用户名: 密码: 验证码:
生物硅藻土技术处理城镇污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对硅藻土物理化学污水处理技术存在的有机物去除效果不高、氨氮无处理效果以及悬浮层厌氧不稳定等主要问题,设计以缺氧—好氧污水生物处理工艺为主,利用硅藻土物化强化除磷和生物除碳脱氮的优势,首次将硅藻土物化处理技术发展为以硅藻土为微生物载体的化学除磷、生物脱氮一体化的生物硅藻土污水处理技术,并以悬浮澄清池替代传统二沉池,开发出生物硅藻土城镇污水处理新工艺(简称A/O/C-BD工艺)。
     本研究以城镇污水为处理对象,进行了A/O/C-BD工艺的小试和中试试验研究,包括设计参数的选取、微生物的培养驯化、运行参数和影响因素的研究等,并探讨了生物硅藻土技术去除污染物的机理。
     A/O/C-BD工艺中微生物菌胶团处于完全混合状态,依靠污泥回流维持微生物浓度,而微生物附着在硅藻土表面,形成以硅藻土为载体的生物膜,与常规生物脱氮除磷工艺比较,具有污泥浓度高(>12g/L)、硝化与反硝化速率高(分别为9.95mg(NH_4~+-N)/gVSS.h和6.78mg(NO_3~--N)/gVSS.h)、泥龄长(23~35d),污泥产率低(0.18~0.39kgVSS/kgBOD_5)的特点,兼具了活性污泥法和生物膜法污水处理的特点,提高了污水处理效率和效果。生物硅藻土污水处理技术为粉末材料作为微生物载体强化污水处理效果提供了一项实用的技术。
     设计和开发的小试装置及其研究表明,CODcr、NH_4~+-N、SS和TP处理效果良好,悬浮层在有氧条件下运行稳定,小试研究成果验证了生物硅藻土技术强化污水处理效果是可行的。
     中试研究表明,该工艺对城镇污水处理效果很好,对CODcr、NH_4~+-N、TN、SS和TP的平均去除率分别为87%,98%、62%、68%和>90%,各指标出水均能达到国家一级B排放标准限值,其中CODcr、NH_4~+-N、TN和SS均达到一级A排放标准。辅助投加聚合氯化铝混凝剂,出水TP也能达到国家一级A排放标准限值。
     研究提出了A/O/C-BD工艺设计和运行参数。主要的参数为:有机负荷~0.4kgBOD_5/m~3.d,澄清池表面负荷0.5~0.6m~3/m~2.h,污泥负荷~0.1kgBOD_5/kgMLVSS.d,曝气量15:1,回流比1.5:1,硅藻土投加量小于50mg/L。该工艺可通过辅助投加聚合氯化铝提高总磷处理效果。
The disadvantages of applying the chemical enhanced diatomite to treat the wastewater include the low efficiency with organics, no impact on ammonia-nitrogen and unstable anaerobic effects at the suspended layers. As such, considering that diatomite has good effects on phosphorous removal, and biological treatment is good at nitrogen removal, The bio-diatomite technology is designed based on the anaerobic-aerobic biological treatment process and transforms the chemical enhanced treatment technology to a integrated technology which uses the diatomaceous earth as the microorganism carrier to remove phosphorus via chemical mechanism and remove carbon and nitrogen via biological mechanism. The process applying the bio-diatomite technology and substituted the traditional secondary sedimentation tank by suspended clarification tank to treat municipal wastewater is named A/O/C-BD process .
    The study developed the smalland middle pilot studies on municipal wastewater treatment. Research includes the selection of design parameters, cultivation and acclimation of the microorganism, operation condition parameters and affection factors and the pollution removal mechanism.
    The filoc-forming bacteria was in a complete mixing status and the microorganism concentration was kept replying on the sludge recycle in A/O/C-BD process. The microorganism attached to the surface of diatomite formed the bio-membrane with the carrier as diatomite. Comparing with the normal nitrogen and phosphorus removal biological process, the diatomite is advantage in longer sludge age (23—35d)and lower generation rate of sludge(0.18~0.39kgVSS/kgBOD_5), and the higher nitrification rate and denitrification rate(9.95mg (NH_4~+-N) /gVSS.h and 6.78mg (NO_3~--N) /gVSS.h respectively). This process combined the characteristic of the activated sludge process and bio-membrane process therefore it increases the wastewater treatment efficiency. This also provides a valuable technology of adopting the superfine powder as the microorganism carrier.
    Based on the small-scale pilot studies, it is indicated that the removal efficiency
引文
[1] 胡家燕,硅藻土的矿物岩石特征,http://mygem.myrice.com/guizaotu.htm
    [2] 许树成,硅藻土开发应用与特性研究[J].阜阳师范学院学报(自然科学版),2000,17(3):29-31.
    [3] 陆浩,硅藻土资源及开发利用概况[J].浙江地质,2001,17(1):52-59
    [4] Fulton G. P., Diatomaceous earth filtrition for reduced water treatment part 1. unit process issue, Publics works, 1995, 126(11), 40
    [5] Fulton G. P., Diatomaceous earth filtrition for reduced water treatment part 2. Filter design and performance, Publics works, 1995, 126(12), 34-37
    [6] Logsdon G. S., Sorg T. G., Clark R. M, Capability and cost of treatment technology for small systems, JAWWA, 1990, 82(6), 60—66
    [7] Rees Robert, Diatomite cut filtration costs, Pollution engineering, 1990, 22(4), 67-70
    [8] Logsdon G. S., Filtration operation and maintenance for small systems, Proceedings-AWWA annual conference, resource, engineering and operations for the new decade, 1991, 601-618
    [9] Vipin Bhardwaj, and Mel J. Midiss, Diatomaceous Earth Filtration for Drinking Water, Tech Brief, Diatomaceous Earth Filtration for Drinking Water, Summer 2001
    [10] 孟建平,范谨初等,硅藻土过滤(DEF)技术的研究[J].中国给水排水,1994,10(2):8-11
    [11] 范瑾初,高乃云,高纯水制备的有效预处理—硅藻土过滤[J].给水排水,1994,20(6):11-13
    [12] 李忆等,硅藻土过滤技术在游泳池循环水处理中的研究和应用[J]给水排水,1997,23(3):36-38
    [13] 金伟,PDF技术在饮用水深度处理中的应用研究[硕士论文].上海,同济大学,1996
    [14] 纪任旺,范谨初等,粉末活性炭与硅藻土联用(PDF)用于饮水深度处理的研究[J].环境与开发,1998,13(3):5-9
    [15] 神笠谕,承载光催化剂的硅藻土在水处理中的应用[J].水处理信息导报,2002,104(1):20-21
    [16] 刘岁海,刘爱平,硅藻土开发应用的新成果[J].建筑材料工业信息,2003,(7):9-11
    [17] 新新,硅藻土作抗菌剂载体[J].建材工业信息,2002,(7):24
    [18] 郑绣瑞,李宝智,超细精制硅藻土作为载体的应用研究[J].非金属矿,2002,25(2):29-30
    [19] Harendrath C. S., Anuja K., Singh A., Gunaseelan A., etc., Immobilization in fixed film reactors: an untrastructural approach[J]. Water science and technology, 1996, 33(8): 7-15
    [20] Portier R. J., Miller G. P., Immobilized microbe bioreactors for wastewater treatment[J]. Waste management and research, 1991, 9(5): 445-451
    [21] Melin Esa S., Jarvine Kimmo T., Puhakka Jaakko A., etc., Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carrier[J]. Water research, 1998, 32 (1): 81-90
    [22] Livingston Andrew Guy, Development of a phenol degrading fluidized bed bioreactor for constant biomass holdup[J]. Chemical engineering journal and the biochemical engineering journal, 1991, 45(3): 35-47
    [23] Livingston Andrew Guy, Biodegradation of 3,4-dichloroaniline in a fiuidized bed bioreactor and a steady-state biofilm kinetic model[J]. Biotechnology and Bioengineering, 1991, 38(3): 260-272
    [24] Carter Sean R., Jewell William J., Biotransformation Of tetrachloroethylene by anaerobic attached-films at low temperatures[J]. Water research, 1993, 27(4): 607-615
    [25] VSS. d. Farhan Manaf H., Chin Hong, Patrick H., etc., Performance of anaerobic reactors during pseudo-steady-state operation[J]. Journal of chemical technology and biotechnology, 1997, 69(1): 45-57
    [26] Apilanrz I., Gutierrez A., and Diaz M., Effect of surface materials on initial biofilm development[J].Bioresource Technology, 1998, 66(3): 225-230
    [27] Broom G. P., Treatment of heavy metal effluent by crossflow microfiltration[J]. Journal of membrane science, 1994, 87(1-2): 219-230
    [28] Al-degs Y., Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15): 3724-3728
    [29] 夏士朋,石诚.改性硅藻土处理废水中重金属离子[J].河南化工,2002,(5):24-26
    [30] 赵黔榕,刘应隆等.改性硅藻土对Cu(Ⅱ)吸附性能的研究[J].云南师范大学学报(自然科学版),2000,20(6):55-57
    [31] 刘频,赵黔榕等.改性硅藻土对Pb(Ⅱ)的吸附作用[J].云南化工,2003,30(5):11-13
    [32] 翁焕新,沈忠岳,张兴茂等.硅藻土改性对工业废水降氟效果的影响研究[J].硅酸盐学报,2002,30(3):366—372
    [33] 加藤泰良等.JP昭60-128886.1974
    [34] 李敏学等.用硅藻土处理含油废水的研究[C].全国环境化学导向问题研究学术讨论会论文,1987
    [35] 森崎一男.JP昭49-128886.1974
    [36] 吴吉琨等.硅藻土处理印染废水的研究[C].全国环境化学导向问题研究学术讨论会议论文,1987
    [37] 彭书传.硅藻土复合净水剂处理印染废水[J].环境科学与技术,1998,80(1):24-25
    [38] 陈成锐,卢泽勤.啤酒厂废硅藻土回收利用[J].环境保护,1993,(12):36-37
    [39] 杨宇翔,陈荣三等.硅藻土脱色机理及其在印染废水中应用的研究[J].工业水处理,1999,19(1):15-17
    [40] 马崇勇,黄发政.CN 86 106871.1988
    [41] 彭宋纯等.CN 1034525.1989
    [42] 王泽民,董德明等.利用硅藻土复合净水剂处理造纸废水的研究[J].非金属矿,1997, 117(3):33-35
    [43] 张望军.硅藻精土处理城市生活污水可行性探讨[J].西南给排水,2002,24(2):9-11
    [44] 郑水林,王庆中.硅藻精土在污水处理中的应用[J].非金属矿,2000,23(4):36-37
    [45] 郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [46] 张自杰等.排水工程(第三版)[M].北京,中国建筑工业出版社,1996
    [47] 任洁,王闯等.上海合流污水物化强化处理的中试研究[J]给水排水,1999,25(9):8-9
    [48] 张冰如,李风亭.CEPT法处理上海城市污水的试验及其意义[J].净水技术,2002,21(2):10-14
    [49] 江霜英等.上海污水二期工程污水化学强化处理的试验研究[J].上海环境科学,2002,21(1):40-43
    [50] 王东海等.低浓度生活污水化学强化一级处理的试验研究[J].给水排水,1999,25(9):10-13
    [51] 刘雨,赵庆良,郑兴灿编著.生物膜法污水处理技术.北京:中国建筑工业出版社,2000.163~164
    [52] Sublette K. L., Sinder E. H. and Sylvester N. D.. Areview of the mechanism of powdered activated carbon enchancement of activated sludge treatment, Wat. Res., 1982, 16: 1075~1082
    [53] Dalmacijia B., Karlovic E., Tamas Z. and MiskovicD. Purification of high-salinity wastewater by activated sludge process, Wat. Res., 1996, 30(2): 295-298
    [54] Morper M. R. and Wildmoser A. Improvement of existing wastewater treatment plants' efficiencues without enlargement of application of the LINPOR process-case studues, Wat. Sci. Technol., 1990, 22(7-8): 207-215
    [55] Morper M. R. Upgrading of activated sludge system for nitrogen removal by application of the LINPOR-CN process, Wat. Sci. Technol., 1994, 29(12): 167-176
    [56] Golla P. S., Reddy M. K. and Laken T. J. Three years of full-scale CAPTOR process operation at Moundsville WWSP, Wat. Sci. Technol., 1994, 29(10-11): 175-181
    [57] Reddy M. K. Pagilla K. R., Senthilnathan P. R. et al.. Estimation of biomass concentration and population dynamitics in a CAPTOR activated sludge process, Wat. Sci. Technol., 1994, 29 (7): 149-152
    [58] Kondo M., Hozo S. and Inamori y. Simultaneous removal of BOD and Nitrogen with anaoxic/oxic porpous support systems, Wat. Sci. Technol., 1992, 26(9-11): 2003-2006
    [59] 蓝梅,顾国维.PACT工艺研究进展及应用中应注意的问题[J].工业水处理,2000,20(1):10-12
    [60] 张丽,贺启环.高效菌PACT法处理染料废水试验研究.环境工程,2006,22(3):20-22
    [61] 吉芳英,王平,何强等.水解酸化-PACT/SBR工艺处理光敏剂化工废水研究与工程实践.给水排水,2003,29(12):41-44
    [62] C. Bornhardt, J. E. Drewes, M Jekel., Removal of organic halogens (AOX) from municipal wastewater by powdered activated carbon (PAC)/activated sludge (AS) treatment [J]. Wat. Sci. Tech., 1997, 35(10): 147-153
    [63] Ferhan Cecen, Characteristics of organics removal by PACT simultaneous adsorption and biodegradation [J]Wat. Sci. Tech., 1994, 30(3): 183-192
    [64] Frieda Orshansky, Nava Narkis, Characteristics of organics removal by PACT simultaneous adsorption and biodegradation[J]. Wat. Res., 1997, 31(3): 391-398
    [65] 成官文.沸石强化A/O生物脱氮—同步化学除磷研究[博士学位论文].上海,同济大学,2004
    [66] 成官文,吴志超,章非娟等。化学除磷对沸石强化A/O生物脱氮工艺中试运行的影响.中国给水排水,2003,19(13):3-5
    [67] 朱晓君.垃圾渗滤液处理组合新工艺研究:[博士学位论文].上海:同济大学,2005
    [68] 蒋小红,曹达文,周恭明.改性硅藻土处理城市污水技术的可行性研究.上海环境科学.2003,22(12):983~986
    [69] 蒋小红,曹达文,周恭明等.硅藻土处理城市污水技术.重庆环境科学,2003,25(11):73~76
    [70] 朱晓君,鲁駸,周恭明等.改性硅藻土处理垃圾渗滤液的中试研究.中国给水排水,2005,21(6):1~3
    [71] 金伟,赵雅萍,徐祖信等.硅藻土复合生物反应器处理生活污水.同济大学学报(自然科学版),2005,33(12):1626-1629
    [72] 徐文征,金伟,曹达文.悬浮硅藻土生物反应器的低温启动.净水技术,2006,25(1):13-15
    [73] 上海水务局.水资源公报,2004。http://www.shanghaiwater.gov.cn/sw/2004_1_1.asp
    [74] 国家环保局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002
    [75] 胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,1988
    [76] 张杰主编废水处理理论与设计.北京,中国建筑工业出版社,2003
    [77] 蒋小红.改性硅藻土污水处理技术研究:[硕士学位论文].上海:同济大学,2003
    [78] Bruce E.Rittmann.Perry L.McCarty.Environmental Biotechnology-Principles and Applications.文湘华,王建龙等译.北京:清华大学出版社,2004.446-448
    [79] 梅特卡夫和埃迪公司.废水工程处理与回用:第四版.秦裕珩等译.北京,化学工业出版社,2004
    [80] 强化絮凝—流动床生物氧化工艺处理研究:[863课题研究报告].上海,同济大学,2006
    [81] 叶建峰编著.废水生物脱氮处理新技术.北京,化学工业出版社,2006
    [82] 高廷耀,周增炎,朱晓君.生物脱氮工艺中同步硝化反硝化现象。给水排水,1998,24(12):6~9
    [83] Wartchow, D.. Nitrication and denitrication in combined activated systems. Wat. Res., 1990, 22(7-8): 199-206
    [84] Watanabe, Y., Masuda S. and Ishiguo M.. Simulataneous Nitrication and denitrication in micro-aerboic biofilms. Wat. Res., 1992, 26: 511-522
    [85] Priyali Sen, Steven K. Dentel. Simulataneous Nitrication-denitrication in a fluidized bed reactor. Wat. Res., 1998, 38(1): 247-254
    [86] Klangduen Pochana, Jurg Keller. Model development for simulataneous nitrication and denitrication. Wat. Res., 1999, 39(1): 235-243
    [87] Klangduen Pochana, Jurg Keller. Study of factors affecting for simulataneous nitrication and denitrication. Wat. Res., 1999, 39(6): 61-68
    [88] Srinath E G, Sastry C A, Pillai S C. Rapid removal of phosphoruw from sewage by activated sludge. Experientia, 1959, 15: 339-340
    [89] Van Loosdrecht M C M, Hooijmans C M, Brdjanovic D. Biological phosphorus removal processes. Applbiol. Biotechnol. 1997, 48: 289-296
    [90] 李相昆.反硝化除磷工艺与微生物学研究[博士学位论文].黑龙江,哈尔滨工业大学,2006
    [91] 中国市政工程华北设计研究院,泰安市污水处理试验研究报告.天津,1989
    [92] 任杰,顾国维,杨海真.改良型A~2/O工艺处理城市污水的中试研究.给水排水,2002,26(6):7-10改良型A2/O工艺处理城市污水的中试研究.给水排水,2002,26(6):7-10
    [93] 周斌.改良型A~2/O工艺的除磷脱氮运行效果.中国给水排水,2001,17(7):46-48
    [94] 高廷耀,周增炎.一种适合当前国情的城市污水脱氮除磷新工艺.同济大学学报,1996,24(6):647-651
    [95] 高廷耀,顾国维主编.水污染控制工程:下册.第二版.北京:高等教育出版社,1999.251-259
    [96] 毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展.青岛理工大学学报 2006,27(2):9-13
    [97] Clark T. A., Stephenson T, Pearce S.. Phosphorous removal by chemical precipitation in a biological aerated filter. Wat. Res., 1997, 31(10): 2557-2563
    [98] 凌霄,胡勇有,马骥.曝气生物滤池铝盐化学强化与生物协调除磷.环境科学学报,2006,26(3):409-415 Westemman P. W., Bicudo J. R., Kantardjieff A., Upflow biological aerated filters for the treatment of flushed swine manure. Bioresource Technology, 2000, 74(3): 181-190
    [99] Bliss P. J., Ostarcevic E. R., Porter A. A.. Process optimization for stimulataneous biological nitrification and phosphorus removal. Wat. Sci. Tech., 1994, 29(12): 107-115
    [100] Goncalves R. F., Rogalla F., Biological phosphorous removal in fixed films reactors. Wat. Sci. Tech., 1992, 25(12): 165-174
    [101] Goncalves R. F., Rogalla F., Continuous biological phosphorous removal in a biofilms reactors. Wat. Sci. Tech., 1992, 26(9-11): 2027-2030
    [102] Goncalves R. F., LeGrand L., Rogalla F., biological phosphorous uoptake in submerged biofilms with nitrogen removal. Wat. Sci. Tech., 1994, 29(10-11): 135-143
    [103] Goncalves R. F., Nogueira F. N., LeGrand L. et al, Nitrogen and biological phosphorous removal, in submerged biofilter. Wat. Sci. Tech., 1994, 30(11): 1-12
    [104] Sen D., Mitta P. and Pandall C. W. Performance of fixed film media in activated sludge reactors to enhance nitrogrn removal, Wat. Sci. Technol., 1992, 26(7): 181-184
    [105] 张波.城市污水生物脱氮除磷技术与机理研究[博士学位论文].上海,同济大学,1996
    [106] Jones P H, Tadwalker A D, Hsu C L. Enhanced uptake of phosphorus by activated effect of substrate addition. Wat. Res., 1987, 21(3): 568-675
    [107] Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for treatment wastewater. Microbial Ecol., 1975, (2)119-138
    [108] Kampfer, et al.Characterization of bacterial communities from activatedsludge:chlture-dependent numerical identification versus oligonucleotide probes. Microbial Ecol., 1996, 32(1): 101-121
    [109] Shoji T, Satoh H, Mino T. Quantitative estimation of denitrifying phosphate accumulating organisms in nutrient removal. Wat. Sci. Tech., 2003, 47(1): 23-29
    [110] Satoh H, et al. Uptake of organic substeates and accumulation of polyhydroxyalkanoates links with glycolysis of intracellular carbonhydrates under anaerobic condiatitions in the biological excess phosphate removal process. Wat. Sci. Tech., 1992, 34(1): 8-15
    [111] Osbron D W, Nicholls H A. Optimazation of the activated sludge process for the biological removal of phosphorus. Prog. Wat. Technol, 1978, 10(1/2): 261-277
    [112] 赵丹,任南琪,陈坚等.生物除磷技术新工艺及其微生物学原理.哈尔滨工业大学学报.2004,36(11):1460-1462
    [113] Mito Takashi, Van Loosdrecht MCM. Microbology and biochemistry of the enhanced biological phosphate removal, process. Wat. Res., 1998, 32(11): 3193-3207
    [114] Comeau Y, Hall K J, Hancock R. Biochemical model for enhance biological phosphorus removal. Wat. Res., 1986, 20(12): 1511-1521
    [115] Kuba T, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type waste water treatment plants. Wat. Res., 1997, 31(4): 777-786
    [116] Maurer M. Intracellular carbon flow in phosphorus accumulating organisms from activated sludge system. Wat. Res., 1997, 31(4): 907-917
    [117] Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifyling phosphate-accumulat ing organisms culativated under different electron acceptor, conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Wat. Res., 2002, 36(2): 403-412
    [118] Mito T, Liu W T, Kurisu F. Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Wat. Res. Technol, 1995, 31: 25-34
    [119] 王暄,季民,王景峰等.厌氧-好氧周期循环条件下厌氧磷吸收现象.天津大学学报 2006,39(2):214-218
    [120] 王暄,季民,王景峰等.厌氧-好氧周期循环条件下厌氧快速吸收有机物的研究.农业环境科学学报,2005,24(2):322-327
    [121] 熊小京,黄智贤,洪华生等.淹没式贝壳填料生物滤池的除磷效应.中国给水排水2003,19(8):44-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700