用户名: 密码: 验证码:
旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋翼非定常气动力建模以及旋翼与直升机其它部件的气动干扰建模一直是影响直升机飞行动力学数学模型置信度的“瓶颈”。围绕这一问题,本文以建立高置信度的直升机飞行动力学模型为目标,对适用于过渡和机动飞行的旋翼非定常自由尾迹模型及其对直升机飞行动力学建模方法和准确性的影响进行了深入的研究。
     发展了适用于机动飞行的旋翼非定常自由尾迹模型。以升力面法和涡方法为理论基础,建立了兼顾效率和准确性的桨叶升力面模型及其尾迹描述方法,包括了一个新的旋翼桨尖涡卷起模型,通过桨叶载荷(环量)分布来计算桨尖涡的初始涡核半径、展向位置和环量,以消除依靠经验来设定这些物理量的现状。针对旋翼非定常自由尾迹模型遇到的数值问题,发展了一种新的数值稳定、高效的时间步进差分算法(CB2D),重点考查了该算法用于自由尾迹控制方程求解的数值稳定性,以保证解的物理正确性。
     建立了基于非定常自由尾迹模型和翼型非定常/动态失速模型的旋翼气动力模型用于研究机动飞行中旋翼的非定常气动特性。为了验证该模型,利用旋臂机上的模型旋翼进行了机动飞行实验研究,分别测量了悬停和低速飞行条件下总距、周期变距以及旋翼轴角速度突增时旋翼载荷的瞬态响应。通过测量数据与计算结果的对比,验证了旋翼气动力模型和非定常自由尾迹模型的有效性。结果表明旋翼尾迹的各种动态畸变对桨盘入流、旋翼载荷的瞬态特性有重要影响;旋翼轴作角运动时,尾迹弯曲畸变引起的桨盘入流梯度与尾迹弯曲曲率并非简单的正比关系。在此基础上,发展了一套新的综合的直升机飞行动力学模型,集成了机体六自由度刚体模型、旋翼模型、旋翼对机身、尾翼的气动干扰模型以及发动机/燃油调节系统模型,其中旋翼模型包括了挥舞-摆振-扭转耦合的非线性弹性桨叶动力学模型、非定常自由尾迹模型和翼型非定常/动态失速模型。给出一种数值方法将旋翼/机体耦合运动方程转换为显式一阶常微分方程的形式,以便于采用标准的算法进行求解和计算效率的提高。
     针对综合的直升机飞行动力学模型分别建立了配平计算方法和动态响应计算方法。在配平计算中,旋翼自由尾迹模型与旋翼/机体动力学模型采用松耦合的方式进行迭代求解;在动态响应计算中,建立了自由尾迹CB2D时间步进算法与旋翼/机体动力学方程求解算法之间的协调机制,两者以强耦合的方式沿时间推进。为验证综合模型的有效性,以UH-60A直升机为例,进行了定常平飞配平计算以及右压杆、急拉杆机动飞行的动态响应计算。计算结果与飞行实测数据的对比表明,旋翼自由尾迹模型和气动干扰效应对直升机飞行动力学模型的置信度有重要影响,而桨叶的弹性变形效应对铰接式旋翼直升机的模型置信度影响较小;与动态入流模型相比,非定常自由尾迹模型显著提高了悬停和低速飞行状态配平结果的准确性,更准确的预测了直升机的动态响应,尤其是异轴响应。
The modeling of rotor unsteady aerodynamics and rotor/fuselage/empennage aerodynamic interaction have been the bottleneck in the high-fidelity mathematical modeling of helicopter flight dynamics. To solve this problem, an unsteady free-vortex wake model for transient or maneuvering flight and its impact on the methodology and accuracy of the modeling of helicopter flight dynamics are investigated in detail in this dissertation.
     Firstly, an unsteady free-vortex wake model for maneuvering flight is developed. Based on the lifting-surface and vortex methods, the blade aerodynamic model and the method of representating the vortex wake trailed behind the blade are presented with the trade-off between accuracy and efficiency. A new vortex roll-up model which relates the core radius, span station and circulation of the initial tip vortex with the blade bound circulation distribution is deduced for eliminating the empirical parameters in conventional rotor free-vortex models. To solve the numerical problem of unsteady free-vortex wake model, a new time-marching finite-difference algorithm(BC2D) with high efficiency is developed and its numerical stability is examined in detail for physically correct. Then, an unsteady aerodynamic model of rotors based on the unsteady free-vortex wake model and airfoil unsteady aerodynamics with dynamic stall is established to analysis the rotor transient aerodynamics in maneuver flight. To verify the model,a series of tests with model rotor on the Whirling Beam are conducted for the acquisition of the transient responses of rotor loads following the abrupt increases of collective pitch, cyclic pitch and angular rate in both hover and low-speed forward flight. The comparisons of calculated results with test data indicate that the rotor unsteady aerodynamic model developed is effective and there are significant effects of wake dynamic distortion on transient characteristics of rotor inflow and rotor loads. The inflow gradient across the rotor disk induced by the wake curving distortion is not simply proportional to the wake curvature.
     Furthermore, a new comprehensive model of helicopter flight dynamics is built up, which synthesizes the rigid fuselage motion with 6 degrees of freedom, the rotor unsteady aerodynamics including the flexible blade dynamics with nonlinear flap-lag-torsion coupling, unsteady free-vortex wake and unsteady airfoil aerodynamics with dynamic stall, the effect of rotor/fuselage/empennage aerodynamic interaction as well as the propulsion system dynamics. A numerical method is presented to transform the equations of motion of coupled rotor/ fuselage into first order differential equations with explicit form which can be sovled using standard numerical algorithm with high efficiency.
     Finally, numerical methods of helicopter trim and dynamic response are developed for the comprehensive model of helicopter flight dynamics. The free-vortex wake dynamics and the coupled rotor/ fuselage dynamics are treated with loose coupling for trim analysis but with tight coupling for response calculation. To validate the comprehensive model, the UH-60A helicopter is taken as an example to predict the trim characteristics and dynamic responses in maneuvering flight. The comparisons of calculated results with flight test data indicated that there is great effect of the free-vortex wake dyanmics and aerodynamic interaction on the fidelity of comprehensive model while the effect of the flexible blade dynamics is small for the helicopter with articulated rotor. Compared with the dynamic inflow model, the unsteady free-wake model improves the accuracy of trim results in hover and low-speed forward flight conditions as well as the dynamic responses in maneuvering flight, especially off-axis responses.
引文
[1]高正,陈仁良.直升机飞行动力学.北京:科学出版社, 2003.
    [2]国防科工委<7210>办公室直升机专业组.美国军用直升机规范简介—─飞行性能、驾驶品质、振动和结构设计.北京:航空工业出版社,1993.
    [3] Baskett B J, ADS33E-PRF Aeronautical design, performance specification, handing qualities requirements for military rotorcraft. Redstone Arsenal, alabarma:AMCOM, 2000.
    [4] Tischler M B. Assessment of digital flight-control technology for advanced combat rotorcraft. Journal of the American Helicopter society, 1989, 34(4): 66-76.
    [5] Leishman J G, Bagai A. Challenges in understanding the vortex dynamics of helicopter rotor wakes. AIAA Journal, 1998, 36 (7): 1130-1140.
    [6] Padfield G D. Helicopter flight dynamics: the theory and application of flying qualities and simulation modeling. London: Blackwell Science Ltd, 1996.
    [7] Crocco G A. Inherent stability of helicopters. NACA-TM-234, 1923.
    [8] Hohenemser K. Dynamic stability of a helicopter with hinged rotor blades. NACA-TM-907, 1938.
    [9] Ellis C W. Effects of articulated rotor dynamics on helicopter automatic control system requirements. Aeronautical Engineering Rewiew, 1953, 12(7): 30-38.
    [10] Hall W E, Bryson A E. Inclusion of rotor dynamics in controller design for helicopters. Journal of aircraft, 1973, 10(4): 200-206 .
    [11] Tischler M B. System identification requirements for high-bandwidth rotorcraft flight control system design. Journal of guidance, control, dynamics, 1990, 13(5): 835-841 .
    [12] Curtiss H C. Stability and control modeling. Vertica, 1988, 12(4): 381-394.
    [13] Howlett J J. UH-60 Black Hawk engineering simulation program: volume I– mathematical model. NASA CR-166309, 1981.
    [14] Talbot P D, Tinling B E, Decker W A, Chen R T N. A mathematical model of a single main rotor helicopter for pioted simulation. NASA-TM-64281, 1982.
    [15] Miller D G, White F. A treatment of the impact of rotor-fuselage coupling on helicopter handling qualities. Proceedings of the 43rd Annual Forum of the American Helicopter Society, St.Louis, Missouri, 1987: 631-644.
    [16] Zhao X, Curtiss H C. A linearized model of helicopter dynamics including correlation withflight test. Proceedings of the Second International Conference on Rotorcraft Basic Research, College Park, Maryland, 1988.
    [17] Takahashi M D. A flight dynamic helicopter mathematical model with a single flap-lag-torsion main rotor. NASA-TM-102267, 1990.
    [18] Ballin M G. Validation of a real-time engineering simulation of the UH-60A helicopter. NASA-TM-88360, 1987.
    [19] Von Grünhagen W. Dynamic inflow modeling for helicopter rotors and its influence on the prediction of Cross-coupling . Proceedings of the American Helicopter Society Aeromechanics Specialist Conference, Fairfield County, CT, 1995.
    [20] Chaimovitch M, Rosen A, Rand O, Mansur M H, Tischler M B. Investigation of the flight mechanics simulation of a hovering helicopter. Proceedings of the 48th Annual Forum of the American Helicopter Society, Washington DC, 1992: 1237-1256.
    [21] DuVal R. A real-time blade element helicopter simulation for handling qualities analysis. Proceedings of the 15th European Rotorcraft Forum, Amsterdam, Holland, 1989: No 59.
    [22] He C, Lewis W D. A parametric study of real time mathematical modeling incorporating dynamic wake and elastic blades. Proceedings of the 48th Annual Forum of the American Helicopter Society, Washington DC, 1992: 1181-1196.
    [23] He C J, DuVal R. An unsteady airload model with dynamic stall for rotorcraft simulation. Proceedings of the 50th Annual Forum of the American Helicopter Society. Washington, DC, 1994: 931-948.
    [24] Pitt D M, Peters D A. Theoretical prediction of dynamic inflow derivatives. Vertica, 1981, 5(1): 21-34.
    [25] He C J. Development and application of a generalized dynamic wake theory for lifting rotors[D]. Atlanta, Georgia: Georgia Institute of Technology, 1989.
    [26] Peters D A, Boyd D D, He C J. Finite-state induced-flow model for rotors in hover and forward flight. Journal of the American Helicopter society, 1989, 34(4): 5-17.
    [27] Kim F D, Celi R, Tischler M B. Forward flight trim calculation and frequency response validation of a high-order helicopter simulation model. Journal of Aircraft, 1993, 30 (6): 854-863.
    [28] Kim F D, Celi R, Tischler M B. High-order state space simulation models of helicopter flight mechanics. Journal of the American Helicopter society, 1993, 38 (4): 16-27.
    [29] Turnour S R, Celi R. Modeling of flexible rotor blades for helicopter flight dynamicsapplications. Journal of the American Helicopter Society, 1996, 41(1): 52-66.
    [30] Turnour S R, Celi R. Effects of unsteady aerodynamics on the flight dynamics of an articulated rotor helicopter. Journal of aircraft, 1997, 34(2): 187-196.
    [31] Peters D A, Izadpanah A P. Helicopter trim by periodic shooting with Newton-Raphson iteration. Proceedings of the 37th Annual Forum of the American Helicopter Society, New Orleans, LA, 1981: 217-226.
    [32]杨超,洪冠新,宋寿峰.直升机飞行动力学放射非线性系统建模.北京航空航天大学学报,1997, 23(4): 471-476.
    [33]陈仁良.直升机飞行动力学数学建模及机动性研究,[博士学位论文].南京:南京航空航天大学航空宇航学院,1998.
    [34]孙传伟.直升机飞行动力学模型与飞行品质评估,[博士学位论文].南京:南京航空航天大学航空宇航学院,2001.
    [35]李建波,高正.直升机机动飞行仿真的气动建模及试验研究.航空学报,2003,24(2):116-118.
    [36] Ballin M G, Dalang-Secretan M A. Validation of the dynamic response of a blade-element UH-60 simulation model in hovering flight. Journal of the American Helicopter Society, 1991, 36(4): 77-88.
    [37] Mansur M H, Tischler M B. An empirical correction for improving off-axes responses in flight mechanics helicopter modes. Journal of the American Helicopter Society, 1998, 43(2): 94-102.
    [38] Simons I A, Modha A N. Gyroscopic feathering moments and the“Bell Stabilizer Bar”on helicopter rotors. Proceedings of the 28th European Rotorcraft Forum, Bristol, England, 2002: 90.1-90.8.
    [39] Rosen A, Isser A. A model of the unsteady aerodynamics of a hovering helicopter rotor that includes variations of the wake geometry. Journal of the American Helicopter Society, 1995, 40(3): 6-16.
    [40] Rosen A, Isser A. Anew model of rotor dynamics during pith and roll of a hovering helicopter. Journal of the American Helicopter Society, 1995, 40(3): 17-28.
    [41] Keller J D. An investigation of helicopter dynamic coupling using an analytical model. Journal of the American Helicopter Society, 1996, 41(4): 322-330.
    [42] Keller J D and Curtiss H C. A critical examination of the methods to improve the off-axis response prediction of helicopters. Proceedings of the 54th Annual Forum of the American Helicopter Society, Washington DC, 1998: 1134-1147.
    [43] Theodore C R. Helicopter flight dynamics simulation with refined aerodynamic modeling[D].College Park, Maryland: University of Maryland, 2000.
    [44] Spoldi S, Ruckel P. High fidelity helicopter simulation using free wake, lifting line tail, and blade element tail rotor models. Proceedings of the 59th Annual Forum of the American Helicopter Society, Phoenix, Arizona, 2003.
    [45] Ribera M. Helicopter flight dynamics simulation with with a time-accurate free-vortex wake model[D]. College Park, Maryland: University of Maryland, 2007.
    [46] Bagai A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis[D]. College Park, Maryland: University of Maryland, 1995.
    [47] Bhagwat, M J. Mathematical modelling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex methods[D]. College Park, Maryland: University of Maryland, 2001.
    [48] Horn J F, Bridges D O, Wachspress D A, Rani S L. Implementation of a free-vortex wake model in real time simulation of rotorcraft. Proceedings of the 61st Annual Forum of the American Helicopter Society, Grapevine, TX, 2005.
    [49] Wachspress D A, Quackenbush T R, Boschitsch A H. First-principles free-vortex wake analysis for helicopters and tiltrotors. Proceedings of the 59th Annual Forum of the American Helicopter Society, Phoenix, AZ, 2003.
    [50] Leishman J G, Beddoes T S. A generalized method for unsteady airfoil behavior and dynamic stall using the indicial method. Proceedings of the 42nd Annual Forumof the American Helicopter Society,Washington DC, 1986.
    [51] Tran C T, Pitot D. Semi-empirical model for the dynamic stall of airfoil of airfoils in view of the application to the calculation of the reponses of a helicopter blade in forward flight. Vertica, 1981, 5(1): 35-53.
    [52] Truong V K. A 2-D dynamic stall model based on a hopf bifurcation. Proceedings of the 19th European Rotorcraft Forum, Cernobbio, Italy, 1993.
    [53] Johnson W. Helicopter theory. Princeton University Press, 1980.
    [54]王浩文.直升机旋翼系统非定常载荷计算.博士后研究工作报告,南京航空航天大学,2000.
    [55] Chen R T N. A survery of nonuniform inflow models for rotorcraft flight dynamics and control applications. Vertica, 1990, 14(2): 147-184.
    [56] Leishman J G. Principles of helicopter aerodynamics. 2nd Edition. New York: Cambridge University Press, 2006.
    [57] Coleman R P, Feingold A M, Stempin C W. Evaluation of the induced-velocity field of anidealized helicopter rotor. NACA-ARR-L5E10, 1945.
    [58] Carpenter P J, Friedovich B. Effect of a rapid blade-pitch increase on the thrust and induced-velocity response of a full-scale helicopter rotor. NACA-TN-3044, 1953.
    [59] Stepniewski W Z. Rotary-wing awrodynamics, Volume I: Basic theories of rotor aerodynamics (with application to helicopters). NASA-CR-3082, 1979: 241-243.
    [60] Peters D A, HaQuang N. Dynamic inflow for practical applications. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
    [61] Su A, Yoo K M, Peters D A. Extension and Validation of an unsteady wake model for rotors. Journal of aircraft, 1992, 29(3): 347-383.
    [62] Kothmann B D, Keller J D, Curtiss. On aerodynamic modeling for rotorcraft flight dynamics. Proceedings of the 22nd European Rotorcraft Forum, Brighton, UK, 1996.
    [63] Barocela E B, Peters D A, Krothapalli K R, Prasad J V R. The effect of wake distortion on rotor inflow gradients and off-axis coupling. AIAA-97-3579, 1997.
    [64] Krothapalli K R, Prasad J V, Peters D A. Helicopter rotor dynamic inflow modeling for maneuvering flight. Proceedings of the 55th Annual Forum of the American Helicopter Society. Montreal, Canada, 1999: 498-509.
    [65] Zhao J, Prasad J V, Peters D A. Investigation of wake curvature dynamics for helicopter maneuvering flight simulation. Proceedings of the 59th Annual Forum of the American Helicopter Society, Phoenix, Arizona, 2003.
    [66] Zhao Jinggen. Dynamic wake distortion model for helicopter maneuvering flight[D]. Atlanta, Georgia: Georgia Institute of Technology, 2005.
    [67] Basset P M. Modeling of the dynamic inflow on the main rotor and the tail components in helicopter flight mechanics. Proceedings of the 22nd European Rotorcraft Forum, Brighton, UK, 1996.
    [68] Basset P M, Tchen-Fo F. Study of the rotor wake distortion effects on the helicopter pitch-roll cross-coupling. Proceedings of the 24th European Rotorcraft Forum, Marseilles, France, 1998.
    [69]曹义华.直升机机动飞行旋翼的气动力模拟.航空学报,1999,20(1): 39-42.
    [70]徐进.直升机大机动飞行中旋翼非定常空气动力研究,[博士学位论文].南京:南京航空航天大学航空宇航学院,2007.
    [71]徐进,孙传伟,高正.适用于直升机俯仰与滚转机动分析的广义动态尾迹模型.南京航空航天大学学报,2005, 37(2): 135-139.
    [72] Bagai A, Leishman J G, Park J S. Aerodynamic analysis of a helicopter in steady maneuveringflight using a free-vortex rotor wake model. Journal of the American Helicopter Society, 1999, 44(2):109-120.
    [73]王适存.直升机空气动力学.北京:航空专业教材编审组,1985.
    [74] Landgrebe A J. The wake geometry of a hovering helicopter rotor and its influence on rotor performance. Journal of the American Helicopter Society, 1972, 17(4): 3-15.
    [75] Kocurek J D, Tangler J L. A prescribed wake lifting surface hover performance analysis. Journal of the American Helicopter Society, 1977, 22(1): 24-35.
    [76] Beddoes T S. A wake model for high resolution airloads. Proceedings of the 2nd International Conference on Basic Rotorcraft Research, Triangle Park, NC, 1985.
    [77] Bhagwat M J, Leishman J G. Stability analysis of helicopter rotor wakes in axial flight. Journal of the American Helicopter Society, 2000, 45(3): 165-178.
    [78] Quackenbush T R, Bliss D B, Wshspress D A, Ong C C. Free wake analysis of hover performance using a new influence coefficient method. NASA-CR-4309, 1990.
    [79] Crimi P. Theoretical prediction of the flow in the wake of a helicopter rotor. Cornell Aeronautical Laboratory Report BB-1994-5-1, 1965.
    [80] Scully M P. A method of computing helicopter vortex wake distortion. Massachusetts Institute of technology Report NO.ASRL TR 138-1, 1967.
    [81] Landgrebe A J. An analytical method for predicting rotor wake geometry. Journal of the American Helicopter Society, 1969, 14(4): 20-32.
    [82] Clark D R, Leiper A C. The free wake analysis: a method for prediction of helicopter rotor hovering performance. Proceedings of the 25th Annual Forum of the American Helicopter Society, Washington, DC, 1969.
    [83] Clark D R, Leiper A C. The free wake analysis-a method for prediction of helicopter rotor hovering performance. Journal of the American Helicopter Society, 1970, 15(1) : 3-11.
    [84] Sadler S G. A method for predicting helicopter wake geometry, wake-induced inflow and wake effects on blade airloads. The 27th Annual National V/STOL Forum of the American Helicopter Society, Washington, DC, 1971. Print No 523.
    [85] Sadler S G. Mian rotor free wake geometry effects on blade air loads and response for helicopter in steady maneuvers, Vol.1-Theoretical formulation and analysis of results. NASA-CR-2110, 1972.
    [86] Scully M P. Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. Massachusetts Institute of technology Report NO.ASRL TR 178-1, 1975.
    [87] Johnson W. A comprehensive analytical model of rotorcraft aerodynamics and dynamics, Part I: Analytical development. NASA-TM-81182, 1980.
    [88] Johnson W. Wake model for helicopter rotors in haigh speed flight. NASA-CR-1177507, 1988.
    [89] Johnson W. A general free wake geometry calculation for wings and rotors. Proceedings of the 51st Annual Forum of the American Helicopter Society, Fort Worth, TX, 1995.
    [90] Bir G S, Chopra I. University of maryland advanced rotorcraft code (UMARC) theory manual. UM-AERO Report 94-18, 1990.
    [91] Rukowaki M J, Ruzicka G C, Ormiston R A, et al. Comprehensive aeromechamics analysis of complex rotorcraft using 2GCHAS. AHS Aeromechanics Specialists Conference, San Francisco, California, 1994.
    [92] Miller R H. A simplified approach to the free wake analysis of a hovering rotor. Vertica, 1982, 6: 89-95.
    [93] Bliss D B, Quackenbush T R, Bilanin A J. A new methodology for helicopter free-wake analysis. Proceedings of the 39th Annual Forum of the American Helicopter Society, St.Louis, MO, 1983.
    [94] Bliss D B,Washspress D A, Quackenbush T R. A new approach to the free wake problem for hovering rotors. Proceedings of the 41st Annual Forum of the American Helicopter Society, Fort Worth, TX, 1985.
    [95] Miller W O, Bliss D B. Direct periodic solutions of rotor free wake calculations by inversion of a linear periodic system. Proceedings of the 46th Annual Forum of the American Helicopter Society, Washington DC, 1990: 757-769.
    [96] Miller W O, Bliss D B. Direct periodic solutions of rotor free wake calculations. Journal of the American Helicopter Society, 1993, 38(2): 53-60.
    [97] Crouse Jr G L, Leishman J G. A new method for improved rotor freewake convergence. AIAA-93072, 1993.
    [98] Bagai A, Leishman J G. Rotor free-wake modeling using a relaxation technique-including comparisons with experimental data. Journal of the American Helicopter Society, 1995, 40(3): 29-41.
    [99] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudoimplicit relaxation algorithm. Journal of aircraft, 1995, 32(6): 1276-1285.
    [100] Bagai A, Leishman J G. Rotor free-wake analysis of tandem, tilt-rotor and coaxial rotor configurations. Journal of the American Helicopter Society, 1996, 41(3): 196-207.
    [101] Baron A, Boffadosi M. Unsteady free wake analysis of closely interfering helicopter rotors. Proceedings of the 19th European Rotorcraft Forum, Cernobbio, Italy, 1993.
    [102] Lee D J, Na S U. Predictions of airloads and wake geometry for slowly starting rotor blades in hovering flight bu using time marching free vortex blob method. Proceedings of the 52nd Annual Forum of the American Helicopter Society, Washington, DC, 1996.
    [103] Jain R, Conlisk A T. Interaction of tip-vortices in the wake of a two bladed rotor in axial flight. Journal of the American Helicopter Society, 2000, 45(3): 157-164.
    [104] Bliss D B, Teske M E, Quachenbush T R. Anew methodology for free wake analysis using curved vortex elements. NASA-CR-3958, 1990.
    [105] Bliss D B, Dadone L, Washspress D A. Rotor wake modeling for high speed applications. Proceedings of the 43rd Annual Forum of the American Helicopter Society, St. Lousis, MO, 1987.
    [106] Egolf T A. Helicopter free wake prediction of complex wake structures under blade-vortex interaction operating conditions. Proceedings of the 44th Annual Forum of the American Helicopter Society, Washington, DC, 1988.
    [107] Soliman M M. A“force-free”rotor wake model for advanced research applications. Proceedings of the 22nd European Rotorcraft Forum,Brighton, UK, 1996.
    [108] Bhagwat M J, Leishman J G. Stablity, consistency and convergence of time-marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001, 46(1): 59-71.
    [109] Bhagwat M J, Leishman J G. Transient rotor inflow using a time-accurate free-vortex wake model. AIAA-CP 2001-0993, 2001.
    [110] Bhagwat M J, Leishman J G. Rotor aerodynamics during maneuvering flight using a time-accurate free-vortex wake. Proceedings of the 57th Annual Forum of the American Helicopter Society, Washington, DC, 2001.
    [111] Leishman J G, Bhagwat M J, Ananthan S. Free-wortex wake predictions of the vortex ring state for single-rotor and multi-rotor configurations. Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International, Montreal, Canada, 2002.
    [112] Ananthan S, Leishman J G. Predictions of transient rotor wake aerodynamics in response to time-dependent blade pitch inputs. Proceedings of the 59th Annual Forum and Technology Display of the American Helicopter Society International, Phoenix, AZ, 2003.
    [113] Kini S, Conlisk A T. Nature of locally steady rotor wakes. Journal of Aircraft, 2002, 39(5):750-758.
    [114] Gupta S, Leishman J G. Accuracy of the induced velocity of wind turbine wakes using vortex segmentation. The 42nd AIAA Aerospace Sciences Meeting, Reno, NV, 2004.
    [115] Bagai A, Leishman J G. Adaptive grid sequencing and interpolation schemes for helicopter rotor wake analyses. AIAA Journal, 1998, 36(9): 1593-1602.
    [116] Chua K, Quackenbush T R. A fast three-dimensional vortex method for unsteady wake calculations. AIAA-92-2624-CP, 1992.
    [117]楼武疆.旋翼尾迹描述新法及计算,[博士学位论文].南京:南京航空学院,1990.
    [118] Xu G H, Wang S C. An improved model of curved vortex element for rotor wake analysis. Transactions of Nanjin g Unisersity of Aeronautics & Astrpnautics, 1995, 12(2): 149-154.
    [119]徐国华,王适存.前飞状态直升机旋翼的自由尾迹计算.南京航空航天大学学报,1997,29(6): 648-653.
    [120]徐国华,王适存.悬停旋翼的自由尾迹计算.南京航空航天大学学报,1998, 30(2): 126-131.
    [121]徐国华.应用自由尾迹分析的新型桨尖旋翼气动特性研究,[博士学位论文].南京:南京航空航天大学航空宇航学院,1996.
    [122]赵景根,徐国华,王适存.前飞状态直升机/机身非定常气动干扰的分析.流体力学实验与测量,2000,14(3): 18-24.
    [123]赵景根,高正,徐国华.直升机旋翼/机身气动干扰的计算方法.南京航空航天大学学报, 2000, 32(4): 369-374.
    [124] Xu G H, Zhao Q J, Gao Z, Zhao J G. Prediction of aerodynamic interactions of helicopter rotor on its fuselage. Chinese Journal of Aeronautics, 2002, 15(1): 12-17.
    [125]李春华,徐国华.悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法.空气动力学学报,2005, 23(2): 152-156.
    [126]黄水林,李春华,徐国华.基于自由尾迹和升力面法的双旋翼悬停气动干扰计算.空气动力学学报,2007, 25(3): 390-395.
    [127]唐正飞.旋翼/旋翼和旋翼/平尾气动干扰流场的实验和计算,[博士学位论文].南京:南京航空航天大学航空宇航学院, 1998.
    [128]刘祥件,沈锌康,薛正中.直升机旋翼桨叶自由尾迹的计算.航空学报, 1996, 17(2): 213-217.
    [129]尹坚平,胡章伟.旋翼表明非定常压力脉动计算的三维自由尾迹非定常面元法.空气动力学学报,1997,15(2): 185-191.
    [130]曾洪江,胡继忠.一种新的自由涡尾迹计算方法.航空学报,2004, 25(6): 546-550.
    [131]李春华.时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析,[博士学位论文].南京:南京航空航天大学航空宇航学院, 2007.
    [132] Cottet G., Koumoutsakos P D. Vortex mehtods: theory and practice. Cambridge: Cambridge University Press, 2000: 91-113, 124-130.
    [133] Katz J, Plotkin A. Low-speed aerodynamics. 2nd Edition. Cambridge: Cambridge University Press, 2001.
    [134] Ananthan S, Leishman J G. The role of filament stretching in the free-vortex modeling of rotor wakes. Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International, Montreal, Canada, 2002.
    [135] Weissinger J. The lift distribution of swept-back wings. NASA-TM-120, 1947.
    [136] Betz A. Behavior of vortex systems. NACA TM 713, 1932.
    [137] Vatistas G H, Kozel V, Mih W C. A simpler model for concentrated vortices. Experiments in Fluids, 1991, 11(1): 73-76.
    [138] Donaldson C duP, Snedeker R S, Sullivan R D. Calculation of aircraft wake velocity profiles and comparison with experimental measurements. Journal of Aircraft, 1974, 11 (9): 547-555.
    [139] Bilanin A J, Donaldson C duP. Estimation of velocities and rull-up in aircraft vortex wakes. Journal of Aircraft, 1975, 12 (7): 578-585.
    [140] Rule J A, Bliss D B. Prediction of viscous trailing vortex structure from basic loading parameters. AIAA Journal, 1998, 36 (2): 208-218.
    [141] Squire H B. The growth of a vortex in turbulent flow. Aeronautical Quarterly, 1965, 16: 302-306.
    [142] Bhagwat M J, Leishman J G. Generalized viscous vortex core models for application to free-vortex wake and aeroacoustic calculations. Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International, Montreal, Canada, 2002: 2042-2057.
    [143]李攀,陈仁良.旋翼桨尖涡模型及其参数确定方法研究.空气动力学学报,2009,27(3): 296-302.
    [144]王海,徐国华.基于特征值方法的旋翼尾迹稳定性分析.计算物理, 2007, 24(6): 705-710.
    [145] Warming R F, Hyett B J. The modified equation approach to the stability and accuracy analysis of finite-difference methods. Journal of Computational Physics, 1974, 14: 159-179.
    [146] Martin P B. Measurements of the trailing vortex formation, structure, and evolution in the wake of a hovering rotor[D]. College Park, Maryland: University of Maryland, 2001.
    [147] McAlister K W, Tung C, Heineck J T. Devices that alter the tip vortex of a rotor, NASATM-2001-209625, 2001.
    [148] Ghee T A, Elliot J W. The wake of a small-scale rotor model in forward flight using flow visualization. Journal of the American Helicopter Society, 1995, 40(3): 52-65.
    [149] Elliot J W, Althoff S L, Sailey R H. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight-Volume I: rectangular planformblades at anadvance ratio of 0.15, NASA TM 100541, 1988.
    [150] Elliot J W, Althoff S L, Sailey R H. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight-Volume II: rectangular planform blades at an advance ratio of 0.23, NASA TM 100542, 1988.
    [151] Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society, 1989, 34(3): 3-17.
    [152] Chen R T N. Effects of primary rotor parameters on flapping dynamics. NASA-TP-1431, 1980.
    [153] Rosen A, Friedmann P P. Nonlinear equations of equilibrium for elastic helicopter or wind turbine blades undergoing moderate deflections. NASA CR-159478, 1978.
    [154] Celi R. Helicopter rotor blade aeroelasticity in forward flight with an implicit structural formulation. AIAA Journal , 1992; 30(9): 2275-2282.
    [155] Wempner G. Mechanics of solids with application to thin bodies. McBraw-Hill, Inc., 1973.
    [156] Fredmann P P, Straub F K. Application of the finite element method to rotary-wing aeroelasticity. Journal of the American Helicopter Society, 1980, 25(1): 36-44.
    [157] Ballin M G. A high fidelity real-time simulation of a small turboshaft engine. NASA TM-100991, 1988.
    [158] Kim F D, Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60. AIAA-92-4150-C, 1992.
    [159] Celi R. Solution of rotary-wing aeromechanical problems using differential-algebraic equation solvers. Journal of the American Helicopter Society, 2000, 45(4): 253-262.
    [160] Celi R. Effects of hingeless rotor aeroelasticity on helicopter longitudinal flight dynamics. Journal of the American Helicopter Society, 1991, 36(2): 35-44.
    [161] Chen R T N, Jeske J A. Kinematic properties of the helicopter in coordinated turns. NASA-TP-1773, 1981.
    [162] More J J, Garbow B S, Hillstrom K E. User’s guide for MINPACK-1. Argonne National Laboratory, Report ANL-80-74, 1980.
    [163] Powell M J D. A hybrid method for nonlinear equations. Numerical methods for nonlinearalgebraic equations. Gordon and Breach, 1970.
    [164] Davis S J. Predesign study for a modern 4-bladed rotor for the RSRA. NASA-CR-166155, 1981.
    [165] Kufeld R M, Johnson W. The effects of control system stiffness models on the dynamic stall behavior of a helicopter. Proceedings of the 54th Annual Forum of the American Helicopter Society, Washington DC, 1998.
    [166] Sitaraman J. CFD based unsteady aerodynamic modeling for rotor aeroelastic analysis[D]. College Park, Maryland: University of Maryland, 2003.
    [167] Datta A, Chopra I. Prediction of UH-60A dynamic stall loads in high altitude level flight using CFD/CSD coupling. Proceedings of the 61st Annual Forum of the American Helicopter Society, Grapevine, Texas, 2005.
    [168]戴嘉尊,邱建贤.微分方程数值解法.南京:东南大学出版社,2002.
    [169] Shampine L F, Gordon M K. Computer solution of ordinary differential equations: the initial value problem. San Francisco: W.H. Freeman and Co., 1976.
    [170] Bhagwat M J, Ormiston R A, Saberi H A, Xin H. Application of CFD/CSD coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight. Proceedings of the 63rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, 2007.
    [171] McHugh F J. What are the lift and propulsive force limits at high speed for the conventional rotor?. Proceedings of the 34th Annual Forum of the American Helicopter Society. Washington, D.C., 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700