用户名: 密码: 验证码:
甲基叔丁基醚的生物降解机理与微生物在地下水中的迁移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲基叔丁基醚(Methyl tert-Butyl Ether,MTBE)作为一种汽油添加剂,广泛应用到汽油当中,其对土壤地下水环境造成的危害已引起人们的高度重视。生物修复是一种MTBE有效去除的环境治理技术。本论文在获得MTBE高效降解菌株的基础上,系统深入地研究了MTBE的降解特性、降解机理及生物修复中微生物的迁移规律。
     本文从MTBE污染场地中筛选获得优势降解菌株A-3,经鉴定该菌株为Chryseobacterium sp.细菌,该菌株的获得为MTBE的降解提供了新的菌源。在此基础上,研究了该菌株降解MTBE的最佳环境条件如温度、pH值、接种量、溶解氧以及底物浓度等;通过比较Chryseobacterium sp. A-3在葡萄糖和MTBE为碳源培养基中的生长情况,分析了菌株在MTBE中生长缓慢的原因;并进行了MTBE生物降解的矿化率实验来解释该分离菌对MTBE的降解能力。
     为了更深入了解MTBE的降解机理,采用SPM-GC-MS方法对生物降解MTBE的中间产物进行了检测。研究了中间产物TBA对MTBE降解的影响,分析了生物降解MTBE与TBA过程中关键酶系的异同。粗蛋白SDS-PAGE分析结果表明MTBE与TBA诱导出均有7条相同蛋白带的细胞蛋白图谱。降解质粒的提取与消除实验证实MTBE的降解基因存在于染色体上而非质粒上。
     为了进一步提高MTBE的生物降解能力,研究了环状糊精对MTBE生物降解的促进作用。通过非烷烃物质对MTBE共代谢的研究得出,适当浓度的丙三醇能够有效共代谢MTBE。这些都为MTBE的去除提供了新的方案。另外还考察了该菌的环境适应性以及环境中BTEX对MTBE降解的影响。
     为了使生物修复更好地应用于现场,研究了微生物在土壤地下水环境中的迁移规律及影响因素。对微生物的吸附过程提出了吸附双过程模型,对模型进行了实验验证并考察了流速与微生物浓度对吸附过程的影响。在此基础上,以污染物作为限制底物,综合考虑了降解菌的吸附、解析、生长、衰亡以及底物的迁移转化,建立了迁移规律理论模型。应用此模型描述了微生物在生物修复中的迁移过程,比较了微生物与污染物的迁移特点。
Methyl tert-butyl ether (MTBE) is widely used in gasoline additive and causes severe environmental pollutions. Recently, it attracts more attention due to its toxic and recalcitrant properties in the environment. Compared with conventional methods, biodegradation is more economical and effective for the remediation of MTBE pollution. In this study, a bacterial culture possessing effective degradation ability was isolated. Based on which, the systematical studies on the degradation characteristics, mechanism and bacterial transport in the bioremediation process were carried out.
     A bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. It was identified as Chryseobacterium sp., a new species capable of degrading MTBE. The effects of environmental factors such as temperature, pH values, inoculating sizes and MTBE concentrations on MTBE degradation were optimized. The ability of this isolate growing in glucose and MTBE as carbon source was compared and the slow growth in MTBE was explained. The mineralization experiments of MTBE biodegradation were also conducted to estimate the ability of the isolate.
     To better understand of the mechanism involved in MTBE biodegradation, the main metabolic intermediates were determined by SPE-GC/MS analytical method. Furthermore, the effect of tert-butyl alcohol (TBA) on MTBE degradation was also investigated, and the difference of the key enzymes involved in biodegradation between MTBE and TBA was examined. SDS-PAGE analysis of the crude extracts obtained from the cells growing in MTBE and TBA cultures demonstrated that there presence seven similar peptides in both extracts. The experiments in plasmid purification and elimination further suggested that the degrading function might be controlled by chromosome DNA other than plasmid.
     In order to improve the degradation ability of Chryseobacterium sp.,β-cyclodextrin was used to enhance the MTBE degradation rate. The effects of cometabolic substrates on the degradation of MTBE were also explored and the results indicated that glycerol was the best cometabolic substrate to promote the degradation rate and shorten the period. All the mentioned researches give new approached for MTBE removing. To predict the behavior of MTBE, the adaptability of the isolate and the effects of BTEX on the degradation of MTBE were examined.
     In order to apply Chryseobacterium sp. into the bioremediation in MTBE contaminated site, the transport of bacteria in porous media and the influence factors were investigated. A mathematical model describing the adsorption with two fractions was proposed. Based on the model analysis and simulation, the effects of infiltration rate and bacteria concentration on transport were discussed. Moreover,a completely coupled model for microbial and substrate transport in soil were developed combining bacterial adsorption, desorption, growth and decay. The transport performances of Chryseobacterium sp. and substrate in the bioremediation processes were described.
引文
[1] Deeb R A, Scow K M, Alvarez C L. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation, 2000,11 (2-3):171-186
    [2] Seagren E A, Becker J G. Review of natural attenuation of BTEX and MTBE in groundwater, Practice Periodical of Hazardous, Toxic and Radioactive. Waste Management, 2002, 6:156-172
    [3] Cater R S, Stefan M I, Bolton J R, et al. UV/H2O2 Treatment of Methyl tert-Butyl Ether in Contaminated Waters. Environ. Sci. Technol. 2000, 34 (4):659-666
    [4] Werner C S, Koger L A, Deanovic D E. Toxicity of methyl-tert-butyl ether to freshwater organisms. Environmental Pollution, 2001,111: 83-88
    [5] US Environmental Protection Agency (EPA). Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether (MTBE) Environmental Protection Agency. U.S., Rep. No. EPA 420-R-99-021. U. S. Government Printing Office, 1999
    [6] Squillace P, Pankow J. Review of the environmental behaviour and fate of methyl tert-butyl ether. Environ Toxicol Chem,1997,16(9):1836-1839
    [7] The Interstate Technology & Regulatory Council MTBE and Other Fuel Oxygenates Team. Overview of Groundwater Remediation Technologies for MTBE and TBA. Washington, D.C. Interstate Technology & Regulatory Council, 2005:10-11
    [8] 邹劲松,MTBE供需现状及其前景展望,当代石油石化,2003,11(7):23-27
    [9] 蒲凤莲,微生物降解水相中MTBE的实验研究:[环境工程专业硕士论文],浙江;浙江工业大学,2005
    [10] 钱伯章,MTBE的需求动态和替代措施,当代化工,2001,30 (4 ):227-229
    [11] Gablle P A,Pyle S M.Emissions from two outboard engines operation on reformulated gasoline containing MTBE. Enviromental Science & Technology,2000, 34 (2):368-372
    [12] Geraghty, Miller. MTBE contamination forces well closures. Groundwater News, 1996, 25 (16): 1
    [13] Richard W G, Mark W L. Occurrence of MTBE in Drinking Water Sources, Journal AWWA, 2000, 92 (1): 100-107
    [14] U.S.EPA. Solid Waste and Emergency Response. UST Program Facts Clean Up Release, Washington D.C.,1994
    [15] US Environmental Protection Agency (EPA). Drinking water advisory: consumer acceptability advice and health effects analysis on Methyl Tertiary -Butyl Ether (MTBE). December, EPA-822-F-97-009, ODW 4304, Health and Ecological Criteria Division, Office of Science and Technology Office of Water USEPA., 1997
    [16] Small M C, Martinson M, Kuhn J. Opening Pandora’s box: overview of states’ responses to the methyl tert-butyl ether enigma, Diaz, A.F., Drogos, D.L. (Eds.), Oxygenates in Gasoline: Environmental Aspects. ACS, Washington, 2002: 42-57
    [17] 刘杰民,温美娟,程慧琼等,甲基叔丁基醚(MTBE)对环境的污染及其对我国汽油生产的影响,环境污染治理技术与设备,2002,3(3):7-11
    [18] Squillace P J, Zogorski J S, Wilber W G, et al. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994. Environ. Sci.Technol., 1996,30: 1721-1730
    [19] Bravo H A, Camacho R C, Roy-Ocotla, G R, et al., Analysis of the change in atmospheric urban formaldehyde and photochemistry activity as a result of using methyl-t-butylether(MTBE) as an additive in gasolines of the metropolitan area of Mexico City: Atmospheric Environment, 1991, 25 (2): 285-288
    [20] Josef K, Corinna S, Frank S, et al. MTBE (methyl tertiary-butyl ether) in groundwaters: Monitoring results from Germany,J. Environ.Monit, 2002, 4:276-279
    [21] Achten C, Kolb A, Puttmann W. Methyl tert-butyl ether (MTBE) in urban and rural precipitation in Germany, Atmospheric Environment, 2001, 35: 6337-6345
    [22] Kolb A, Puttmann W. Methyl tert-butyl ether (MTBE) in snow samples in Germany, Atmospheric Environment, 2006, 40:76-86
    [23] Vainiotalo S, Peltonen Y, Pfaffli P. MTBE concentrations in ambient air in the vicinity of service stations, Atmospheric Environment,1998, 32:3503-3509
    [24] Carlos G, Josep M. B, James W R. Sources, distribution and behaviour of methyl tert-butyl ether (MTBE) in the Tamar Estuary, UK, Chemosphere, 2004, 57: 429-437
    [25] 沈虹,全球车用汽油与中国无铅汽油指标的比较[J],上海环境科学,1999,18(8):352-355
    [26] 陈井影 甲基叔丁基醚(MTBE)在地表水中的环境行为及影响因素的研究 吉林农业大学 环境工程 硕士论文
    [27] 子平,杨赞中,矿物的环保功能及其应用研究进展,矿产保护与利用,2001,3:44-48
    [28] Wilhelm M J,Adams V D,Curtis J G et al.Carbon adsorption and air-stripping removal of MTBE from river water , Journal of Environmental Engineering-ASCE,2002,128(9):813-823
    [29] Shih T C,Wang P M,Suffet M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water,Water Research,2003,37(2):375-385
    [30] 郑艳梅,王战强,黄国强等,地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE),农业环境科学学报,2004,23(6):1200-1202
    [31] Xu Xiang-Rong,Zhao Zhen-Ye,Li Xiao-Yan et al. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s regent,Chemosphere,2004,55:73-79
    [32] Stephen R C,Mihaela I S,James R et al.UV/H2O2 Treatment of Methyl tert-Butyl Ether in Contaminated,Environment Science Technology,2000,34:659-662
    [33] Hsieh Ling-Ling,Lin Yi-Liang,Wu Chien-Hou,Degradation of MTBE in dilute aqueous solution by gamma radiolysis,Water Research,2004,38:3627-3633
    [34] Kang J W,Hung H M,Lin A et al.Sonolytic destr- uction of methyl tert-butyl ether by ultrasonic irradiation: the role of O3,H2O2,frequency,and power supply,Environment Science Technology,1999,33:3199-3205
    [35] 沈德钟. 污染环境的生物修复, 北京:化学工业出版社,2002.
    [36] Jensen H M, Arvin E, Solubility and degradability of the gasoline additive MTBE, methyl-tert-butyl ether and gasoline compounds in water[a]. Contaminated Soil. Kluwer Academic Publishers, Dordrecht, The Netherlands,1990, 90:445-448.
    [37] Sulita J M, Mormile M R. Anaerobic biodegradation of known and potential gasoline oxygenates in terrestrial subsurface. Environ. Sci. Technol.,1993. 27:976-978
    [38] Stringfellow W T,Hines R P,Kilkenny S T,Applying comeabolic biological reactions for the ex-situ treatment of MTBE contaminated ground water,219th American Chemical Society National Meeting,San Francisco,CA,2000
    [39] The Health Effects Institute, Metabolism of Ether Oxygenates Added to Gasoline, Cambridge MA USA,Printed at Flagship Press, North Andover MA,Library of Congress Catalog Number for the HEI Report Series: WA 754 R432, 2001.
    [40] Salanitro J P, Diaz L A, Williams M P, et al. Isolation of a bacterial culture that degrades methyl t-butyl ether, Appl. Environ. Microbiol., 1994,60: 2593-2596
    [41] Stocking A J, Deeb R A, Flores A E, et al. Bioremediation of MTBE: a review from a practical perspective, Biodegradation, 2000,1(1):187-201
    [42] Finneran K T, Lovley D R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl ether (TBA), Environ. Sci. Technol, 2001, 35: 1785- 1790
    [43] Somsamak P, Cowan R M, Haggblom M M. Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions, FEMS Microbiol. Ecol., 2001, 37:259-264
    [44] Bradley P M, Chapelle F H, Landmeyer J E, Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions, Appl. Environ. Microbiol., 2001, 67:1975-1978
    [45] Pruden A, Sedran M A, Suidan M T, et al. Anaerobic biodegradation of methyl tert-butyl ether under iron-reducing conditions in batch and continuous-flow cultures, Water Environ Res., 2005, 77:297-303
    [46] 路争,钟卫鸿,陈建孟等,甲基叔丁基醚微生物降解研究进展,微生物学通报,2006,33(1):122-127
    [47] Stephanie Fiorenza, Hanadi S. Rifai, Review of MTBE Biodegradation and Bioremediation, Bioremediation Journal, 2003, 7(1):1-35
    [48] Schmidt TC, Schirmerb M, Wei H, et al. Microbial degradation of methyl tertbutyl ether and tert-butyl alcohol in the subsurface, Journal of Contaminant Hydrology, 2004, 70(3-4):173-203
    [49] Hanson J R, Ackerman C E, Scow K M. Biodegradation of methyl tert-butyl ether by a bacterial pure culture, Appl. Environ. Microbiol., 1999, 65: 4788-4792
    [50] Hatzinger P B, McClay K, Vainberg S, et al. Biodegradation of methyl tert-butyl ether by a pure bacterial culture,Appl. Environ. Microbiol., 2001, 67: 5601-5607
    [51] Fran?ois A, Mathis H, Godeefroy D, et al. Biodegradation of methyl tert- butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2102, Appl. Environ. Microbiol., 2002, 68:2754-2762
    [52] Mo K, Lora C O, Wanken A E, et al. Biodegradation of methyl t-butyl ether by pure bacterial cultures, Appl. Microbiol. Biotechnol., 1997, 47:69-72
    [53] 克莱沃尔有限公司,能够降解甲基叔丁基醚的多噬菌菌株及其用途,中国专利,CN 1571833A,2004-04-16
    [54] Pruden A, Suidan M, Effect of benzene, toluene, ethylbenzene and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol by pure culture UC1.,Biodegradation, 2004,15:213-227
    [55] Ferreira N L, Maciel H, Mathis H, et al. Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE, Appl. Microbiol. Biotechnol., 2006, 70: 358-365
    [56] Miguel M R, Marcia M, Sergio R. Methyl tert-butyl Ether and tert-butyl Alcohol Degradation by Fusarium solani, Biotechnology Letters, 2005, 27(22):1797-1801
    [57] Hardison L K, Curry S S, Ciuffetti L M, et al. Metabolism of diethyl ether and co-metabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl. Environ. Microbiol, 1997, 63: 3059-3067.
    [58] Hyman M P, Kwon K W. Cometabolism of MTBE by alkane utilizing micoorganisms, In G. B. Wickramanayake and R. E. Hinchee (eds.), Natural attenuation of chlorinated and recalcitrant compounds. Batelle Press, Columbus, Ohio., 1998: 321-326
    [59] Hernandez P G, Fayolle F, Vandecasteele J P. Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Applied Microbiology and Biotechnology, 2001, 55 (1):117-121
    [60] Smith C A, O’Reilly K T, Hyman M R, Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Applied and Environmental Microbiology, 2003, 69 (2): 796-804
    [61] Fortin N Y, Morales M, Nakagawa Y, et al. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environmental Microbiology, 2001, 3 (6): 407-416
    [62] White G F, Russell N J, Tidswell E C. Bacterial Scission of Ether Bonds. Microbiol. Rev. 1996, 60: 216-232.
    [63] Steffan R J, McClay K, Vainberg S, et al. Biodegradation of the gasoline oxygenates methyl tert-butyl ether,ethyl tert-butyl ether and tert-amyl methylether by propane-oxidizing bacteria. Appl. Environ. Microbiol.,1997,63: 4216-4222
    [64] Church C D, Tratnyek PG, Scow KM. Pathways for the degradation of MTBE and other fuel oxygenates by isolate PM1, ACS Division of Environmental Chemistry Preprints of Extended Abstracts, 2000, 40(1): 261-263
    [65] Piveteau P, Fayolle F, Vandecasteele J P, et al. Biodegradation of tert-butyl Alcohol and Related Xenobiotics by a Methylotrophic Bacterial Isolate. Appl. Microbiol. Biotechnol, 2001, 55:369-373
    [66] Corcho D, Watkinson R J, Lerner D N, Cometabolic degradation of MTBE by a cyclohexane-oxidising bacteria, In: Wickramanayake, G.B., Gavaskar, A.R., Alleman, B.C., Magar, V.S. (Eds.), Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, 2000:183-189
    [67] Erika L J, Christy A Smith, Kirk T. O’Reilly,et al.Induction of Methyl Tertiary Butyl Ether (MTBE)-Oxidizing Activity in Mycobacterium vaccae JOB5 by MTBE,Applied and EnvironmentaL Microbiology, Feb. 2004:1023-1030
    [68] 冷欣夫,邱星辉主编,细胞色素P450酶系的结构、功能与应用前景,北京:科学出版社,2001: 56-70
    [69] Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes.I. Evidence for its hemoprotein nature. J.Biol.Chem.,1964, 239:2370-2378
    [70] Ortiz de Montellano, P. R, Alkenes and alkynes, In M.Anders(eds.), Bioactivation of foreign compounds. Academic Press, New York, N.Y., 1985:121-155
    [71] Liu C Y, Speitel G E, Georgiou G. Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Applied and Environmental Microbiology, 2001, 67 (5):2197-2201
    [72] Fayolle F, Vandecasteele J P, Monot F. Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Applied Microbiology and Biotechnology. 2001, 56 (3), 339-349
    [73] The Interstate Technology & Regulatory Council MTBE and Other Fuel Oxygenates Team, Overview of Groundwater Remediation Technologies for MTBE and TBA, Washington, D.C.:Interstate Technology & Regulatory Council, 2005:10-11
    [74] Salanitro J P Johnson P C , Spinnler G E, et al. Fieldscale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ.Sci. Tech., 2000, 34:4152-4162
    [75] Raina M. MaierIanL. Pepper Charles P. Gerba著,张甲耀,宋碧玉译,环境微生物学, 科学出版社, 2004, 6
    [76] Sen T K, Khilar D, Suraishkumar K C, et al. Bacterial transport in porous media: New aspects of the mathematical model. Colloids and Surfaces A: Physicochemical Engineering Aspects 2005, 260, 53-62
    [77] Tan Y, Gannon J T, Baveye P. Transport of bacteria in an aquifer sand: Experiments and model simulations. Water Resour Res, 1994,30: 3243-3252
    [78] Herzig J P, Leclerc D M, LeGoff P. Flow of suspensions through porous media application to deep filtration. Ind. Eng. Chem., 1970,62(5):8-35
    [79] Sharma P K, McInerney M J. In situ growth and activity and modes of penetration of Escherichia coli in unconsolidated porous materials. Appl Environ Microbiol,1993,59: 3686-3694
    [80] Barton J W, Ford R M. Determination of effective transport coefficients for bacterial migration in sand columns. Appl. Environ. Microbiol. 1995,61: 3329- 3335
    [81] Characklis W G, McFeters G A, Marshall K C. Physiological ecology in biofilm systems. Biofilms. John Wiley & Sons, Inc., New York, N.Y. 1990
    [82] Scholl M A, Mills A L, Herman J S, et al. The Influence of Mineralogy and Solution chemistry in the attachment of bacteria to representative aquifer materials. Journal of Contamicant Hydrology, 1990, 6:321-336
    [83] Kinoshita T, Bales R C, Yahya M, et al. Bacteria Transport in a Porous Media: Retention of Bacillus and Pseudomonas on Silica Surfaces. Water Resources, 1993, 27(8): 1295-1301
    [84] Bai G, Brussseau M L, Miller R M. Influence of a rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl. Environment. Microbiol. 1997, 63,1866-1873
    [85] Miller C T, Weber W J. Modeling organic contaminant partitioning in ground water systems. Ground Water, 1984, 22:584-592
    [86] Van L, Norde W, Lyklema J, et al. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic Sci.,1990, 52:103-114
    [87] 周德庆, 微生物学教程, 北京:高教出版社, 2002.5
    [88] 黄昌勇, 土壤学,北京:中国农业出版社,2000
    [89] Fontes D E. Physical and chemical factors influencing transport of microorganisms through porous medium. Apl. Environ. Microbiology, 1991, 57: 2473-2481
    [90] Lappan R E, Fogler H S. Reduction of porous media permeability from in situ Leuconostoc mesenteroides growth and dextran production. Biotechnol Bioeng, 1996, 50: 6-15
    [91] Selim L, Sanin F, Dilek S, et al. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process biochemistry. 2003,38,909-914
    [92] Reynolds P J, Sharma P, Jenneman G E, et al. Mechanisms of microbial movement in subsurface materials. Appl. Environ. Microbiol. 1989, 55: 2280- 2286
    [93] McCaulou D R, Bales R C, Arnold R G. Effect of temperature-controlled motility on transport of bacteria and microspheres through saturated sediment. Water Resources Research, 1995, 31: 271-280
    [94] Gannon J, Tan Y, Baveye P. Effect of sodium chloride on transport of bacteria in a saturated aquifer material. Appl Environ Microbiol, 1991b,57: 2497- 2501
    [95] Borden R C, Bedient P B. Thansport of dissolved hydrocarbons infiuienced by oxygen-limited biodegradation. TheoreticaJ development. Water Resour Res, 1986, 22: 1973-1982
    [96] 李桂花, 大肠杆菌和沙雷菌在砂土和砂质壤土中的迁移特性:[博士学位论文], 北京:中国农业大学,2002
    [97] Harvey RW, Garabedian S P. Use of colloid filtration theory in modeling movement of bacteria through a contaminant sandy aquifer. Environ Sci Technol, 1991, 25:178-185
    [98] Roseanne M F, Harvey R W. Role of chemotaxis in the transport of bacteria through saturated, Advances in Water Resources (2006), doi: 10.1016/ jadvwatres. 2006.05.019
    [99] Schafer A, Ustohal P, Harms H, er al. Transport of bacteria in unsaturated porous media. Journal of Contaminant Hydrology, 1998, 33:149-169
    [100] Nathalie T, Elimelech M. Deviation from the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions. Langmuir, 2004, 20, 10818-10828
    [101] Bitton G B,Davidson J M,Garah S R.On the value of soil colunlns for assessing the transport pattern of viruses through soils: A critical outlook,Water Air Soil Pollut, 1979, 12:449-457
    [102] 李桂花,李保国,细菌在土壤中迁移模型的研究进展,应用生态学报,2003,14(6):1012-1014
    [103] 江龙,胶体化学概论,北京:科学出版社, 2004.2
    [104] Harvey R W, Garabedlan S P. Use of colloid filtration theory in modeling movement of bacterial through a contaminated sandy aquifer. Environmental Science and Technology, 1991, 25:178-185
    [105] Chen G, ASCE S M, Strevett K A. Surface free energy relationships used to evaluate microbial transport. Journal of Environmental Engineering, 2002, 128:408-415
    [106] Murohy E M, Ginn T R. Modling microbial processes in porous media. Hydrogeology Journal, 2000, 8:142-158
    [107] Bolster C H, Mills A L, Hornberger G M, et al. Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces. Journal of Contaminant Hydrology, 2001,50, 287-305
    [108] 陈崇希,李国敏,地下水溶质迁移理论及模型,武汉:中国地质大学出版社,1996
    [109] Schijven J F, Hassanizadeh S M, Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit Rev Environ Sci Technol,2000, 30: 49-127
    [110] Yates M V, Yates S R. Modeling microbial fate in the subsurface environment. Crit Rev Environ Contr 1988, 17:37–44
    [111] Saiers JE, Hornberger GM, Liang L. First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour Res 1994, 30:2499-506
    [112] Ginn T R, Wood B D, Nelson K E, et al. Processes in microbial transport in the natural subsurface. Adv Water Resour, 2002, 25(8-12):1017-1042
    [113] Choi N C,Kim D J, Kim S B, Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength, Research in Microbiology (2006), doi:10.1016/j.resmic. 2006, 09, 007
    [114] Liu D, Johnson P R, Elimelech M. Colloid deposition dynamics in flow through porous media: Role of electrolyte concentration. Environmental Science and Technology, 1995, 29 (12): 2963-2973
    [115] Bradford S A, Simunek J, Bettahar M, et al. Modeling colloid attachment, straining and exclusion in saturated porous media. Environ. Sci. Technol., 2003, 37, 2242-2250
    [116] Corapcioglu MY, Haridas A. Transport and fate of microorganisms in porous media: A theoretical investigation, Hydrology, 1984,72:149-169
    [117] Bradford S A, Yates S R, Bettahar M,et al. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 2002,38(12), 1327 doi:101029 / 2002WR001340
    [118] Taylor S W,Jaffe P R.Substrate and biomass transport in a porous medium.Water Resour Res.1990, 26(9): 2181-2194
    [119] Ginn T R. Stochastic-convective transport with nonlinear reaction: Biodegradation with microbial growth. Water Resour Res, 1995,31: 2689-2700
    [120] Nathalie T, Modeling microbial transport in porous media: Traditional approaches. Advances in Water Resources, 2006, doi:10.1016/j. advwatres. 2006.05.014
    [121] 周大石,夏澜,活性污泥培养与驯化,环境科技,1989, 9(2): 35-37
    [122] Hinchee R E, Say K O. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil. Journal of the Air & Waste Management Association, 1992, 42(10): 1305-1312
    [123] U.S.EPA, Development and Evaluation of Methods for the Analysis of MTBE, EPA contract No.68-W0-0122 WA No.0-08, 2002
    [124] Liu J M, Cheng W, Wen M J, et al. Determination of methyl tert-butyl ether (MTBE) in Chinese fuels by gas chromatography/mass spectrometry and gas chromatography/flame ionization detector,Journal of Environmental Sciences, 2004, 16 (4):553-555
    [125] Halden R F, Happel AM, Schoen S R, Evaluation of standard methods for the analysis of methyl tert-butyl ether and related oxygenates in gasoline contaminated groundwater, Environ Sci Technol, 2001, 35:1469-1474
    [126] Zwank L, Schmidt T C, Haderlein S B, et al, Simultaneous determination of fuel oxygenates and BTEX using direct aqueous injection gas chromatography mass spectrometry (DAI-GC/MS),Environmental Science and Technology, 2002, 36 (9):2054-2059
    [127] 沈萍,范秀容,李广武,微生物学实验(第三版),北京:高等教育出版社,1999
    [128] Wu R Y. Studies on the microbial ecology of Tansui Estuary. Bot. Bull. Acad. Sin. 1993,34(1):13-30
    [129] 米琴,鲍敏,KOH-Test方法快速判定菌株的革兰氏染色反应,青海师专学报,2005,4:70-71
    [130] Vandamme, P, Bernardet, J F, Segers, P, et al., New perspectives in the classification of the flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom, Rev. International Journal of Systematic Bacteriology, 1994, 44 (4):827-831
    [131] Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil, Applied and Environmental Microbiology, 2000, 66 (8): 3337-3343
    [132] Kampfer P, Dreyer U, Neef A. et al., Chryseobacterium defluvii sp. nov., isolated from wastewater, Int. J. Syst. Evol. Microbiol., 2003, 53: 93-97
    [133] 刘静,闵航,章骥等,一株产低温蛋白酶菌株的筛选鉴定及纯酶研究,浙江大学学报(农业与生命科学版),2006,32(3):251-256
    [134] Marcia M, Elia V, Janet J. Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico. Biotechnology Letters, 2004, 26: 269-275
    [135] 李琳,李槿年,余为一, 细菌分类鉴定方法的研究概况, 安徽农业科学,2004, 32(3): 549-551
    [136] Kawata H, Nakayama C, Sakamoto M, et al., Isolation of dichloromethane degrading bacteria from drainage water, J. Health Sci., 2000,46(3):187-191
    [137] Gounot A M. Bacterial life at low temperature: physiological aspects and biotechnological applications. J. Appl. Bacterial., 1991, 71(4): 386-397
    [138] Button D K. Kinetics of nutrient-limited transport and microbial growth. Microb Rev , 1985, 49: 270-297
    [139] Krooneman J, Moore E R B, Velzen V, et al. Competition for oxygen and 3-chlorobenzoate between two aerobic bacteria using different degradation pathways. FEMS Microb Ecol, 1998, 26:171-179
    [140] Salanitro J P. Understanding the limitations of microbial metabolism of ethers used as octane enhancers. Current Opinion in Biotechnology, 1995, 6 (3) :337-340
    [141] Fayolle F, Fran?ois A, Garnier L, et al. Limitations in MTBE Biodegradation, Oil & Gas Science and Technology Rev. IFP, 2003, 58 (4): 497-504
    [142] 胡开林,邓柳,王丽风,城市污水处理与受纳湖库水体富营养化成因分析,昆明理工大学学报(理工版),2004,29(4):168-172
    [143] Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction, Biochem, 1953, 55:416-421
    [144] Maik A J, Magda P K, Torsten C S. Solid-phase dynamic extraction for the enrichment of polar volatile organic compounds from water, Journal of Chromatography A, 2006, 1115:208-216
    [145] Church C D, Isabelle L M, Pankow J F Donnal.Rose, Method for determination of methyl tert-butyl ether and its degradation products in water, Environ Sci Technol., 1997, 31: 3723-3726
    [146] Savolainen H. Biochemical effects of MTBE in vapor exposure of rats. Arch Toxicol, 1985, 57:285
    [147] Shell Global Solutions (US) Inc. Study of Tert-Butyl Alcohol (TBA) at Selected Underground Storage Tank Remediation Project Sites in Orange County, California. Prepared for S. J. Daugherty, Orange County Health Care Agency, Santa Ana, Calif. 2003
    [148] Schmidt T C, Morgenroth E, Schirmer M, et al. Use and occurrence of fuel oxygenates in Europe. In: Diaz, A.F., Drogos, D.L. (Eds.), Oxygenates in Gasoline: Environmental Aspects. ACS, Washington, 2002b, 58-79
    [149] Kolhatkar R, Kuder T, Philp P, et al. Use of compound-specific stable isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site. Environmental Science and Technology, 2002, 36 (23), 5139-5146
    [150] Kramer W H, Douthit T L. Water soluble oxygenates in gasoline from five New Jersey stations, NGWA/API Petroleum Hydrocarbons and Organic Chemicals in Ground Water. American Petroleum Institute, Anaheim, 2000, 283-295
    [151] Ferreira N L, Labbé D, Monot F, et al. Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012, Microbiology, 2006,152:1361-1374
    [152] J.萨姆布鲁克D.W.拉塞尔著,黄培堂译,分子克隆实验指南,北京:科学出版社,2005
    [153] Parker C, Meyer R. Mechanisms of Strand Replacement Synthesis for Plasmid DNA Transferred by Conjugation J. Bacteriol., 2005, 187(10): 3400-3406
    [154] Florencio L, Field J A, Lettinga G. Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium. Appl Environ Microbiol.1994, 60:227-234
    [155] Robison P D, Martin M N, Tabita F R. Differential effects of metal ions on Rhodospirillum rubrum ribulose biphosphate carboxylase/oxygenase and stoichiometric incorporation of HCO3– into a cobalt(III)-enzyme complex. Biochemistry 1979,18: 4453-4458
    [156] Schlegel H G. Oxygen supply by hydrogen peroxide. Biotechnology and Bioengineering, 1977,19: 413-424
    [157] 李书良,焦鹏,曹竹安, 流加H2O2对提高供氧及微生物代谢的影响,微生物学报,2002,42(2): 129-132
    [158] 高士祥,王连生,环状糊精在环境科学中的应用,环境科学进展,1998,6(4):80-86
    [159] 高士祥,王灿,孔德洋等,β-环状糊精对对硝基苯酚微生物降解的影响,环境化学,2003,22(5):445-449
    [160] Bardi L, Mattei A, Steffan S, et al. Hydrocarbon degradation by a soil microbial population with Beta-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb. Technol, 2000,27:709-713
    [161] Olah J , Cserhati T , Szejtli J. Beta-cyclodextrin enhanced biological detoxification of industrial wastewaters. Water Res, 1988,22:1345-1352
    [162] Jianming Wang Cyclodextrin Enhanced Biodegradation of Phenanthrene. Environ Sci.Technol, 1998,32(13),1907-1912
    [163] Banky B K, Recseg K, Novak D. Application of water soluble Beta -cyclodextrin in microbiological decomposition of phenol. Magy Kem Lapja,1985,40:189
    [164] Schwartz A,Bar R. Cyclodextrin-enhanced degradation of toluene and p-toluic acid by Pseudomonas putida. Appl Environ Microbiol,1995,61:2727-2731
    [165] Kitae B,Jung S Y,Ji W Y. Immobilization behavior of methyl tert-butyl ether by cyclodextrins. Journal of Hazardous Materials,2003: 169-177
    [166] Leadbetter E R, Foster J W. Oxidation products formed from gaseous alkane by the bacterium pseudomonas metharica. Archives of Biochemistry and Biophysics, 1959,82: 491-492
    [167] Smith C A, O’Reilly K T, Hyman M R. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes. Applied and Environmental Microbiology, 2003, 69(12): 7385-7394
    [168] Rashid M, Kaluarachchi J J. A simplified numerical algorithm for oxygen- and nitrate-based biodegradation of hydrocarbons using Monod expressions. 1999,40:53-77
    [169] Gandhi R K. Bio-enhanced in-well vapor stripping for the remediation of trichloroethylene contamination. PhD. Dissertation, University of Stanford. 2001
    [170] Deeb R A, Hu H Y, Hanson J R, et al. Substrate Interactions in BTEX and MTBE Mixtures by an MTBE-Degrading Isolate, Environ. Sci. Technol., 2001, 35:312-317
    [171] Koenigsberg S, Sandefur C, Mahaffey W, et al. Peroxygen mediated bioremediation of MTBE, In:Alleman BC & Leeson A (Eds). Proceedings of the Fifth International In Situ On-Site Bioremediation Symposium, 18–21 May, Monterey, CA,. Battelle Press, Columbus, OH, 1999, l3:13-18
    [172] Godsy E M, Ean W, Isabelle M C, et al. Determining BTEX Biodegradation Rates Using In Situ Microcosms at the Bemidji site, Minnesota: Trials and Tribulations, Ground Water, 1997,30(2): 232-242
    [173] Yen T F. Bacteria Transport Through Porous Media, Annual Report No. DO E/BC/10508
    [174] 覃生高,微生物驱油数值模拟研究与应用:[硕士学位论文],大庆:大庆石油学院,2006
    [175] Bear J. Dynamics of fluids in porous media, Elsevier Pub., New York, 1972
    [176] Parker J C, Lenhard R J, Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media, Water Resources Research, 1987, 23: 618-624
    [177] Corapcioglu M Y, Haridas A. Transport and Fate of Microorganisms in P orous Media: A Theoretical Investigation. J. of Hydrol, 1984, 72:149-169
    [178] Sleep B E,Sykes J F.Modeling of transport of volatile organics in variably saturated media.Water Resources Research,1989,25(1):81-92
    [179] McQuarrie K T, Sudicky E A. Simulation of biodegradable organic contaminants in groundwater, numerical formulation in principal directions. Water Resources Research, 1996, 26(2):207-222
    [180] Reddy K R, Zhou J. Finite element modeling of in-situ air sparging for groundwater remediation. In: Proceedings of the 2nd International Congress on Environmental Geotechnics, Rotterdam, Netherlands, Balkema Publishers, 1996:299-304
    [181] E 科林斯著,陈钟祥,吴望一译,流体通过多孔介质的流动,北京:石油工业出版社,1983
    [182] 水利电力部,土工实验规程SDS01-79,北京:水利出版社,1981,138-145
    [183] Tan Y, Bond W J, Griffin D M. Transport of bacteria during unsteady unsaturated soil water flow. Soil Sci Soc Am J, 1992,56 ( 5 ): 1331-1340
    [184] Huysman F, Verstraete W. Water-facilitated transport of bacteria in unsaturated soil columns: influence of cell surface hydrophobicity and soil 1993a.25: 91-97
    [185] Giles H, T H MacEwan, S N Nakhwa. Studies in adsorption. J. Chem. Soc., 1960, 111: 3973-3993
    [186] T. K. 修伍得等著,时钧等译. 传质学. 北京:化工出版社,1988年
    [187] Huysman F, Verstraete W. Effect of cell surface characteristics on the adhesion of bacteria to soil particles. Biol. Fertil. Soils 1993,16, 21-26
    [188] Burge W D, Enkiri N K. Virus adsorption by five soils. J Environ Qual, 1978, 7(1):73-76
    [189] Ogram A V, Jessup, Ou L T, et al. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic zcid in soils. Appl Environ Microbiol, 1985, 49(2): 582-587
    [190] Sim Y. Virus transport in unsaturated porous media. WaterResour Res, 2000,36: 173-179
    [191] Segel L A, Chet I, Henis Y. A simple quantitative assay for bacterial motility. J Gen Microbiol, 1977, 98:329-337
    [192] 李燕,牟伯中. 枯草芽孢杆菌的扩散系数. 油田化学,2002,22(1)89-92
    [193] EL 柯斯乐著, 王宇新 姜忠义译, 扩散 流体系统中的传质(第二版),化学工业出版社, 2002
    [194] Gosting L J A study of the diffusion of potassium chloride in water at 25 ℃ with the gouy interference method.J Am Chem Soc.,1950,72(10):4418-4422
    [195] Shi Ying, Xiao Jinsheng, Pan Mu , Yuan Runzhang .A fractal permeability model for the gas diffusion layer of PEM fuel cells. J Power Sources 2006,160 (1): 277-283
    [196] David H T. On the fractal character of the porosity of natural sandstone. Europhys Lett., 1989, 8: 629-632.
    [197] Pfeifei P, D Avnir. Chemistry in noninteger dimensions between two and three: Fractal theory of heterogeneous surfaces. J. Chem. Phys., 1983, 79: 3358-3565
    [198] Kravchenko A, R Zhang. Estimating the soil water retention from particle-size distribution: A fractal approach. Soil Sci., 1998, 163: 171-179
    [199] 辛峰,王富民,李绍芬, 曲折因子与多孔介质微观结构的定性关系.化工学报 2000,51(4):457-461
    [200] 冯杰都, 振纯,陈启慧,分形理论在土壤大孔隙研究中的应用及其展望, 土壤2001, 3, 123-130
    [201] 黄冠华,詹卫华, 土壤颗粒的分形特征及其应用, 土壤学报, 2002, 39, (4), 490-497
    [202] 冯杰 ,张佳宝 ,朱安宁. 论分形几何在土壤大孔隙研究中的应用. 灌溉排水学报,2000,22(5)6-9
    [203] Schirmer M, Bulter B J, Roy J W, Frind E O, and Barker J F. A relative-least-squares technique to determine unique Monod kinetic parameters of BTEX compounds using batch experiments, Journal of contaminant hydrology, 1999, 37:69-86
    [204] Harvey RW,Barber L B, Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater. In: D.L. Macalady (Editor), Chemical Mediation of Pollutant Transport in Aqueous Systems. J. Contam. Hydrol., 19929: 91-103
    [205] Bradford S A, Bettahar M. Straining, attachment, and detachment of Cryptosporidium oocysts in saturated porous media. Journal of Environmental Quality. 2005,34:469-478
    [206] Jin Y, Chu Y, Li Y. Virus removal and transport in saturated and unsaturated sand columns.J.Contam.Hydrol.,2000,43:111-128
    [207] Adamczyk Z, Siwek B, Zembala M, et al.. Kinetics of localized adsorption of colloid particles, Adv. Colloid Int. Sci., 1994,48, 151-280
    [208] Chen Y M. Mathematical modeling of in-situ bioremediation of volatile organics in variably saturated aquifers, PhD Dissertation, University of Michigan,1996
    [209] 李洪,甲基叔丁基醚在地下环境中迁移过程研究: [博士学位论文],天津: 天津大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700