sizing Using Combined 1-Dimensional and CFD Modeling Tools[J]. SAE technical paper,2009-01-1177.
    [188]Murat Cetrez, Bulent Balta, Tiirkan Edege.Cooling System Development of Light Commercial Vehicle[J]. SAE technical paper,2009-01-1467.
    [189]申建中,谭德高.轻型货车发动机冷却系统匹配计算[A].2003年11省区市机械工程学会学术会议论文集[C],2003.
    [190]胡群,韩同群,张云鹏.车用涡轮增压汽油机冷却系统设计与匹配[J].湖北汽车工业学院学报,2008,22(4):18-22.
    [191]向建华,张卫正,原彦鹏,等.坦克冷却系统的整体优化匹配研究[J].车辆与动力技术,2003,(04):29-33.
    [192]黄晖.发动机冷却系统的研究与优化设计[D].山东大学,2005.
    [193]严永华.工程机械用柴油机冷却系统匹配技术研究[J].柴油机设计与制造,2004,108(03):21-25,37.
    [194]王刚,李云清,梁新月,等.对某型发动机冷却系统的设计与匹配研究[J].车辆与动力技术,2007,(04):32-35.
    [195]陈义东.车辆热系统仿真与设计研究[D].南京理工大学,2004
    [196]刘毅,周大森,张红光.车用内燃机整机热平衡动态传热模型[J].内燃机工程,2006,(06):47-50.
    [197]李海军,毕小平.基于熵值法的坦克动力舱热工况的综合评价[J].装甲兵工程学院学 报,2004,(01):59-62.
    [198]俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005,(05):1-5.
    [199]宣益民,王玉林.车辆热特征分析与热系统设计[J].南京理工大学学报,1999,(03):282-288.
    [200]过增元,黄素逸,等著.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [201]Kays W. M., London A. L著.宣益民,张后雷译.紧凑式热交换器[M].北京:科学出版社,1997.
    [202]Davenport C. J.. Correlations for Heat Transfer and Flow Friction Characteristic of Louvred Fin[J]. AIChE Symposium Series,1983, (79)225:19-27.
    [203]Davenport, C. J.. Heat Transfer and Fluid Flow in Louvred Triangular Ducts[D]. Ph.D. thesis, Coventry (Lanchester) Polytechnic.1980.
    [204]许伟,闵敬春.缝对波纹翅片流动和换热性能影响的数值分析[J].清华大学学报(自然科学版)2005,45(5):673-676.
    [205]Kim M. H., Bullard C. W.. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers[J]. International Journal of Refrigeration,2002,25(3):390-400.
    [206]Ng E. Y.. Vehicle Engine Cooling Systems:Assessment and Improvement of Wind-Tunnel Based Evaluation Methods[D]. Ph.D. thesis, Melbourne, Australia.2002.
    [207]焦安军.换热器入口物流分配特性研究与优化设计[D].博士学位论文,西安交通大学,2002.
    [208]Fluent Inc,. FLUENT User's Guide.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700