用户名: 密码: 验证码:
农户污水分散式土地处理系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农户污水的随意排放是造成水体污染的重要原因。寻求高效、廉价、易于操作的农户污水土地处理工艺,对于控制农村地区水体污染、改善农村生态环境具有重要理论意义和实用价值。
     本文是作者近几年实验室工作和工程实践的总结。本文的研究围绕着农户污水以及处理农户污水的土地处理系统展开。在文献整理与阅读过程中,本文运用文献计量学的新理论,发现国际学术界污水处理领域的研究趋势。在实验室工作中,本文利用非线性拟合方法研究土壤对磷的吸附;从污水受纳水体底泥中,分离出污水生物强化处理高效菌;建立模拟反应器研究预处理方法对反应器启动时间及填料对反应器处理污水效果的影响。在滇池工程实践中,运用改良型三格化粪池、复合基质滤床和人工湿地系统的组合工艺,在滇池北岸进行农户污水零散土地处理工程示范,取得较好效果。在爱尔兰综合型人工湿地(ICW)系统处理高污染负荷农户污水工程实践中,利用自组织映射(SOM)模型揭示该系统出水水质参数之间的关系,实现对土地处理系统出水水质的实时监控。
     本文研究的总体思路是:通过文献计量分析当前研究热点和趋势,在实验室研究农户污水土地处理系统的共性机理和技术方法,通过示范工程建设进行工程实践。
     本文主要研究结论如下:
     (1)分别用线性和非线性拟合方法研究了红土对污水中磷的吸附规律,结果表明,利用线性方法获得的r2的大小来判断最佳匹配等温线的方法存在理论缺陷,非线性拟合方法是研究土壤对磷吸附特征的正确方法;通过非线性拟合方法得到的Redlich-Peterson等温线曲线与等温吸附实验的实验数据点最为匹配。
     (2)对四种可用于土地处理系统的填料(沸石、高炉水渣、陶粒、核桃壳)进行模拟实验,结果发现高炉水渣是适合于滇池北岸农户污水土地处理系统的填料;挂膜效果最好的填料为高炉水渣,最差的为核桃壳;高炉水渣对反应器系统的pH值也具有一定的调节能力,能使系统更有效的去除污染物。
     (3)研究了预处理方法对反应器启动的影响以及启动后系统的性能,结果表明好氧预挂膜-厌氧污泥接种法预处理能加快反应器的启动速度,并能增强COD (chemical oxygen demand)的去除效果,经过该预处理法处理的反应器普遍比经过厌氧污泥接种法预处理的反应器的挂膜效果好;当COD负荷在100~900mg/d之间时,以水渣作为填料的反应器具有较强的耐负荷冲击能力,两个填充水渣的反应器的COD去除率较为稳定,均能维持在68~81%之间;在填充高炉水渣的反应器中,污染物的去除均符合一级动力学方程,污染物去除速率的快慢顺序为:总磷>COD>总氮。
     (4)从污水受纳水体底泥中分离出两种COD降解高效菌(DWT-2和DWT-4) (DWT:domestic wastewater-treating bacteria)和两种磷去除高效菌(DWT-6和DWT-7),根据形态学和生理生化鉴定结果为:DWT-2属于产碱菌属(Alcaligenes sp.), DWT-4和DWT-7被鉴定为假单胞菌属(Pseudomonas sp.),而DWT-6则为克雷伯氏菌属(Klebsiella sp.),由DWT-2和DWT-7(比例分别为2:1、1:1、1:2)所组成的3组复合菌种是对COD和磷去除效果最好的复合菌种。
     (5)在滇池北岸成功进行了农户污水零散土地处理系统工程示范,结果表明IST+CMFB+CW(改良型三格化粪池+复合基质滤床+人工湿地)系统处理农户污水后,出水中的COD、总磷、总氮浓度基本能达到《农田灌溉水质标准》(GB5084—92)“水作”标准;季节变化总体上对总磷和总氮的去除率影响不大,系统较为稳定;IST+CMFB系统对总磷和总氮的去除能力较强,耐污染负荷冲击能力也较好;系统在消减污染的同时,还具有较好的景观效果,无需占用额外的土地,无需外加动力,成本低廉,管理简单方便,适合于在我国广大农村地区推广应用。
     (6)在爱尔兰Annestown流域研究了处理高浓度农户污水的综合型人工湿地(ICW)系统,结果表明该系统具有良好性能,对农户污水中溶解性磷(SRP)、NH4+-N、NO3--N、BOD(biochemical oxygen demand)、COD、SS(suspended solids)、E-coli的去除效果较好;ICW系统出水中SRP、NH4+-N、NO3--N、BOD、COD、SS、E-coli的平均浓度达到了爱尔兰环保局规定的污水处理系统出水水质标准;ICW系统对NH4+-N和SRP的去除效果受季节变化的影响较小,系统较稳定;ICW系统依自然地势条件设计,与当地自然景观协调一致,保证了系统中水体的自流,节省了建设费用和运行费用,且具有较高的生态适宜性;ICW系统对于高浓度农户养殖污水具有较好的处理效果,而且运行管理简单,适宜于在农村地区长效运行。
     (7)运用自组织映射(SOM)模型分析了ICW工程的水质参数,结果表明SOM模型的可视化功能可直观地揭示各水质参数之间的关系;SOM模型预测准确率较高,实现了ICW系统出水BOD浓度的实时监控;ICW土地处理系统出水数据集中的空白数据和异常数据可以被SOM模型较好地预测和替换;SOM模型是适宜于野外工程数据分析的预测工具,在土地处理系统中具有较好的应用前景。
     (8)我们的研究表明,滇池北岸的农户污水零散土地处理系统和爱尔兰Annestown流域的ICW系统均属于适合处理农户污水的分散式土地处理系统,两类系统既有共性,又存在适用条件上的差别。两个系统均能较好地控制农户污水对水体的污染;其设计都利用了工程建设地的地形地势,无需外加动力,具有较好的景观效果;两个系统的操作和管理简单,适合于农村地区推广应用;滇池北岸的农户污水零散土地处理系统主要是处理农户的生活污水,利用农户房舍周围的零散土地,占用土地面积小,而ICW系统主要用于处理高负荷的农户畜禽养殖污水,占地面积相对较大,这是制约该系统在中国农村推广应用的最大因素。
Rural domestic wastewaters, the main source caused serious river and lake pollution, were always discharged into the rivers and lakes around the rural residences directly. It's significant for rural pollution controlling and rural environment protection to select the land treatment technologies which were cost-effective, no need of mechanical equipment and simplicity of operation and maintenance.
     This research was about the issues of rural domestic wastewater and wastewater land treatment system based on the bench-scall and field-scall experiment. On the basis of bibliometric analysis on wastewater research, the trend of wastewater research was studied. The equilibrium adsorption data of phosphorus onto red soil were analyzed and non-linear regression was used to determine the best-fitting isotherm. High efficient pollutant-degrading bacteria were isolated from sludge samples. Unplanted filters, which were filled with different filter media, were operated to assess their nutrient removal performances. Two types of decentralized rural domestic wastewater land treatment systems (IST+CMFB+CW, ICW) were studied to assess their performances of nutrient removal. Self-organizing map (SOM) model was also applied into to wastewater land treatment system for water quality real time control.
     In this study, the issues of wastewater were found by bibliometric analysis, and mechanisms of the land treatment system were studied. Finally, the land treatment technologies were assessed.
     The main results are as follows:
     (1) The equilibrium adsorption of phosphate from aqueous solution using red soil was investigated. The linear and non-linear regression were used and compared to determine the best-fitting isotherm. The linear regression method for determining the best-fitting isotherms was not appropriate in this study; the correct method should be non-linear regression. Redlich-Peterson seemed to be the best-fitting isotherms for the experiment results.
     (2) Filters, which were filled with four types of filter medium (natural zeolite, blast furnace granulated slag, ceramsite, and walnut shells), were operated to assess their nutrient removal performances. Compared with other filters, blast furnace granulated slag-filled filters performed best concerning nutrient removal and retention. Walnut shell-filled filters performed worst. Blast furnace granulated slag was resistant to the pH changes.
     (3) Preprocessing method involving aerobic and anaerobic sludge was applied to the filters to accelerate the treatment processes. The results indicated that preprocessing enhanced the chemical oxygen demand (COD) removal. Filters containing blast furnace granulated slag were independent with respect to COD loading rate variations in the range between 100 and 900 mg/d, the COD removal rates were between 68% and 81%. A linear velocity equation was used to determine the nutrient removal velocities of blast furnace granulated slag-filled filters. The removal velocities were rapid, and highest for total phosphorus (TP) and lowest for total nitrogen (TN).
     (4) Four types of high efficient pollutant-degrading bacteria:DWT-2, DWT-4, DWT-6 and DWT-7, were isolated from sludge samples. Based on their morphological, physiological and biochemical characteristics, these bacteria were identified as Alcaligenes sp., Pseudomonas sp., Klebsiella sp. and Pseudomonas sp.. DWT-2 and DWT-4 were identified as highly efficient COD-degrading bacteria, and DWT-6 and DWT-7 were identified as highly efficient phosphorus-degrading bacteria on the basis of bench scale experiments. The performances of three combinations of DWT-2 and DWT-7 with proportions of 2:1,1:1 and 1:2 were relatively good.
     (5) The combined system IST+CMFB+CW around Lake Dianchi showed relatively good removal efficiency of COD, TP and TN; the effluent pollutants concentrations met the requirement of the agricultural water. The influence of the seasonal variations on the TN and TP removal was not obvious. Compared to other technologies, this system showed high treatment capacity for rural domestic wastewater treatment with good landscape integration. Results demonstrated that this system could be a practical technology for onsite domestic wastewater treatment in rural areas.
     (6) The removal efficiencies of ICW around annestown valley system were relatively good for soluble reactive phosphorus (SRP), NH4+-N, NO3-N, biochemical oxygen demand (BOD), COD, suspended solids (SS), and E-coli. The water quality was improved by this technology. The outflow water quality met the standards for discharge from wastewater treatment plants in Ireland. The results showed that ICW were likely to be efficient for nutrient removal from rural domestic wastewater rich in nutrients, this system is suitable to be applied in rural area for wastewater pollution control.
     (7) A self-organizing map (SOM) model was applied as a prediction tool for the performance of an ICW system treating rural domestic wastewater to protect receiving watercourses. The relationships between ICW outflow water quality parameters can be very well visualized by using SOM model. By utilizing the SOM model, the time-consuming to measure expensive BOD outflow concentrations were predicted well by other inexpensive variables, which were quicker and easier to measure. Correct predictions for the outflow biochemical oxygen demand concentrations were high. Moreover, the missing values and outliers from the large but incomplete ICW data set were replaced accurately by most likely values determined by the SOM model. As a prediction method, this approach could be potentially applied in other field-scale land treatment systems.
     (8) The study indicated that IST+CMFB+CW and ICW, the decentralized land treatment systems, were successfully applied for rural domestic wastewater treatment. The designs of them were based on the holistic use of land and environmental, ecological structure of the landscape to control water quality; they were cost-effective, no need of mechanical equipment and simplicity of operation and maintenance, natural contours around the residences were utilized to support the good distribution of flows in the system. IST+CMFB+CW systems were constructed using various scattered open land spaces around rural residences, little land area was occupied. ICW systems took up relatively large-sized appropriative grounds; this greatly limits the use of those systems for domestic wastewater treatment in China.
引文
[1]United States of Environmental Protection Agency (US EPA). EPA's Polluted brochure[R].1994, EPA-841-F-94-005.
    [2]刘鸿渊,刘险峰,闫泓.农业面源污染研究现状及展望[J].安徽农业科学,2008,36(19):8249-8250,8254.
    [3]吴文学,郝阳,张利伟,等.中国农村小型分散式污水处理系统研究[J].中国科技信息,2006,(19):56-57.
    [4]王志芸,贺彬,张秀敏,等.云南省九大高原湖泊水污染现状调查与分析[J].云南环境科学,2006,25(A01):77-79.
    [5]李无双,王洪阳,潘淑君.农村分散式生活污水现状与处理技术进展[J].天津农业科学,2008,14(6):75-77.
    [6]苏东辉,郑正,王勇,等.农村生活污水处理技术探讨[J].环境科学与技术,2005,28(1):79.
    [7]林小群,陈文婷.人工湿地处理汕尾新农村生活污水探讨[J].化工时刊,2008,22(11),71-73.
    [8]北京市市政工程设计研究总院.给排水设计手册一城镇排水(第二版)[M].北京:中国建筑工业出版社,2004.
    [9]Harremoes, P. Water as a transport medium for waste out of towns[J]. Water Science & Technology,1999,39(5):1-8.
    [10]Lens, P., Zeeman, G., Lettinga, G. Decentralised Sanitation and Reuse-Concepts, Systems and Implemenlation[M]. UK:IWA publishing,2001.
    [11]陈俊敏,贾滨洋,付永胜.生物化粪池/表面流人工湿地处理“农家乐”污水[J].中国给水排水,2006,22(12):71-73.
    [12]Watanabe, Y. and Iwasaki, Y. Performance of hybrid small wastewater treatment system consisting of jet mixed separator and rotating biological contactor [J]. Water Science & Technology,1997,35(6):63-70.
    [13]Sabbah, I., Ghattas, B., Hayeek, A., Omari, J., et al. Intermittent sand filtration for wastewater treatment in rural areas of the Middle East-a pilot study [J]. Water Science & Technology,2003,48(11-12):147-152.
    [14]Ham, J.H., Yoon, C.G., Jeon, J.H., et al. Feasibility of a constructed wetland and wastewater stabilization pond system as a sewage reclamation system for agricultural reuse in a decentralized rural area[J]. Water Science & Technology, 2007,55(1-2):503-511.
    [15]Taylor, M., Clarke, W.P., Greenfield, P.F. The treatment of domestic wastewater using small-scale vermicompost filter beds[J]. Ecological Engineering,2003, 21(2-3):197-203.
    [16]Heistad, A., Paruch, A.M., Vrale, L., et al. A high-performance compact filter system treating domestic wastewater[J]. Ecological Engineering,2006,28(4): 374-379.
    [17]Cheung, K.C., and Venkitachalam, T.H. Improving phosphate removal of sand infiltration system using alkaline fly ash[J]. Chemosphere,2000,41(1-2): 243-249.
    [18]季俊杰,何成达,葛丽英,等.分散式生活污水处理工艺:DASB+W-SFCW联合工艺[J].水资源保护,2006,22(3):56-59.
    [19]Wolfe, P. History of wastewater [A]. In:Wolfe, P. World of Water[M]. USA: Water World/Water and Wastewater International Supplement to PennWell Magazines,1999:24-36.
    [20]Stanbridge, H.H. History of Sewage Treatment in Britain[M], UK:Institute of Water Pollution Control,1976.
    [21]Cooper, P.F. and Findlater, B.C. Constructed Wetlands in Water Pollution Control[M]. UK:Pergamon Press,1990.
    [22]成先雄,严群.农村生活污水土地处理系统[J].四川环境,2005,24(2):39-43.
    [23]刘家宝.人工快速渗滤系统污染物去除机理及其处理效果研究[D].北京: 中国地质大学,2006.
    [24]贾宏宇,孙铁珩,李培军,等.污水土地处理技术研究的最新进展[J].环境污染治理技术与设备,2001,2(1):62-65.
    [25]张丽珊,于殿臣,刘海玲,等.慢速渗滤土地处理系统对沈阳西部城市污水有机污染物净化效果的研究[J].应用生态学报,1992,3(4):355-363.
    [26]李应学,杜道灯,戴碧琼,等.慢速渗滤系统对氮磷的净化功能及工艺条件的研究[J].农业环境保护,1992,11(1):3-10.
    [27]马利民,刘丛,崔程颖,等.人工土地快速渗滤系统处理城镇污水工艺优化[J].水处理技术,2008,34(6):47-51.
    [28]黄咏洲和黄玮.人工土快速渗滤系统消减城市面源污染负荷的试验研究[J].西南给排水,2006,28(6):10-13.
    [29]完颜华,李立房,崔金贵.坡度、水力负荷及布水方式对地表漫流系统冲刷率的影响[J].兰州铁道学院学报,1994,13(3):49-54.
    [30]张旭东,阮晓红,孙敏.利用地表漫流系统处理新沂河污水的试验研究[J].河海大学学报(自然科学版),2005,33(3):273-276.
    [31]曾扬,陈长太.污水地表漫流处理系统中氮的迁移转化试验研究[J].环境科学与技术,2003,26(6):18-19,45.
    [32]US EPA. Constructed wetlands treatment of municipal wastewater[R]. USA: United States (US) Environmental Protection Agency (EPA), Office of Research and Development,2000.
    [33]Vymazal, J. Removal of nutrients in various types of constructed wetlands. Science of the Tolal Environment,2007,380(1-3),48-65.
    [34]黄时达.成都市活水公园人工湿地系统10年运行回顾[J].四川环境,2008,27(3):66-70.
    [35]宣亚红,王小江,白玉华,等.垂直流人工湿地系统在城市生活小区污水处理和回用中的应用[J].上海水务,2008,24(3):34-36,65.
    [36]黄丽华,张卫民.地下渗滤系统处理生活污水的研究进展[J].江苏环境科技,2008,21(1):105-107.
    [37]刘晓宁,邱荣华.地下渗滤系统处理分散式生活污水的研究[J].节水灌溉, 2007,(8),129-130.
    [38]张建,黄霞,刘超翔,等.地下渗滤处理村镇生活污水的中试[J].环境科学,2002,23(6):57-61.
    [39]孙宗健,滕彦国,王金生.人工土壤渗滤-湿地系统农村污水分散式处理[J].水处理技术,2007,33(11):82-84.
    [40]彭润芝,董泽琴,史莉等. “地沟式渗滤+碎石床湿地”污水处理技术研究[J].贵州环保科技,2004,10(B09):20-23,27.
    [41]曾扬,安贞煜.土地处理技术在污水资源化中的应用[J].环境污染治理技术与设备,2003,4(9):77-80.
    [42]Carty, A., Scholz, M., Heal, K., et al. The universal design, operation and maintenance guidelines for Farm Constructed Wetlands (FCW) in temperate climates[J]. Bioresource Technology,2008,99 (15):6780-6792.
    [43]Jayaweera,G.R., and Mikkelsen, D.S. Assessment of ammonia volatilization from flooded soil systems[J]. Advances in Agronomy,1991,45:303-365.
    [44]付融冰.强化人工湿地对富营养化水体的修复及作用机理研究[D].上海:同济大学,2007.
    [45]Crites, R. and Tchobanoglous, G. Small and Decentralized Wastewater Management Systems[J]. USA:WCB and McGraw Hill,1998.
    [46]Faulkner, S.P. and Richardson, C.J. Physical and chemical characteristics of freshwater wetland soils[A]. In:Hammer, D.A. Constructed wetlands for wastewater treatment-municipal, industry and agricultural [M], UK:Lewis Publers. 1989:41-72.
    [47]Metcalf and Eddy, Inc. Wastewater engineering:treatment, disposal and reuse(3rd edn)[M]. New York:McGraw Hill,1991.
    [48]李国学,何建平,张建华.城市污水人工土快滤处理与利用系统[M].北京:中国农业科技出版社,1999.
    [49]近藤精一,石川达雄,安部郁夫(李国希译).吸附科学(原著第二版)[M].北京:化学工业出版社,2006.
    [50]朱丽珺.不同林分类型土壤及主要组分对重金属吸附特征研究[D].南京: 南京林业大学,2007.
    [51]黄中子.吸附法除磷的理论模型研究[D].湖南:中南林业科技大学,2006.
    [52]景丽洁,王敏.不同类型土壤对重金属的吸附特性[J].生态环境,2008,17(1):245-248.
    [53]郭柏栋,何红波,张旭东等.乙草胺在四种不同土壤中吸附行为研究[J].土壤通报,2008,39(4):957-961.
    [54]Kumar, M., and Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils[J]. Chemosphere,2006, 62(7):1064-1077.
    [55]Dunne, E.J., Culleton, N., O'Donovan, G., et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland[J]. Water Research, 2005,39(18):4355-4362.
    [56]刘雨.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [57]王家玲.环境微生物学(第二版)[M].北京:高等教育出版社,2003:4176.
    [58]Chang, W., Hong, S., Park, J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J], Process Biochemistry,2002,37(7), 693-698.
    [59]于清江,王丽艳.核桃壳滤料用于处理含油、含浊废水的试验研究[J].中国环保产业,2005,(3):32-33.
    [60]邓慧萍,徐迪民,易小萍,等.几种改性滤料去除水中有机物的性能比较[J].同济大学学报(自然科学版),2001,29(4):444-447.
    [61]金玉洁.基因工程菌对偶氮染料脱色研究[D].大连:大连理工大学,2005.
    [62]高瑾.染料工业废水生物处理及其强化技术研究[D].南京:南京理工大学,2003.
    [63]李环.组合式工艺处理煤气废水的小试研究[D].哈尔滨:哈尔滨工业大学图书馆,2003.
    [64]刘安.诱变驯化生活污水高效菌与人工生态床联合处理生活污水的研究[D].武汉:武汉大学.2008.
    [65]Dhuiib, A., Hamad, N., Hassairi, I., et al. Degradation of Anionic Surfactants by Citrobacter Braakii[J]. Process Biochemistry.2003,38(8):1245-1250.
    [66]张青贵.人工神经网络导论[M].北京:中国水力水电出版社,2004.
    [67]邹文安,刘立博,王凤.人工神经网络BP模型在枯季径流量预测中的应用[J].水资源研究,2008,29(3):43-45,48.
    [68]McCulloch, W.S., and Pitts, W. A Logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943, (5):115-133.
    [69]谌刚.人工神经网络的发展与应用[J].中南论坛,2008,(4):120-123.
    [70]Hebb, D.O. The Organization of behavior[M].1949, New York:Wiley.
    [71]蒋佰权.人工神经网络在水环境质量评价与预测上的应用[D].北京:首都师范大学,2007.
    [72]Rosenblatt, F. The perceptron:a probabilistic model for information storage and organization in the brain[J]. Psychological Review,1958, (65):386-408.
    [73]Widrow, B., and Hoff, M.E. Adaptive Switching Circuits[R], Los Angeles:IRE WESCON convension record:part4, computers:Man-machine System,1960: 96-1045.
    [74]杨松芹,张慧珍,巴月,等.水体富营养化状况的人工神经网络预测模型的建立[J].卫生研究,2008,37(5):543-545.
    [75]Astel, A., Tsakovski, S., Barbieri, P., et al. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets[J]. Water Research,2007,41(19):4566-4578.
    [76]孙涛,李纪人,潘世兵.人工神经网络(ANN)模型在地下水资源预测中的应用研究[J].世界地质,2004,23(4):386-390.
    [77]吴璞周,卫海燕,王威.人工神经网络模型在区域水资源压力评价中的应用—以西安市为例[J].干旱区研究,2008,25(6):824-828.
    [78]Pastor, R., Benqlilou,C., Paz, D., et al. Design optimisation of constructed wetlands for wastewater treatment[J]. Resources, Conservation and Recycling, 2003,37(3):193-204.
    [79]Keefe, S.H., Barber, L.B., Runkel, R.L., et al. Fate of volatile organic compounds in constructed wastewater treatment wetlands[J]. Environmental Science & Technology,2004,38 (7):2209-2216.
    [80]McGechan, M.B., Moir, S.E., Castle, K., et al. Modelling oxygen transport in a reedbed-constructed wetland purification system for dilute effluents [J]. Biosystems Engineering,2005,91(2):191-200.
    [81]Henrichs, M. Langergraber, G., Uhl, M. Modeling of organic matter degradation in constructed wetlands for treatment of combined sewer overflow[J]. Science of the Total Environment,2007,380(1-3):196-209.
    [82]Langergraber, G. Simunek, J. Modelling variably-saturated water flow and multi-component reactive transport in constructed wetlands [J]. Vadoze Zone Journal,2005,4(4):924-961.
    [83]张静.21世纪中国图书馆立法研究的文献计量分析[J].科技情报开发与经济,2008,18(3):14-16.
    [84]Xie, S., Zhang, J., Ho, Y. Assessment of world aerosol research trends by bibliometric analysis[J]. Scientometrics,2008,77(1):113-130.
    [1]US EPA. Constructed wetlands treatment of municipal wastewater[R]. USA: United States (US) Environmental Protection Agency (EPA), Office of Research and Development,2000.
    [2]李峰,喻龙,郝彦菊.滨海湿地土壤对氮、磷污染吸附净化作用的研究[J].齐鲁渔业,2008,25(7):44-46.
    [3]Richter, E., Schutz, W. Myers, A.L. Effect of adsorption equation on prediction of multicomponent adsorption equilibria by the ideal adsorbed solution theorys[J]. Chemical Engineering Science,1989,44 (8),1609-1616.
    [4]Ratkowsky, D.A., Handbook of Nonlinear Regression Models[M]. New York: Marcel Dekker, Inc.,1990.
    [5]Ho, Y.S. Selection of optimum sorption isotherm[J]. Carbon,2004,42(10): 2115-2116.
    [6]Ho, Y.S. Isotherms for the sorption of lead onto peat:Comparison of linear and non-linear methods[J]. Polish Journal of Environmental Studies,2006,15(1): 81-86.
    [7]Seidel, A. and Gelbin, D. On applying the ideal adsorbed solution theory to multicomponet adsorption equilibria of dissolved organic components on activated carbon[J]. Chemical Engineering Science,1988,43(1):79-89.
    [8]Ho, Y.S., Chiu, W.T., Wang, C.C. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust[J]. Bioresource Technology,2005,96(11): 1285-1291.
    [9]Ho, Y.S. and Ofomaja, A.E. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution[J]. Process Biochemistry,2005,40(11): 3455-3461.
    [10]近藤精一,石川达雄,安部郁夫(李国希译).吸附科学(原著第二版)[M].北京:化学工业出版社,2006.
    [11]Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [12]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2004.
    [13]Ho, Y.S., Huang, C.T., Huang, H.W. Equilibrium sorption isotherm for metal ions on tree fern[J]. Process Biochemistry,2002,37(12):1421-1430.
    [14]Freundlich, H.M.F. Uber die adsorption in losungen[J]. Zeitschrift fur Physikalische Chemie (Leipzig),1906,57A:385-470.
    [15]Redlich, O. and Peterson, D.L. A useful adsorption isotherm[J]. Journal of Physical Chemistry,1959,63(6):1024.
    [16]Kinniburgh, D.G. General purpose adsorption isotherms[J]. Environmental Science & Technology,1986,20(9),895-904.
    [17]Longhinotti, E., Pozza, F., Furlan, L., et al. Adsorption of anionic dyes on the biopolymer chitin[J]. Journal of the Brazilian Chemical Society,1998,9(5), 435-440.
    [18]Dunne, E.J., Culleton, N., O'Donovan, G., et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland[J]. Water Research, 2005,39(18):4355-4362.
    [1]Scholz, M. Wetland systems to control urban runoff[M]. Amsterdam:Elsevier, 2006.
    [2]Healy, M.G., Rodgers, M, Mulqueen, J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters [J]. Bioresource Technology, 2007,98(12),2268-2281.
    [3]US EPA. Constructed wetlands treatment of municipal wastewater[R]. USA: United States (US) Environmental Protection Agency (EPA), Office of Research and Development,2000.
    [4]Blankenberg, A.B., Haarstad, K., Sovik, A. Nitrogen retention in constructed wetland filters treating diffuse agriculture pollution[J]. Desalination,2008, 226(1-3),114-120.
    [5]Bolan, N.S., Wong, L., Adriano, D.C. Nutrient removal from farm effluents[J]. Bioresource Technology,2004,94(3),251-260.
    [6]Yamada, H., Kayama, M., Saito, K., et al. A fundamental research on phosphate removal by using slag[J]. Water Research,1986,20(5),547-557.
    [7]He, S.B., Xue, G., Kong, H.N. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load[J]. Journal of Hazardous Materials,2007,143(1-2),291-295.
    [8]Xu, G.R., Zou, J.L., Li, G.B. Stabilization of heavy metals in ceramsite made with sewage sludge[J]. Journal of Hazardous Materials,2008,152(1),56-61.
    [9]Srinivasan, A., Viraraghavan, T. Removal of oil by walnut shell media[J]. Bioresource Technology,2008,99(17),8217-8220.
    [10]Moreno-Andrade, I., Buitron, G. Influence of the origin of the inoculum on the anaerobic biodegradability test[J]. Water Science & Technology,2004,49(1), 53-59.
    [11]Borzacconi, L., Lopez, I., Passeggi, M. Start-up and steady-state results of a full-scale UASB reactor treating malting wastewater[J]. Water Science & Technology,2006,54(2),261-267.
    [12]Ye, F.X., Chen, Y.X., Feng, X.S. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier[J]. Bioresource Technology,2005,96(1),115-119.
    [13]刘邦军,池鹏飞,赵慧玲.高炉水渣的性能特征及应用途径[J].河南冶金,2005,13(6):29-31,50.
    [14]Gruneberg, B., and Kern, J. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands[J]. Water Science & Technology,2001,44(11-12):69-75.
    [15]Johansson, L., and Gustafsson, J.P. Phosphate removal using blast furnace slags and opoka-mechanisms[J]. Water Research,2000,34(1),259-265.
    [16]Korkusuz, E.A., Beklioglu, M., Demirer, G.N. Use of blast furnace granulated slag as a substrate in vertical flow reed beds:Field application[J]. Bioresource Technology,2007,98(11),2089-2101.
    [17]于清江,王丽艳.核桃壳滤料用于处理含油、含浊废水的试验研究[J].中国环保产业,2005,(3):32-33.
    [18]张静,张旭,李广贺,等.潜流湿地中填料的理化作用及对植物生长的影响[J].环境科学,2006,27(5):874-879.
    [19]北京市市政工程设计研究总院.给排水设计手册一城镇排水(第二版)[M].北京:中国建筑工业出版社,2004.
    [20]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997:185.
    [21]American Public Health Association (APHA). Standard methods for the examination of water and wastewater (20th ed)[S]. Washington, DC:American Public Health Association (APHA), American Water Works Association, Water and Environmental Federation.1998.
    [22]中华人民共和国环境保护部.水环境监测方法标准 [S]. http://www.mep.gov.cn/tech/hjjc/jcgfffbz/200603/t20060329_75255.htm
    [23]Zorpas A.A.,Constantinides, T.,Vlyssides, A.G., et al. Heavy Metal Uptake by Natural Zeolite and Metals Partitioning in Sewage Sludge Compost[J]. Bioresource Technology,2000,72(2):113-119.
    [24]Brady, N.C. The Nature and Properties of Soils (10th ed)[M]. USA:Macmillan Publishing Company,1990.
    [25]McDowell, H., Gregory, T.M., Brown, W.E. Solubility of Ca5(PO4)3OH in the System Ca(OH)2-H3PO4-H2O at 5,15,25, and 37℃[J]. Journal of Research of the National Bureau of Standards,1977,81A(2-3),273-281.
    [26]Johansson, L. Blast furnace slag as phosphorus sorbent-column studies[J]. The Science of the Total Environment,1999(1-2).229,89-97.
    [27]Johansson, L. Industrial by-products and natural substrata as phosphorus sorbents[J]. Environmental Technology,1999,20(3),309-316.
    [28]刘雨.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [29]徐丽花,周琪.天然沸石去除氨氮研究[J].上海环境科学,2006,21(8):506-508.
    [30]Arias, C.A., Bubba, D.M., Brix, H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J]. Water Research,2001,35(5): 1159-1168.
    [31]He, S.B., Xue, G. Kong, H.N., et al. Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder[J]. Journal of Hazardous Materials,2007,142(1-2),493-499.
    [32]任南琪.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002:332-333.
    [33]金大勇,陈坚,高海军,等.有机废水厌氧酸化和聚羟基烷酸生产组合系统的研究[J].应用与环境生物学报,1999,5(4):400-403.
    [34]Sakadevan, K., Bavor, J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research, 1998,32(2),393-399.
    [1]Jφrgensen, K.S. and Pauli, A.S.L. Polyphosphate accumulation among denitrifying bacteria in activated sludge[J]. Anaerobe,1995,1(3):161-168.
    [2]Cai, T.M., Guan, L.B., Chen, L.W., et al. Enhanced biological phosphorus removal with Paeudomonas putida GM6 from activated sludge [J]. Pedosphere, 2007,17(5):624-629.
    [3]Britt, M., Jeppe, L.N., Kristian, K., et al. Influence of microbial activity on the stability of activated sludge flocs[J]. Collidsand Surafces B:Biointerfaces,2000, 18(2):145-156.
    [4]北京市市政工程设计研究总院.给排水设计手册一城镇排水(第二版)[M].北京:中国建筑工业出版社,2004.
    [5]刘安.诱变驯化生活污水高效菌与人工生态床联合处理生活污水的研究[D].武汉:武汉大学.2008.
    [6]Buchanan, J.R. and Gibbons, N.E. Bergey's Manual of Determinative Bacteriology (8th ed)[M]. Baltimore:The Williams and Wilkins Company,1974.
    [7]Groenen, P.M., Bunschoten, A.E., van Soolingen, D., et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacerium tuberculosis: application for strain differentiation by a novel typing method[J]. Molecular Microbiology,1993,10(5):1057-1061.
    [8]Florentz, M. and Hartemann, P. Screening for phosphate accumulating bacteria isolated from activated sludge[J]. Environmental Technology,1984,5(1-11): 457-463.
    [9]Merzouki, M., Delgenes, J.P., Bernet, N., et al. Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors[J]. Current Microbiology,1999,38(1):9-17.
    [10]Qin, Y., Hisao, O., Kiyoshi, T. Phosphorus removal by pure and mixed cultures of microorganisms[J]. Journal of Fermentation Technology,1988,66(2):207-212.
    [11]Suresh, B., Rajasekaran, T., Ramachandra, R.S., et al. Studies on osmolarity, conductivity and mass transfer for selection of a bioreactor for Tagetes patula L. hairy roots[J]. Process Biochemistry,2001,36(10):987-993.
    [12]Pirt, S.J. Principles of Microbe and Cell Cultivation[M]. London:Blackwell, 1971.
    [13]Novak, J.T. Temperature-substrate interactions in biological treatment[J]. Journal (Water Pollution Control Federation),1974,46(8):1984-1994.
    [1]段永惠,张乃明,洪波,等.滇池流域农田土壤氮磷流失影响因素探析[J].中国生态农业学报,2005,13(2):116-118.
    [2]American Public Health Association (APHA). Standard methods for the examination of water and wastewater (20th ed)[S]. Washington, DC:American Public Health Association (APHA), American Water Works Association, Water and Environmental Federation.1998.
    [3]中华人民共和国环境保护部.水环境监测方法标准[S]. http://www.mep.gov.cn/tech/hjjc/jcgfffbz/200603/t20060329_75255.htm
    [4]Oliveira, S.C., and Sperling, M.V. Reliability analysis of wastewater treatment plants[J]. Water Research,2008,42(4-5):1182-1194.
    [5]Ham, J.H., Yoon, C.G., Jeon, J.H., et al. Feasibility of a constructed wetland and wastewater stabilization pond system as a sewage reclamation system for agricultural reuse in a decentralized rural area[J]. Water Science & Technology, 2007,55(1-2):503-511.
    [6]US EPA. Constructed wetlands treatment of municipal wastewater[R]. USA: United States (US) Environmental Protection Agency (EPA), Office of Research and Development,2000.
    [7]Pietro, K.C., Chimney, M.J., and Steinman, A.D. Phosphorus removal by the Ceratophyllum/periphyton complex in a south Florida (USA) freshwater marsh[J]. Ecological Engineering,2006,27(4):290-300.
    [8]Chapanova, G., Jank, M., Schlegel, S., et al. Effect of temperature and salinity on the wastewater treatment performance of aerobic submerged fixed bed biofilm reactors[J]. Water Science & Technology,2007,55(8-9):159-164.
    [9]Vymazal, J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment,2007,380(1-3):48-65.
    [10]Babcock, R.W.Jr., Asce, M., Mcnair, D.A., et al. Evaluation of a system for residential treatment and reuse of wastewater[J]. Journal of Environmental Engineering,2004,130(7),766-773.
    [1]邓仕槐,李远伟,郑仁宏,等.畜禽养殖废水的混合处理工艺[J].环境工程,2006,24(4):29-30,33.
    [2]李晓璐.畜禽养殖废水好氧生物处理脱氮除磷效果研究[D].四川:四川农业大学,2007.
    [3]Harrington, R., and Ryder, C. The use of integrated constructed wetlands in the management of farmyard runoff and waste water[A]. In Proceeding of the National Hydrology Seminar on Water Resources Management Sustainable Supply and Demand[C]. Ireland:The Irish National Committees of the IHP (International Hydrological Programme) and ICID (International Commission on Irrigation and Drainage),2002.
    [4]Scholz, M. Wetland Systems to Control Urban Runoff[M]. Amsterdam:Elsevier, 2006.
    [5]Harrington, R., Dunne, E. J., Carroll, P., et al. The concept, design and performance of integrated constructed wetlands for the treatment of farmyard dirty water[A]. In Dunne, E.J., Reddy, K.R., Carton, O.T. Nutrient Management in Agricultural Watersheds:A Wetlands Solution[C]. The Netherlands, Wageningen: Wageningen Academic Publishers,2005:179-188.
    [6]Carty, A., Scholz, M., Heal, K., et al, The universal design, operation and maintenance guidelines for Farm Constructed Wetlands (FCW) in temperate climates[J]. Bioresource Techechnology,2008,99 (15):6780-6792.
    [7]US EPA. Constructed wetlands treatment of municipal wastewater[R]. USA: United States (US) Environmental Protection Agency (EPA), Office of Research and Development,2000.
    [8]American Public Health Association (APHA). Standard methods for the examination of water and wastewater (20th ed)[S]. Washington, DC:American Public Health Association (APHA), American Water Works Association, Water and Environmental Federation.1998.
    [9]Smith, D., Neill, O.N., Doris, Y., et al. Urban waste water discharges in Ireland:a report for the years 2002 and 2003 [R]. Ireland:Environmental Protection Agency, Office of Environmental Enforcement.2004. Available online at http://www.epa.ie/downloads/pubs/water/wastewater/epa_urban_waste_water_dis charge_2002_2003.pdf.
    [10]Knight, R.L., Payne, Jr., W.E., Borer, et al.2000, Constructed wetlands for livestock wastewater management[J]. Ecological Engineering,15(1-2):41-55.
    [11]Newman J.M., Clausen J.C., Neafsey J.A. Seaosanl performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut[J]. Ecological Engineering,1999,14(1-2):181-198.
    [12]Poach, M.E., Hunt, P.G., Reddy, G.B., et al. Swine wastewater treatment by marsh-pond-marsh constructed wetlands under varying nitrogen loads[J]. Ecological Engineering,2004,23(3):165-175.
    [13]Vymazal, J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment,2007,380(1-3):48-65.
    [14]Chapanova, G., Jank, M., Schlegel, S., et al. Effect of temperature and salinity on the wastewater treatment performance of aerobic submerged fixed bed biofilm reactors[J]. Water Science & Technology,2007,55(8-9):159-164.
    [15]Sharpley, A.N. Identifying sites vulnerable to phosphorus losses in agricultural runoff[J]. Journal of Environmental Quality,1995,24(5):947-951.
    [16]Leinweber, P., Meissner, R., Eckhardt, K.-U., et al. Management effects on forms of phosphorus in soil and leaching losses[J]. European Journal of Soil Science,1999,50(3):413-424.
    [17]Daly, K. Phosphorus desorbtion from Irish soils[A]. In:Tunney, H. Quantification of Phosphorus Loss from Soil to Water[M]. Ireland:Environmental Protection Agency,2000:59-101.
    [18]Dunne, E.J., Culleton, N., O'Donovan, G., et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland[J]. Water Research, 2005,39(18):4355-4362.
    [19]Seo, D. C., Cho, J. S., Lee, H. J., et al. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland[J]. Water Research, 2005,39(11),2445-2457
    [20]Kadlec, R.H.. The limits of phosphorus removal in wetlands[J]. Wetlands Ecology and Management,1999,7(4):165-175.
    [21]Kent, D.M. Applied wetlands science and technology[M],. USA:CRC Press, 2000.
    [22]Thackston, E.L., Shields Jr., F.D., Schroeder, P.R. Residence time distributions of shallow basins [J]. Journal of Environmental Engineering,1987,113(6): 1319-1332.
    [23]Persson, J. The hydraulic performance of ponds of various layouts[J]. Urban Water,2000,2(3):243-250.
    [24]Jenkins, G.A. and Greenway, M. The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands[J]. Ecological Engineering,2005, 25(1):61-72.
    [25]Kadlec, R.L.and Knight, R.H. Treatment Wetlands[M]. Florida, USA:Lewis Publishers,1996.
    [26]Rodgers, M., Gibbons, P., Mulquee n, J. Nitrate leaching on a sandy loam soil under different dairy waste water applications [A]. In Proceedings of the International Water Association's 7th International Specialized Conference on Diffuse Pollution and Basin Management[C], Ireland:University College Dublin, 2003.
    [1]Lee, B.H. and Scholz, M., Application of the self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands [J]. Water Research,2006,40 (18):3367-3374.
    [2]Tomenko, V., Ahmed, S., Popov, V. Modeling constructed wetland treatment system performance [J]. Ecological Modelling,2007,205(3-4):355-364.
    [3]Edelfeldt, S. and Fritzson, P. Evaluation and comparison of models and modeling tools simulating nitrogen processes in treatment wetlands [J]. Simulation Modelling Practice and Theory,2008,16(1):26-49.
    [4]Burke, S. Missing values, outliers, robust statistics and non-parametric methods [J]. LC*GC Europe Online Supplement,1999:19-24. Available online at http://www.lcgceurope.com/lcgceurope/data/articlestandard//lcgceurope/502001/4 509/article.pdf.
    [5]Shapiro, S.S. and Wilk, M.B. An analysis of variance test for normality (complete samples) [J]. Biometrika,1965,52(3-4):591-611.
    [6]Iglewicz, B. and Hoaglin, D.C. How to Detect and Handle Outliers[A]. American Society for Quality Control (ASQC) basic references in quality control [M]. Milwaukee, Wisconsin:ASQC Quality Press,1993.
    [7]Rustum, R. and Adeloye, J.A. Replacing outliers and missing values from activated sludge data using Kohonen self organizing map[J].. Journal of Environmental Engineering,2007,133(9):909-916.
    [8]Kohonen, T., Oja, E., Simula, O., et al. Engineering applications of the self organizing map[C]. Preceedings IEEE,1996,84(10):1358-1384.
    [9]彭岩,王万森,涂序彦.基于SOM的预警模型研究与应用[J].计算机科学, 2004,31(12):139-141.
    [10]Vesanto, J., Himberg, J., Alhoniemi, E., et al. Self-organizing map in Matlab:the SOM toolbox[A]. In:Proceedings of the Matlab DSP Conference (16-17/11/1999)[C]. Espoo, Finland,1999:34-40. Software available online at http://www.cis.hut.fi/projects/somtoolbox/.
    [11]Obu-Cann, K., Fujimura, K., Tokutaka, H., et al. Data mining of power transformer database using self-organizing maps[A]. In:Zhong, Y.X., Qin, S. Y. Proceedings of International Conference on Info-tech & Info-net (29/10-01/11/2001)[C]. Beijing, China.2001,4:44-49. Available online at http://ieeexplore.ieee.org/iel5/7719/21162/00983717.pdf.
    [12]Smith, D., Neill, O.N., Doris, Y., et al. Urban waste water discharges in Ireland: a report for the years 2002 and 2003 [R]. Ireland:Environmental Protection Agency, Office of Environmental Enforcement.2004. Available online at http://www.epa.ie/downloads/pubs/water/wastewater/epa_urban_waste_water_dis charge_2002_2003.pdf.
    [13]Ministry of the Environment (MOE). Quality of the Environmental in Japan[R]. MOE, Government of Japan,1989. Available online at http://www.env.go.jp/en/wpaper/1989/index.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700