用户名: 密码: 验证码:
单星预警弹道导弹参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基预警系统是战略预警系统的重要组成部分,基于单颗预警卫星观测的弹道导弹预警是天基预警系统发展的必经历程和重要组成部分,单颗预警卫星观测条件下的弹道导弹参数估计是天基预警系统需要解决的关键问题。
     单星弹道导弹参数估计的传统方法基于标准弹道模板先验信息的支持,但标准弹道模板先验信息获取困难,从而限制了此类方法的应用。本文在单颗预警卫星观测条件下,通过对弹道导弹参数估计问题的深入研究,突破传统算法严重依赖于标准弹道模板先验信息的局限,建立了基于单颗预警卫星观测弹道导弹参数估计的系列核心算法,较为系统的回答了在单颗预警卫星观测下,何种前提条件可以得到何种预警信息的问题。
     本文首先建立了基于动力特征的单星弹道导弹参数估计算法,并重点研究了基于试验靶场飞行管道的动力特征提取与修正算法,基于该系列方法可逐步建立包含动力特征的先验信息库用于单星预警。基于动力特征的单星弹道导弹参数估计以弹道导弹的平面特性和弹道切割模型为基础,利用动力特征先验信息进行弹道导弹参数估计。动力特征提取与修正算法以试验靶场飞行管道信息为约束条件,基于单颗预警卫星平时观测提取导弹的动力特征,同时可利用同类型导弹的多次试验观测来对动力特征进行修正。
     本文进一步深入研究了弹道导弹的主动段特征,建立了两种基于模型约束的单星弹道导弹参数估计算法,包括:基于攻角约束的参数估计和基于动量守恒的参数估计。此类方法在无需标准弹道模板或动力特征等先验信息支持的情况下,可以对来袭导弹给出较高精度的射向估计结果,能够有效引导地基预警系统接力跟踪,为天基预警系统的弹道导弹早期预警提供了一种可行的引导方案。基于攻角约束的弹道导弹参数估计算法从导弹的动力学模型出发,在弹道导弹主动段中后部分攻角接近于零的假设下,利用带有区间约束LMF算法进行参数估计。基于动量守恒的弹道导弹参数估计算法通过弹道导弹飞行的动量模型和半解析的遍历算法进行弹道导弹参数估计。
     在上述研究基础上,本文还将基于动量守恒的参数估计算法推广至大椭圆预警星座,并对高轨预警系统复合星座的覆盖特性进行了研究,同时在保证估计精度的前提下对全球覆盖的高轨预警星座设计提出了建议。
     为支持天地基预警的引导交接,本文提出了基于模糊聚类识别弹头伴飞物的新算法,解决了预警交接过程中关键的目标识别问题。该算法通过分析弹体分离的多目标飞行特性,构建弹头和伴飞物相对位置的模糊等价关系,基于空间点共线及对称性的模糊判定方法进行弹头识别。
     最后,本文构建了面向天基预警的分布式仿真平台,能够有效的完成复杂预警场景的仿真与演示。仿真平台依靠分布式集群系统提高其计算能力,基于高层体系结构并利用主体技术增强其仿真的动态适应性,采用自主设计三维渲染引擎以满足复杂成像模型以及场景演示的需求,利用插件与脚本表示相结合实现其扩展性,并充分集成现有的开源软体以加速其开发。
The early warning of single satellite is a necessary process and an important part of the early warning system. As forepart warning, it is very important to give trajectory course information early to radar system for putting a tail on the missile. The trajectory estimation and prediction in the space early warning system is a typical application of data fusion technique in the target tracking field. It is an integrative data processing method, which synthesizes the information detected by sensors and employs the mathematical models construction to estimate the moving state of the target and the prediction of impact point.With the development of the trajectory estimation and prediction techniques in the space early warning system in recent years, especially the urgent demands in military affairs, research in the trajectory estimation and prediction techniques using a single satellite has been increasingly embedded and broadened.
     This paper is based on the background of the single satellite’s trajectory estimation and prediction. With the synthetic employment of tools such as curve fitting, nonlinear regression analysis and kalman filtering, we have made a deep study into the profile matching estimation method of the boost phase of a target of based on the priori information. A new trajectory estimation method using dynamic equation is put forward, and a systematic precision index analysis for the trajectory estimation is presented. The main work and the innovation results of this paper consist of three parts as follows: The first: with an eye to build a new method based on the dynamic equation for the single satellite’s trajectory estimation and prediction, we make its dependency on the trajectory template reduced greatly. The second: make good use of the information we can easily acquired besides the full trajectory template to improve the single satellite’s trajectory estimation and prediction's precision, and analyzed the organization structure and the content of this information.
     The early warning of a single satellite is a necessary process and an important part of the early warning system. As single satellite belong to the condition of incomplete surveys, the missile trajectory as well as the warning information is estimated based on early warning database. So it is very important to construct early warning database. In this paper, based on the missile characteristic of the essence analyzed, the method is established to obtain ballistic trajectory in order to make early warning of a single satellite possible. Therefore, the corresponding simulation computation has been carried on and shows the method in this paper feasible.
     To give course head estimation early for ground-base radar system putting a tail on ballistic missile in early warning phase of single satellite, this paper establish a new method based on missile dynamics equation to obtain course head without prior trajectory template information supporting. The corresponding simulation computation shows the method’s correctness and value, and then a feasible method to ballistic missile head course estimation in early warning phase with space-based early warning system is given.
     In this paper, based on the missile momentum equation, taking into account the basic physics’restrictions in missile’s manufacture and flight, a new method is established to obtain the trajectory course by early warning of single geosynchronous satellite, without prior information supporting. The corresponding simulation computation has been carried on and shows the method’s correctness and value in this paper.
     The space-based early warning system is the national strategy early warning system's important component, the space-based system guides the ground early warning radar to carry on the missile’s following track, the guidance connection process is the missile defense core link, but it is unable to separate the warhead and the partner merely based on the radar echo characteristic information, this article proposed distinguishes the partner flies one algorithm based on the fuzzy clustering algorithm, the simulation computed result indicated that this article method has the high rate of accuracy and the very good practical value.
     The astronautics oriented computer simulation has two remarkable characteristics: one is the high dynamics of the simulation scenario; the other is the huge quantity of computing. For developing an astronautics simulation platform and cluster computing environment (abbr. ASPCCE), five strategies are presented in this paper to meet the above two requirements in complex scenario simulating computing (such as constellation optimization, resource scheduling and space-based early warning et al): 1. To increase ASPCCE’s numerical calculation ability and controllability, distributed clusters are employed as the computing environment; 2. To enhance ASPCCE’s dynamic simulation adaptation, the development is based on the high level architecture and the agent technology; 3. To meet the complex imaging model and the scenario demonstration’s requirements, a new 3D rendering engine is designed; 4. To achieve ASPCCE’s expansibility, the combination of the plug-in framework and the scripting language are adopted; 5. To accelerate the development of ASPCCE, many existing open source software are integrated following the open source strategy, and the outcome will be an open source software as well.
引文
[1] United States Air Force, Scientific Advisory Board. Report on Space Surveillance. Asteroids and Comets, and Space Debris [R], 1997: 3~5.
    [2] Jayant Sharma. Space Surveillance with the Spaced–Based Visible Sensor [R]. MIT Lincoln Laboratory, 2000: 1~5.
    [3] Jayant Sharma, Grant H. Stokes, Curt von Braun et al. Toward Operational Space-Based Space Surveillance [J]. Lincoln Laboratory Journal, 2002, 13: 309~313.
    [4] Taff L. G.. Statistical Initial Orbit Determination, Signal and Data Processing of Small Targets [J]. Proc.SPIE,1991, 1481: 440-448.
    [5] Beaulieu M. Launch Detection Satellite System Engineering Error Analysis[D]. Master’s Thesis, Naval Postgraduate School, California, 1996.
    [6] Danis N. J. Space-based Tactical Ballistic Missile Launch Parameter Estimation [J]. IEEE Transaction on Aerospace and Electronic Systems, 1993, 29(2): 412-424.
    [7]李英良,易东云,吴翊.单星观测条件下弹道主动段估计的一种新方法[J].弹道学报,2003,15(3).
    [8] QIANG Sheng, et al. Space-based Tactical Ballistic Missile Type Identification[C]. 23rd International Symposium on Ballistics, 2007: 713-720.
    [9]樊士伟,王树文,周伯昭等.单目条件下利用成像关系估计弹道导弹射向[J].华中科技大学学报(自然科学版),2005,33(11): 9-11.
    [10]张毅,肖龙旭,王顺宏.弹道导弹弹道学[M].长沙:国防科技大学出版社,2005.
    [11] Wafolmieph, Keptoph. Ballistic Missile Design and Experiment [M]. Bei Jing: Defense Industry Publishing Company, 1977.
    [12] Kanzow C., Yamashita N., Fukushima M. Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties [J]. Journal of Computational and Applied Mathematics. 2004, 172: 375– 397.
    [13] Benavoli A., Chisci L., Farina A. Tracking of a ballistic missile with a-priori information [J]. IEEE Aer el, 2007, 43 (3):1000-1016.
    [14] Ali A., Sartuk K. Development of a satellite borne tactical ballistic missile trajectory prediction tool [C]. In: Ince F, Onbasioglu S eds. Proceedings of International Conference on Recent Advances in Space Technologies, 2003:601-604.
    [15] Liu CY., Chen CT. Tracking the Warhead among Objects Separation from the Reentry Vehicle in a Clear Environment [J]. Defence Science Journal, 2009, 59(2): 113-125.
    [16] Liu CY., Sung YM. Clarifying warhead separation from the reentry vehicle using a novel tracking algorithm [J]. International Journal of Control Autoation and Systems, 2006, 4(5): 529-538.
    [17] Kun-ling Zhu, Wei-xun Wang. The Encyclopedia of Missile[M]. Bei-jing: China Astronautic Publishing House. 2001.
    [18]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社.2006.
    [19] Caha Z. State-of-the-art of ballistic missile defense systems in the world[C]. In: Rerucha V eds. Proceedings of International Conference on Military Technologies (ICMP), 2007: 139-145.
    [20] Jayant S. Space-based visible space surveillance performance [J]. J Guid Con, 2000, 23(1): 153-158.
    [21] Pavel P. History and the current status of the Russian early-warning system [J]. Science and Global Security, 2002, 10(1): 21-60.
    [22] De Hoon MJ., Imoto S., Nolan J., et al. Open source clustering software[J]. Bioinformat, 2004,20 (9): 1453-1454.
    [23]王正明,易东云等.弹道跟踪数据的校准与评估[M].国防科技大学出版社,1999.
    [24] D. Dooling. Ballistic missile defense [J]. IEEE Spectrum, 1997.
    [25] W. B. Scott. First phase of DSP-SBIRS transition underway [J]. AW&ST, 1997, 2.
    [26] J. C. Anselmo. Smallest builder bids for SBIRS [J]. AW&ST, 1998, 4.
    [27] A.T. Stair, Jr. MSX design parameters driven by targets and backgrounds [J]. Johns hopkins APL technical digest, 1996, 17(1): 11-18.
    [28] William E. Skullney, et al. Structural design of MSX spacecraft [J]. Johns Hopkins APL technical digest, 1996, 17(1): 59-76.
    [29] Strategic Master Plan for FY02 and Beyond [J]. Air Force Space Command, 2000.
    [30] Global Engagement: A Vision for the 21st Century Air Force[R]. 1996.
    [31] National Space Policy[R]. 1996.
    [32] USAF Scientific Advisory Board Study. A Space Roadmap for the 21st Century Aerospace Force[R]. 1998.
    [33] Carl G. Pfeiffer, Brian L. Masson. Technology demonstration by the onboardsignal and data processor [J]. Johns Hopkins APL technical digest, 1996, 1(2): 237-245.
    [34] Brent Y. Bartschi, David E. Morse, and Tom L. Woolston. The spatial infrared imaging telescope III [J]. Johns Hopkins APL technical digest, 1996, 17(2): 215-225.
    [35] Pavel Podvig. History and the Current Status of the Russian Early-Warning System [J], Science and Global Security, 2002, 10: 21-60.
    [36] A. P. San Joe. Theater ballistic missile defense-multisensor fusion, targeting and tracking techniques[D]. Master’s Thesis, Naval Postgraduate School, California, 1998.
    [37] Woods E., Queeney T. Multi-sensor Detection and Tracking of Tactical Ballistic Missile Using Knowledge-Based State Estimation [J]. Signal Processing, Sensor Fusion and Target Recognition III, Proc.SPIE, 1994, 2232: 111-121.
    [38] Blackman S., Popoli R. Design and Analysis of Modern Tracking Systems[M]. Artech House, Norwood, MA, 1999.
    [39] Rudd J. G., et al. Surveilance and Tracking of Ballistic Missile Launches[J]. IBM Journal of Research and Development, 1994, 38(2): 195-216.
    [40] Isaacson J. A., Vaughan D. R. Estimation and Prediction of Ballistic Missile Trajectories[R]. ADA309930.
    [41] Sizman G. L., Drescher G. H. Tactical Ballistic Missile Trajectory State and Error Covariance Propagation [J]. IEEE Position Location and Navigation Symposium,1994: 839-844.
    [42] Ming J., Fannie A. R. Angle-only Tracking and Prediction of Boost Vehicle Positon[J]. Signal and Data Procesing of Small Targets, Proc.SPIE, 1991, 1481: 281-291.
    [43] Rudd J. G., Marsh R. A. Single-scan Tracking Using N infrared Sensors[J]. Signal and Data Processing of Small Targets, Proc.SPIE, 1992, 1698: 394-401.
    [44]中国人民解放军总装备部军事训练教材编辑工作委员会著.外弹道测量数据处理[M].北京:国防工业出版社,2002.
    [45]邓乃扬著.无约束最优化计算方法[M].北京:科学出版社,1982.
    [46]王正明,易东云著.测量数据建模与参数估计[M].长沙:国防科技大学出版社,1996.
    [47]现代数学手册编纂委员会.现代数学手册.近代数学卷.样条函数[M].武汉:华中科技大学出版社,2000.
    [48]袁伟.双星导弹预警系统的弹道参数及其精度空间的建模与估计[D].长沙:国防科学技术大学,硕士论文,2004.
    [49] Wang, Wen-Guang, Sun, Xian-You, Xu, Yong-Ping, et al. Satellite orbit maneuver simulation application based on HLA[J]. Journal of System Simulation, 2008, 20(1): 89-93.
    [50] Li, Ke-Xin, Cong, Ming-Yu, Zhang, Wei. Infrared sequence image generation of point target in deep space[J]. Optics and Precision Engineering, 2009, 17(12): 3062-3068.
    [51] Fengrui, Mengxin, Panzhongshi. The design and implementation of STK-pRTI middleware in optical detection real time simulation system[C]. Proceedings of the 2nd International Conference on Modeling and Simulation, ICMS2009, 2009,6: 414-418.
    [52] Liu, Guang-Ming, Wen, Yuan-Lan, Liao, Ying. Research on dynamic simulation of satellite based on multi software platform[J]. Journal of System Simulation, 2007,19(2): 308-311.
    [53] Wang, Da, Qiu, Xiao-Gang, Huang, Ke-Di. Study on STK-RTI middleware based modeling and simulation of space-ground integrated combat[J]. Journal of System Simulation, 2005, 17(2): 501-503.
    [54] Zhang, Jinxiu, Cao, Xibin. An integrated system for satellite orbit design and mission analysis[C]. Collection of Technical Papers - AIAA Modeling and Simulation Technologies Conference, 2004, 1: 26-31.
    [55]李盾.空间预警系统对目标的定位与预警[D].长沙:国防科学技术大学,博士论文,2001.
    [56]樊士伟.弹道导弹天基预警信息处理方法研究[D],长沙:国防科学技术大学,博士论文,2006.
    [57]李英良.单星弹道估计与预报中的方法研究[D].长沙:国防科学技术大学,硕士论文,2004.
    [58]李贞杰.低轨卫星预警的弹道估计算法与分析[D].长沙:国防科学技术大学,硕士论文,2005.
    [59]张涛,安玮,周一宇,李骏.基于推力加速度模板的主动段弹道跟踪方法[J].宇航学报,2006, 27(3).
    [60]微博成等译.非线性回归分析及其应用[M],北京:中国统计出版社,1997.
    [61]粟塔山等.最优化计算原理与算法程序设计[M].国防科技大学出版社,2001.
    [62]曹敏,刘永祥,黎湘.弹道导弹轨迹参数生成技术研究[J].电光与控制,2004,11(2):35-37.
    [63]白鹤林,吴瑞林,战术弹道导弹弹道的构造方法[J].现代防御技术,1998,26(1):39-43.
    [64]科普托夫编著.弹道式导弹设计和试验[M].北京:国防工业出版社.
    [65] Leon A. Tracking and Classification of Boost Phase Ballistic Missiles[D]. Master’s Thesis, Massachusetts Institute of Technology, 1995.
    [66] Sviestins E. Multi-Radar Tracking for Theater Missile Defense[J]. Signal and Data Processing of Small Target, Proc. SPIE, 1995, 2561: 383-394.
    [67] Easthope P. F, Heys N. W. A Multiple-Model Target-Oriented Tracking system [J]. Signal and Data Processing of Small Target, Proc. SPIE, 1994, 2235: 624-635.
    [68] Song T. L. Observability of Target Tracking with Bearings-only Measurments [J]. IEEE Transaction on Aerospace and Electronic Systems, 1983, 19(2): 269-273.
    [69] Sitzman G. L, Drescher G. H. Tactical Ballistic Missile Trajectory State and Error Covariance Propagation[J]. IEEE Position Location and Navigation Symposium, 1994: 839-844.
    [70] Yicong Li, Kirubarajan T. Trajectory and Launch point estimation for Ballistic Missile from Boost phase LOS Measurements [C]. IEEE Aerospace Conference proceedings, 1999, 4: 425-442.
    [71]孙俭译.国防支援计划(DSP)[J].863先进技术防御技术通讯,1994: 38-45.
    [72]李盾,周一宇,吕彤光,苗雨.空军预警系统对弹道导弹的监视与跟踪[J].系统工程与电子技术,2000,24(3): 248-251.
    [73] Andreas N. S. Space-Based Infrared System(SBIRS) System of Systems[J]. IEEE Aerospace Applications Conf. Proc, 1997,7: 429-437.
    [74] Barnhart B., et al. Development and Application of an Object-oriented Graphical Enviroment for the Simulation of Space-based Sensing System[J]. IEEE Aerospace Applications Conf. Proc, 1996, 6: 205-215.
    [75]陶禹,张智诠.凝视型红外焦平面组件的军事应用[J].红外与激光工程,2001,30(1): 70-71.
    [76]崔敦杰.地球静止轨道卫星有效载荷可优选凝视型光学遥感器[J].遥感技术与应用,1998,13(3): 30-37.
    [77]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[J].北京:国防工业出版社,1996.
    [78]张守信等.外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社,1992.
    [79]贾沛然,沈为异.弹道导弹弹道学[M].长沙:国防科技大学出版社,1980.
    [80] Henry Leung. Nonlinear Clutter Cancellation and Detection Using a Memory-Based Predictor[J]. IEEE Trans. on Aerospace and Electronic System, 1996, 32(4): 1249~1256.
    [81]赵健康.高轨红外扫描探测对TBM预警性能的初步分析[J].863先进防御技术通讯,1998: 10-17.
    [82] Torrieri D. J. Statistical Theory of Passive Location System[J]. IEEE Transactions on Aerospace and Electronic System, 1984, 20(2): 183-198.
    [83]张萍,童丽.空间预警系统的视线测量误差建模[J].北京:中国空间科学技术,2003, 6.
    [84]袁伟,周海银.双星定位中精度空间模型及其应用[J].北京:弹道与航天运载技术.
    [85] Chang C. B. Ballistic Trajectory Estimation with Angle-only Measu rements[J]. IEEE Transactions on Math, Software, 1981, 7(3): 348-368.
    [86]陈磊,王海丽,周伯昭,任萱.基于预警卫星观测数据的弹道重构算法研究[J].宇航学报,2003,24(2):202~205.
    [87]叶其孝,沈永欢.实用数学手册[M].数学建模.北京:科学出版社,2006.
    [88]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000.
    [89]薛成位.弹道导弹工程[M].北京:中国宇航出版社,2002.
    [90]席少霖.非线性最优化方法[M].北京:高等教育出版社,1992.
    [91]袁伟,金学军.双星定位的三参数方法及其精度分析[J].中国空间科学技术,2003,5.
    [92]刘利生等著.外测数据事后处理[M].北京:国防工业出版社,2000.
    [93] ZHAO Yan, YAO Kang-ze, SUN Jun-hua, ZHENG Xue-bin. Research on a new algorithm of missile target recognition of missile early warning satellite system[J]. Systems Engineering and Electronics, 2005, 27(10): 1811-1813.
    [94]付正军,王永红.计算机仿真中的HLA技术[M].北京:国防工业出版社,2003.
    [95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:Elements of Reusable Object-Oriented Software[M]. Addison Wesley Longman,2005.
    [96]柴旭东,李伯虎.高层体系结构HLA/RTI及其实现综述[J].系统仿真学报,1999,10(2): 92-96.
    [97]尹娟.HLA联邦成员软件框架自动生成技术研究与实现[D].长沙:国防科技大学研究生院论文,2002.
    [98]王召福.HLA邦元范型框架设计及其关键技术研究[D].国防科技大学研究生院论文,2002.
    [99]黄健等.基于HLA的分布仿真环境KD-HLA的研究与应用[J].系统仿真学报,2004, 16(2): 214-221.
    [100]陈凌云,姜振东.基于HLA的预警卫星仿真系统中OM的研究[J].装备指挥技术学院学报,2002, 13(1): 46-49.
    [101] High-Level Architecture Run-Time Infrastructure Programmers Guide 1.3 Version 2 [EB/OL]. http://www.dmso.mil 1999.
    [102] IEEE Standard 1516.2 for Modeling and Simulation, High Level Architecture, Object Model Template [S]. DMSO,2000.
    [103]王维平等.离散事件系统建模与仿真[M].国防科技大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700