用户名: 密码: 验证码:
双组分纳米流体的物性测量和NH_3/H_2O泡状吸收强化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用纳米流体强化基础液体的导热性能和扩散性能的作用来提高NH_3/H_2O泡状吸收过程的传热传质特性是一种新型的吸收强化方法,其研究刚刚起步。现有文献对适合吸收过程的纳米流体制备、纳米流体的热物理性质、以及对吸收强化机理等方面的研究还很不完善,本文尝试在这些方面进行一些探索性的工作,为这种强化方法的进一步研究和工业化应用奠定基础。
     1)本文选择化学性质稳定的碳纳米管(CNTs)作为纳米颗粒,在氨水中制备了稳定的CNTs-NH_3双组分纳米流体,并设计一系列的实验,研究了CNTs-NH_3双组分纳米流体的物理性质,考察了颗粒质量百分比、氨的浓度和温度等因素对双组分纳米流体物理性质的影响。实验结果表明,碳纳米管的加入确实提高了氨水的导热系数,并且强化效果随着颗粒质量百分比的增加和温度的升高而增加。但是,由于氨分子的存在影响了碳纳米管的分散性,因此导热系数的强化效果低于以纯水为基础液体的纳米流体;双组分纳米流体的运动粘度和表面张力与纯氨水相比变化很小,只是随着碳纳米管质量百分比的增加而略有增加,并且这些性质随氨的浓度和温度的变化趋势与纯氨水是一致的。
     2)本文利用可视化实验手段考察了荧光素在SiO_2-H_2O和CNTs-H_2O两种纳米流体的扩散情况。实验结果发现,荧光素在纳米流体中的扩散速率要大于其在纯水中的扩散速率,并且对于纳米流体中荧光素的扩散速率的强化效果来说,纳米颗粒的加入量存在一个最佳值。
     3)本文结合对双组分纳米流体热物性的研究结果和相关文献,从NH_3/H_2O泡状吸收过程中的热量传递过程、质量传递过程、气泡生成过程三个角度,探讨了纳米颗粒的加入对吸收过程的强化作用。纳米颗粒的加入提高了吸收工质-氨水导热性能和扩散性能,引入了传输效应,增加了氨水中氨气的气含率,进而改善了吸收过程的热质传递特性。在此基础上,设计了NH_3/H_2O泡状吸收实验装置,考察了碳纳米管的质量百分比、氨的初始浓度、氨气流速三个因素对CNTs-NH_3双组分纳米流体吸收强化特性的影响,并对其强化机理进行了分析。实验结果发现,与前人的研究结果不同,双组分纳米流体中NH_3/H_2O泡状吸收强化比并没有随着碳纳米管加入量的增加而一直增加,而是呈现一种先增加,后下降的趋势。泡状吸收强化比随着基础液体中氨的初始浓度的增加而增加。氨的初始浓度越大,氨水的吸收潜能越小,纳米流体对吸收的强化作用越明显。氨气流量的变化在本实验变化的范围内,对双组分纳米流体中NH_3/H_2O泡状吸收的强化效果影响很小。
     4)利用高速摄像技术观察了气泡在SiO_2-H_2O和SiO_2-C_2H_5OH两种透明纳米流体中的形成过程,并结合气泡动力学,分析了纳米流体中气泡尺度变化的原因。结果发现,纳米颗粒的存在降低了气泡的脱离半径,提高了气泡的脱离频率。在相同的气体流量下,气泡的半径越小,液相中的气含率越大。这样的实验结果证明了纳米流体中气泡气含率增加除了文献报道的—颗粒能够阻止气泡在运动过程中的合并这个原因外,气泡脱离半径的减少也是一个重要原因。同时该实验结果也说明纳米颗粒对气泡尺度的影响是双组分纳米流体强化NH_3/H_2O泡状吸收过程的一个重要因素。
Nanofluids,which can enhance the thermal conductivity and mass diffusivity of the base fluid,is a novel approche to improve the heat and mass transfer in the NH_3/H_2O bubble absorption process,.The previous investigations are limited because of many encountered problems,such as the preparation of the specific nanofluids for the absorption process,the transportation properties of the binary nanofluids,the factors and the mechanism affecting the absorption enhancement.This dissertation mainly focuses on the following aspects for the NH_3/H_2O bubble absorption process using binary nanofluids.
     1)The carbon nanotubes(CNTs) are used as the nanoparticles,and the CNTs-NH_3 binary nanofluid is prepared without any surfactants addition.The physical properties,such as thermal conductivity,surface tension and kinematic viscosity of binary nanofluids,are measured.The effects of the mass fraction of carbon nanotubes,the concentration of ammonia and the temperature are systematically studied with a series of experiments.The results show that the CNTs-NH_3 binary nanofluids have remarkably higher effective thermal conductivities than that of the aqueous ammonia,and the thermal conductivity ratio between the binary nanofluid and the base fluid increases with the mass fraction of CNTs and the temperature increasing. However,the thermal conductivity ratios of CNTs-NH_3 nanofluids are lower than that of the CNTs-H_2O ones due to the influence of ammonia ions on the dispersion of CNTs in the base fluid.The addition of CNTs has only a slight effect on the surface tension and kinetic viscosity of the CNTs-NH_3 binary nanofluid,and the variation trend of these properties with the concentration of ammonia and the temperature is same with that of the aqueous ammonia.
     2) The effects of the nanoparticles on the mass diffusion are investigated experimentally by visualizing the diffusion process of a fluorescein in the SiO_2-H_2O nanofluid and the CNTs-H_2O nanofluid.The results show that the diffusion rates of the fluorescein in the two kinds of nanofluids are higher than those in water,and an optimum mass fraction of nanoparticles exists for the enhancement of the diffusion rate in the nanofluids.
     3) The experiments are conducted for the enhanced performance of the binary nanofluid for the NH_3/H_2O bubble absorption process.The effects of the mass fraction of CNTs,the initial concentration of ammonia and the flow rate of ammonia vapor on NH_3/H_2O bubble absorption characteristics are studied.The results show that the effective absorption ratio doesn't increase linearly with the mass fraction of nanoparticles,but increases firstly,and then decrease.Namely, there is an optimum mass fraction of nanoparticles for the enhancement of the bubble absorption.The effective absorption ratio increases with the initial concentration of ammonia increasing.The absorption potential of aqueous ammonia generally decreases with increasing the ammonia concentration,i.e.the lower the absorption potential is,the more significant the enhancement.The flow rate of ammonia vapor has little effect on the enhancement of bubble absorption in the binary nanofluid within the experimental range.Based on the previous study about the thermal physical properties of the binary nanofluid and the relevant reports in literature,the mechanism of the binary nanofluid for enhancing bubble absorption process is analyzed with respect to the effects of the nanoparticles on the heat transfer process,mass transfer process and the forming process of the bubbles in the NH_3/H_2O bubble absorption process.The presence of nanoparticles can improve the thermal conductivity and mass diffusivity of aqueous ammonia,stimulating the grazing effect,and increase the gas holdup of ammonia vapor in aqueous ammonia.And hence it can enhance the heat and mass transfer in the bubble absorption.
     4) The forming processes of the bubbles in two transparent nanofluids of SiO_2-H_2O and SiO_2-C_2H_5OH are observed by the high-speed CCD camera,and the changes of the bubble detaching size in the nanofluids are analyzed according to the dynamics of the bubble.The results show the presence of the SiO_2 nanoparticles decreases the radius of the bubble and increases the detaching frequency of the bubbles in the two nanofluids.Moreover,the radius of the bubble decreases with the mass fraction of the nanoparticles increasing.The smaller bubbles are contributed to the higher gas holdup at the same flow rate of the gas.Therefore,it can be proved that the nanoparticles affect assuredly the forming process of the bubbles and are one of the most important factors for the increase of the gas holdup in the nanofluid and for enhancing bubble absorption process.
引文
[1]Choi S U S.Enhancing thermal conductivity of fluids with nanoparticles.In development and application of non-newtonian flows,edited by Singer D A and Wang H P.FFD-VOL231/MD-VOL.66,New York:ASME,1995:99-105.
    [2]Keblinski P,Eastman J A,Cahill D G.Nanofluids for thermal transport.Materials Today,2005,8(6):36-44.
    [3]Das S K,Choi U S,Patel H E.Heat transfer in Nanofluids-a review.Heat Transfer Engineering,2006,27(10):3-19.
    [4]Kabelac S,Kuhuke J F.Heat transfer Mechanism in nanofluids—experimental and theory.Proceedings of 13th International Heat Conference,Australia,2006,KN-11.
    [5]Choi S U S.Novel thermal transport phenomena in nanofluids.The Eighteenth International Symposium on Transport Phenomena,Korea,2007,182-191.
    [6]Daungthougsuk W,Wongwises S.A critical review of convective heat transfer of nanofluids.Renewable and Sustainable Energy Reviews,2007,11:797-817.
    [7]Witharana S.Boiling of refrigerants on enhanced surface and boiling of nanofluids.London:the Royal Institute of Technology,2003.
    [8]Li C H,Wang B X,Peng X F.Experimental investigations on boiling of nano-particles suspensions.2003 Boiling Heat Transfer Conference,USA,2003.
    [9]Sajith V,Madhusoodanan M R,Sobhan C B.An experimental investigation of the boiling performance of H2O-based nanofluids.Micro/Nanoscale Heat Transfer International Conference,Tainan,Taiwan,2008.
    [10]Ma H B,Wilson C,Borgmeyer B et al.Effect of nanofluid on the heat transport capability in an oscillating heat pipe.Applied Physics Letters,2006,88(14):143116.
    [11]Ma H B,Wilson C,Borgmeyer B et al.An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe.Journal of Heat Transfer,2006,128(11):1213-1216.
    [12]Tsai C Y,Chien H T,Ding P P et al.Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance.Materials Letters,2004,58:1461-1465.
    [13]Akoh H,Tsukasaki Y,Yatsuya S.Magnetic properties of ferromagnetic ultrafine particles prepared by a vacuum evaporation on running oil substrate.Journal of Crystal growth,1978,106:495-500.
    [14]Kao M J,Lo C H,Tsung T T et al.Copper-oxode brake nanofluid manufactured using arc-submerged nanoparticles synthesis system.Journal of Alloys and Compounds,2007,434-435:659-662.
    [15]Lo C H,Tsung T T,Lin H M,Preparation of silver nanofluid by the submerged arc nanoparticles synthesis system(SANSS).Journal of Alloys and Compounds,2007 434-435:659-662.
    [16]Zhu H T,Lin Y S.a novel one-step chemical method for preparation of copper nanofluids.Journal of Colloid and Interface Science,2004,277:100-103.
    [17]Xuan Y M,Li Q,Heat transfer enhancement of nanofluids.International Journal of Heat and Fluid Flow,2000,21:58-64.
    [18]Xie H Q,Lee H,Youn W et al,Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities.Journal of Applied Physics,2003,94:4967-4971
    [19]李宏.纳米颗粒悬浮液强化换热的实验研究与理论模拟:(硕士学位论文).北京:清华大学,2003.
    [20]Li C H,Peterson G P.The effect of particle size on the effective thermal conductivity of Al2O3-H2O nanofluids.Journal of Applied Physics,2007,101(4):044312.
    [21]Choi S U S,Zhang Z G,Yu W et al.Anomalous thermal conductivity enhangcement in nanotube suspensions.Applied Physics Letters,2001,79(14):2252-2254.
    [22]Xie H Q,Wang J,Liu Y et al.Thermal conductivity enhancement of suspensions containing nanosized alumina particles.Journal of Applied Physics,2002,91(7):4570-4572.
    [23]Hong K S,Hong T K,Yang H S.Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles.Applied Physics Letters,2006,88:031901-1-3.
    [24]Ding Y L,Alias H,Wen D S et al.Heat Transfer of aqueous suspensions of carbon nanotubes(CNT nanofluids).International Journal of Heat and Mass Transfer,2006,49:240-250.
    [25]Lee S,Choi S U S,Li S et al.Measuring thermal conductivity of fluids containing oxide nanoparticles.Transaction of ASME—Journal of Heat Transfer,1999,121:280-289.
    [26]Putnam S A,Cahill D G,Braun P V.Thermal conductivity of nanoparticles suspension.Journal of Applied Physics,2006,99:084308-1-6.
    [27]Murshed S M S,Leong K C,Yang C.Enhanced thermal conductivity of TiO2-H2O based nanofluids.International Journal of Thermal Sciences,2005,44:367-373.
    [28]Das S K,Putra N,Thiesen P et al.Temperature dependence of thermal conductivity enhancement for nanofluids.Journal of Heat Transfer,2003,125:567-574.
    [29]Zhang X,Gu H,Fujii M.Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles.Experimental Thermal and Fluid Science,2007,31:593-599。
    [30]李强,宣益民.纳米流体热导率的测量.化工学报,2003,54(1):42-36.
    [31]周乐平,王补宣.颗粒尺寸与表面吸附对低浓度非金属纳米颗粒悬浮液有效导热系数的影响.自然科学进展,2003,13(4):426-429.
    [32]王照亮,唐大伟,布文峰等.纳米流体导热系数测量及理论预测.中国工程热物理学会第十二届年会论文集(传热传质学),南京,2006:1367-1372.
    [33]王涛,骆仲泱,郭顺松等.可控纳米流体的制备及热导率的研究.浙江大学学报(工学版),2007,41(3):514-518.
    [34]Hammerschmidt U,Sabuga W.Transient hot wire(THW) method:uncertainty assessment.International Journal of Thermophysics,2000,21:1255-1278.
    [35]李强,宣益民.液体导热系数的双线式瞬态热线测试技术.仪器仪表学报,2005,26(7):678-682.
    [36]Reozel W,Putra N,Das S K.Experiment and analysis for non-Fourier conductivity in materials with non-homogeneous inner structure.International Journal of Thermal Science.2003,42:541-552.
    [37]Vadasz J,Govender S,Vadasz P.Heat transfer enhancement in nanofluid suspensions:possible mechanisms and explanations.International Journal of Heat and Mass transfer,2005,48:2673-2683.
    [38]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性及颗粒比热容尺寸效应.工程物理热学报,2004,25(2):296-298.
    [39]Eastman J A,Choi S U S,Li S.Anomalously increased effective thermal conductivity of ethylene glycol based nano-fluids containing copper nano-particles,Applied Physics Letters,2001,78(6):718-720.
    [40]Yang B,Han Z H.Temperature-dependent thermal conductivity of nanorod-based nanofluids.Applied Physics Letter,2006,89:083111-1-3.
    [41]Li C H,Peterson G P.Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions(nanofluids).Journal of Applied Physics,2006,99:084314-1-8.
    [42]Maxwell J C.A Treatise on electricity and magnetism[M]2nd ed.Cambridge,U K:Oxford University Press,1904:435-441.
    [43]Hamilton R L,Crosser O K.Thermal conductivity of Heterogeneous two component system.Industrial & Engineering Chemistry Fundamentals 1962,1(3):187-191.
    [44]Kelinski P,Phillpot S R,Choi S U S.Mechanism of heat flow in suspensions of nanosized particles(nanofluids).International Journal of Heat and Mass Transfer,2002,45:855-863.
    [45]Krishnamurthy S,Bhattacharya P,Phelan P E et al.Enhanced mass transport in nanofluids.Nano Letter,2006,6(3):419-423.
    [46]Prasher R,Bhattacharya P,Phelan P E.Thermal conductivity of nanoscale colloidal solutions(nanofluids).Physical Review Letters,2005,94:025901-1-4.
    [47]Chon C H,Kihm K D,Lee S P et al.Empirical correlation finding the role of temperature and particle size for nanofluid(Al2O3) thermal conductivity enhancement.Applied Physics Letter,2005,87:153107.
    [48]Patel H E,Anoop K B,Sundarajan T et al.A microconvection model for thermal conductivity of nanofluids.13th International Heat Conference.Australia,2006:NAN-24.
    [49]Jang S P,Choi S U S.Role of Brownian motion in the enhanced thermal conductivity of nanofluids.Applied Physics Letters,2004,84(21):4316-4318.
    [50]Tillman P,Hill J M.Determination of nanolayer thickness for a nanofluid.International Communications in Heat and Mass Transfer,2007,34(4):399-407.
    [51]Feng Y J,Yu B M,Xu P et al.The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles.Journal of Physics D:Applied Physics,2007,40(10):3164-3171.
    [52]Lee D.Thermophysical properties of interfacial layer in nanofluids.Langmuir,2007,23(11):6011-6018.
    [53]Leong KC,Yong C,Murshed S M S.A model for the thermal conductivity of nanofluids -The effect of interfacial layer.Journal of Nanoparticle Research,2006,8(2):245-254.
    [54]Kang H U,Kim S H,Myung O J.Estimation of thermal conductivity of nanofluid using experimental effective particle volume.Experimental Heat Transfer,2006,19(3):181-191.
    [55]Xie H Q,Fujii M,Zhang X.Effect of inferfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture.International Journal of Heat and Mass Transfer,2005,48:2926-2932.
    [56]Xue L,Kelinski P,Choi S U S.Effect of liquid layering at the liquid-solid interface on thermal transport.International Journal of Heat and Mass Transfer,2004,47:4277-4284.
    [57]Chen G.Phonon heat conduction in nanostructures.International Journal of Thermal.Science.2000,39:471-480.
    [58]Ye L,Liu J,Sheng P et al.Sound propagation in colloidal system.Journal of Physique IV,1993,3(CI):183-196.
    [59]薛文胥,王玮,闵敬春.颗粒聚集对纳米流体强化换热影响浅析.工程热物理学报,2006,27(1):115-117.
    [60]宣益民,李强.纳米流体的凝聚结构和导热系数的模拟.工程热物理学报,2002,23(2):206-208.
    [61]胡卫峰,宣益民,李强.纳米流体聚集结构的模拟及其分维数分析.南京理工大学学报,2002,26(3):229-234.
    [62]Wang B X,Zhou L P,Peng X F.A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles.International Journal of Heat and Mass Transfer 2003(46):2665-2672.
    [63]Hong K S,Hong T K,Yang H S.Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles.Applied Physics Letters,2006,88:031901-1-3.
    [64]Yu KW,Chan E M Y,Chu Y C,Gu G Q.Enhanced non linear response of fractal clusters.Physical Review B 1995,51(17):11416-11423.
    [65]Lee S,Choi S U S.Application of metallic nanoparticles suspensions in advanced cooling system.1996 International mechanical Engineering Congress and Exhibition,Atlanta USA,1996.
    [66]Li Q,Xuan Y M.Convective heat transfer and flow characteristics of Cu-H2O nanofluid.Science in China(Series E),2002,45(4):408-416.
    [67]Xuan Y M,Roetzel W.Conception for heat transfer correlation of nanofluids.International Journal of Heat and Mass Transfer,2000,43:3701-3707.
    [68]Wen D S,Ding YL.Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions.International Journal of Heat and Mass Transfer,2004,47:5181-5188.
    [69]Yang Y,Zhang Z G,Grulke E A et al.Heat transfer properties of nanoparticle-in-fluid dispersions(nanofluids) in laminar flow.International Journal of Heat and Mass Transfer,2005,48:1107-1116.
    [70]Zeinali H S,Nasr E M,Etemad S G.Experimental investigation of convective heat transfer of Al2O3/H2O nanofluid in circular tube.International Journal of Heat and Fluid Flow,2007,28(2):203-210.
    [71]He Y R,Jin Y,Chen,H S et al.Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles(nanofluids) flowing upward through a vertical pipe.International Journal of Heat and Mass Transfer,2007,50:2272-2281.
    [72]陈骁,李俊明,戴闻亭等.细圆管内纳米颗粒悬浮液强化对流换热地探讨.工程热物理学报,2004,25(4):643-645.
    [73]陈骁,李俊明,王补宣.小圆管内纳米流体层流对流换热的实验研究.中国工程热物理学会第十二届年会论文集(传热传质学),南京,2006:648-652.
    [74]李强,宣益民.小通道扁圆管内纳米流体流动与传热特性.工程热物理学报,2004,25(2):305-307.
    [75]Lee J,Mudawar I,Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels.International Journal of Heat and Mass Transfer,2007,50:452-463.
    [76]Nguyen C T,Roy G,Gauthier C et al.Heat transfer enhancement using Al2O3-H2O nanofluid for an electronic liquid cooling system.Applied Thermal Engineering,2007,27:1501-1506.
    [77]Polidori G,Fohanno S,Nguyen C T.A note on heat transfer modeling of Newtonian nanofluids in laminar free convection,International Journal of Thermal Sciences,2007,46(8):739-744.
    [78]Behzadmehr A,Saffar A M,Galanis N.Prediction of turbulent forced convection of a nanofluld in a tube with uniform heat flux using a two phase approach.International Journal of Heat and Fluid Flow,2007 28(2):211-219.
    [79]Akbarinia A,Behzadmehr A.Numerical study of laminar mixed convection of a nanofluld in horizontal curved tubes.Applied Thermal Engineering,2007,27(8-9):1327-1337.
    [80]Zeinali H S,Nasr E M,Etemad S G.Experimental investigation of oxide nanofluids laminar flow convective heat transfer.International Communications in Heat and Mass Transfer,2006,33:529-535.
    [81]Das S K,Putra N,Roetzel W.Pool boiling characteristics of nanoflulds.International Journal of Heat and Mass Transfer,2003,46:851-862.
    [82]Das S K,Putra N,Roetzel W.Pool Boiling of nano-fluids on horizontal narrow tubes.International Journal of Multiphase Flow,2003,29(8):1237-1247.
    [83]Li C H,Wang B X,Peng X F.Experimental investigation on boiling of nano-particle suspensions.The 5th International Boiling Heat Transfer Conference,Montego Bay,Jamaica,2003.
    [84]Li C H,Wang B X,Peng X F.On the pool boiling of subcooled nano-particle suspensions.The 6th International Symposium of Heat Transfer,Section:Boiling and Condensation,Beijing,China,2004.
    [85]李春晖,王补宣,彭晓峰.混和悬浮液中纳米颗粒对核化形态的影响.工程热物理学报,2004,25(3):475-477.
    [86]Liu Z H,Qiu,Y H,Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface,Heat and Mass Transfer,2007,43(7):699-706.
    [87]Bang I C,Chang S H.Boiling heat transfer Performance and Phenomena of Al2O3-H2O nano-fluids from a plain surface in a pool.International Journal of Heat and Mass Transfer,2005,48(12):2420-2428.
    [88]Tu J P,Dinh N,Thefanous T.An experiment study of nanofluid boiling heat transfer.The 6th International Symosium of Heat Transfer,Section:Boiling and Condensation,Beijing,China.2004.
    [89]Kim S J,Bang I C,Buongiorno J et al.Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux.International Journal of Heat and Mass Transfer,2007,50(19-20):4105-4116.
    [90]You S M,Kim J H,Kim K H.Effect of nanoparticles on critical heat flux of H2O in pool boiling heat transfer.Applied Physics Letters,2003,83:3374-3376.
    [91]Khellil S.On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids.Applied Physics Letters,2006,89(4):044106.
    [92]廖亮,刘振华.纳米流体池内沸腾时传热面上的吸附与烧结现象,中国工程热物理学会第十二届年会论文集(传热传质学),南京,2006:232-236.
    [93]Zhou D W.Heat transfer enhancement of copper nanofluid with acoustic cavitation.International Journal of Heat and Mass Transfer,2004,47:3109-3117.
    [94]Wen D,Ding Y.Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids.Journal of Nanoparticle Research,2005,7(2):265-274.
    [95]Vassallo P,Kumar R,Amico S D.Pool boiling heat transfer experiments in silica-H2O nanofluids.International Journal of Heat and Mass Transfer,2004,47:407-411.
    [96]Li C H.,Wang B X,Peng X F.Subcooled boiling of nano-particle suspension on Pt Wires.Natural Science,2004,14(7):619-625.
    [97]Park K J,Jung D S,Enhancement of nucleate boiling heat transfer using carbon nanotubes.International Journal of Heat and Mass Transfer 2007,50:4499-4502.
    [98]Xue H S,Fan J R,Hong R H et al.Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique.Applied Physics Letters,2007,90(18):184107.
    [99]陈东,谢继红.热泵技术及其应用.北京:化学工业出版社,2006:27-29.
    [100]Kang Y T,Akisawa A,Kashiwagi T,Analytical investigation of two different absorption modes:falling film and bubble types.International Journal Refrigeration,2000,23:430-443.
    [101]Kostin Z A,Experimental investigation of the processes occurring in a model of absorbing apparatus of a lithium bromide refrigerating machine with fixed and vibrating tubes.ORNL/TR-90/5,1990.
    [102]Fujita H,Ueda T.Falling liquid films in absorption machines.International Journal of Refrigeration,1993,16:281-292.
    [103]Kim J K,Kang Y T,Park C W,The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H_2O\LiBr absorber.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:277-282.
    [104]Cho H C,Kang Y T,Kim C D.Effect of surface roughness of micro-scale hatched tubes on the absorption performance.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:300-304.
    [105]Isshiki N,Ogawa K,Ishikawa M.Development of constant curvature surface(CCS)Tubes and plates to get high absorption heat transfer.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:295-299.
    [106]Zahid H A.NH3 refrigeration heat transfer enhancement.Heat Transfer Engineering,2004,25(5):4-5.
    [107]陈沛.垂直管外降膜吸收传热传质过程的强化研究:(硕士学位论文),大连:大连理工大学,2000.
    [108]孙平,陈嘉宾.在第二类吸收式热泵中对螺旋槽管的换热性能研究.热科学与技术,2005,4(4):309-314.
    [109]王群昌,陈嘉宾,马学虎,杨维谦.不锈钢波节管强化降膜吸收传热传质的实验研究.高等学校工程热物理第十一届全国学术会议,哈尔滨,2005,论文编号B-05019.
    [110]薄守石,马学虎,陈嘉宾,白涛.场协同原理强化竖直管外降膜吸收特性的实验研究.大连理工大学学报,2008,48(1):18-21.
    [111]Islam M R,Wijeysundera N E,Ho J C.Performance study of a falling film absorber with a film-inverting configuration.International Journal of Refrigeration,2003,26:909-917.
    [112]崔晓钰,李美玲.膜反转板式降膜吸收过程的理论研究.化工学报,2006,57(5):1089-1094.
    [113]陈亚平,施晨洁,施明恒.双面膜反转强化吸收过程传热传质.化工学报,2008,59(1):19-24.
    [114]Kang Y T,Kashiwagi T.Heat transfer enhancement by Marangoni convection process.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:283-288.
    [115]Nishimura N,Nomura T,Lyota H et al.Investigation of absorption enhancement by a surfactant.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:373-377.
    [116]Kashiwagi T.Basic mechanism of absorption heat and mass transfer enhancement by the Marangoni effect.News letter,IEA Heat Pump Center,1988,6(4):2-6.
    [117]Hozawa M,Inoue M,Sato J et al.Marangoni convection during steam absorption into aqueous LiBr solution with surfactant,Journal of Chemical Engineering of Japan,1991,24(2):209-223.
    [118]Kang Y T,Akisawa A.Visualization and model development of Marangoni convection in NH3-H2O system.International Journal of Refrigeration,1999,22(8):640-649.
    [119]Kulankara S,Herold K E.Theory of Heat/Mass Transfer Additives in Absorption Chillers.HVAC&R Research,2000,6(4):369-380.
    [120]Kulankara,S,Herold K E.Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives:the effect of additive vapor transport.International Journal of Refrigeration,2002,25:383-389.
    [121]Zhou X,Herold K E.The vapor surfactant theory of absorption and condensation enhancement.Proceeding of the International Sorption Heat Pump Conference,shanghai,China,2002:341-346.
    [122]蒋桂忠,蔡祖恢,李美玲.活性介质对溴化锂水溶液吸收过程强化机理的研究进展.上海理工大学学报,2001,23(1):14-15.
    [123]Hihara E,Saito T.Effect of surfactant on falling film absorption.International Journal of Refrigeration,1993,16(5):339-346.
    [124]Kim K J,Berman N S,Wood B D.Experimental investigation of enhanced heat and mass transfer mechanisms using additives for vertical falling film absorber.Proceeding of the International Absorption Heat Pump Conference,New Orleans,1994:41-47.
    [125]程文龙,赵锐,刘畅等.氨水鼓泡吸收的实验研究—添加剂的影响.制冷学报,2006,27(2):35-40.
    [126]程文龙,陈则韶.关于添加剂蒸汽对于溴化锂溶液吸收促进作用的实验研究.流体机械,2002,30(12):40-43.
    [127]程文龙,陈则韶.添加剂对溴化锂溶液吸收蒸汽过程中的强化机理.化学物理学报,2004,17(2):179-185.
    [128]Kim J K,Jung J Y,Kang Y T.The effect of nano-particles on the bubble absorption performance in a binary nanofluid.International Journal of Refrigeration,2006,29(1):22-29.
    [129]Kim J K,Jung J Y,Kang Y T.Mass transfer enhancement of a binary nanofluid for absorption application.The 13th International Heat Conference,Australia,2006:NAN-017.
    [130]Kim J K,Jung J Y,Kang Y T.Absorption Performance enhancement by nanoparticles and chemical surfactants in binary nanofluids.International Journal of Refrigeration,2007,30(1):50-57.
    [131]Kim J K,Akisawa A,Kashiwagi T et al.Numerical design of NH3 bubble absorber applying binary nanofluids and surfactants.International Journal of Refrigeration,2007,30:1086-1096.
    [132]Kang Y T,Kim J K.Comparisons of mechanical and chemical treatments and nano technologies for absorption applications.HVAC and R Research,2006,12(3):807-819.
    [133]Lee K I,Kim H J,Jung J H et al.An experimental study on the falling film heat transfer for binary nanofluids.The 18th International Symposium on Transports Phenomena,Korea,2007:1107-1110.
    [134]Esum K,Ishigami M,Nakajima A et al.Chemical treatment of carbon nanotubes.Carbon,1996,34:279-281.
    [135]王世广,樊希山,化工原理,大连:高等教育出版社,2002.
    [136]Wang X Q,Mujumdar A S.Heat transfer characteristics of nanofluids:A review.International Journal of Thermal Sciences,2007,46:1-19.
    [137]李泽梁,李俊明,王补宣,胡海涛.CuO纳米颗粒悬浮液中个组分对悬浮液稳定性及粘度的影响.热科学与技术,2005,4(2):157-163.
    [138]Fan L S,Hemminger O,Yu Z et al.Bubbles in nanofluids.Industrial and Engineering Chemistry Research,2007,46:4341-4346.
    [139]李春辉.纳米颗粒悬浮液核态沸腾与传热:(博士论文).北京:清华大学,2005.
    [140]Kars R L,Best R J,Drinkenburg A H.The sorption of propane in slurries of active carbon in H2O.Chemical Engineering Journal,1979,17:201-210.
    [141]Holstvoogd R D,Swaaij W P M V,Dierendonck L L V,The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles.Chemical Engineering Science,1988,43(8):2181-2187.
    [142]Kluytmans J H J,Wachem B G M,Kuster B F M et al.Mass transfer in sparged and stirred reactor:influence of carbon particles and electrolyte.Chemical Engineering Science,2003,58:4719-4728.
    [143]Alper E,Wichtendahl B,Deckwer W D,Gas Absorption mechenism in cataytic slurry reactors,Chemical Engineering Science,1980(35),pp217-222.
    [144]Ramachandran P A.Gas absorption in slurries containing fine particles:Review of models and recent advances.Industrial Engineering Chemical Research,2007,45:3137-3152.
    [145]Kim J,Kang Y T,Chang Choi K.Soret and Dufour on convective instabilities in binary nanofluids for absorption application.International Journal of Refrigeration,2007,30:323-328.
    [146]Dagaonkar M V,Heeres H J,Beenackers A A C M et al.The application of fine TiO2particles for enhanced gas absorption.Chemical Engineering Journal,2003 92:151-159.
    [147]Sada E,Kumazawa H,Lee C H.Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column.AIChE Journal,1986,32(5):853-856.
    [148]Chandrasekaran K,Sharma M M.Absorption of oxygen in aqueous solutions of sodium sulfide in the presence of activated carbon as catalyst.Chemical Engineering Science,1977,32:669-679.
    [149]Kara S,Shah Y T,Shah Y T.Hydrodynamics and axial mixing in a three-phase bubble column.Industrial and Engineering Chemistry:Process Design and Development,1982,21(4):584.
    [150]Kluytmans J H J,Wachem B G.M.V,Kuster B F M et al.Gas holdup in a slurry bubble column:Influence of Electrolyte and Carbon Particles.Industrial and Engineering Chemistry Research,2001,40:5326-5333.
    [151]Feng W,Wen J P,Fan J H et al.Local hydrodynamics of gas-liquid-nanoparticles three-phase fluidization.Chemical Engineering Science,2005,60:6887-6898.
    [152]戴甘策,陈敏恒.化工流体力学,北京:化学工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700