用户名: 密码: 验证码:
计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性旋翼流场的数值模拟是直升机空气动力学领域具有挑战性的研究课题。本文开展了适用于弹性旋翼的动态网格变形方法和嵌套网格系统、桨叶结构有限元分析建模以及旋翼流场模拟等研究,发展了与该网格系统对应的基于RANS方程的旋翼流场数值求解方法和程序,并针对直升机弹性旋翼流场进行了数值计算与分析,同时,开展了新型桨尖弹性旋翼流场的数值模拟。主要工作包括以下方面:
     作为背景和前提,本文概述了旋翼计算流体力学(CFD)、桨叶结构分析、弹性桨叶旋翼流场模拟以及新型桨尖旋翼流场模拟等研究方面的国内外现状,指出了现有研究中存在的不足,以及开展弹性旋翼、新型桨尖弹性旋翼的流场数值模拟的重要意义,提出了本文拟采用的研究方法和内容。
     为了更好地模拟桨叶的弹性运动,基于改进的弹簧模拟方法,建立了一个针对桨叶贴体网格的动态变形方法,该方法适合于弹性旋翼流场的CFD求解。针对旋翼瞬态流场、桨尖涡运动的特点,本文生成了由用于模拟桨叶近场气动力环境的贴体网格和用于捕捉桨尖涡运动信息的流场背景网格组成的动态嵌套网格系统。给出了一种搜索网格信息的高效方法,以减小在时变的旋翼流场模拟中嵌套信息搜索的成本。基于中等变形梁理论和哈密尔顿原理,建立了一个旋翼动力学的有限元分析模型。该模型中,推导了桨叶运动的偏微分控制方程,并采用改进的Newmark-beta方法对桨叶运动方程进行求解。此外,还在该桨叶结构分析模型中耦合了旋翼系统的配平计算,以得到更切合实际的桨叶结构响应。
     在嵌套网格的基础上,应用RANS方程,本文又发展了旋翼流场的CFD分析方法和计算模型。该方法将高阶逆风格式和通量差分裂格式相结合对旋翼流场进行空间离散,采用基于Krylov子空间迭代的无矩阵形式LU-SGS隐式方法进行时间积分,以有效提高旋翼CFD模拟的计算效率。结合所建立的弹性桨叶结构分析模型,在Partitioned方法的基础上,本文还给出了弹性旋翼流场耦合的求解策略。在此基础上,进一步建立了弹性旋翼流场的数值模拟方法。然后,以不同旋翼为算例,进行了刚性和弹性旋翼流场的数值模拟方法的验证计算。
     为了适合于新型桨尖的研究,本文在所建立的弹性旋翼流场分析模型的基础上,又进一步拓展建立了适合于形状线性变化的新型桨尖弹性旋翼流场模拟的方法。应用该方法,着重针对悬停状态下后掠、尖削、下反及其组合形状的新型桨尖弹性旋翼进行了流场数值计算,研究了弹性对新型桨尖旋翼流场的影响,同时探究了桨尖外形参数对桨叶表面气动载荷的影响规律。
Elastic rotor flowfield numerical simulation is a challenging subject in the field of Helicopter Aerodynamics. The dynamic grid deforming approach and overset grid system for elastic rotors, the blade structural finite-element analyzing modeling, and the rotor flowfield simulation are investigated in this thesis. A solving method and the corresponding code for rotor flowfield are developed based on the RANS equations and the grid system, and based on the method, the elastic rotor flowfield of helicopters is computed and analyzed. Meanwhile, the elastic rotor flowfield with new blade tips is also simulated. The major contributions of the author’s research work are as follows:
     As the background of present work, the research and development in the field of the rotor Computational Fluid Dynamics, blade structural analysis, flowfield simulation for elastic-blade rotors as well as flowfield simulation for new blade-tip rotors are briefly reviewed. The difficulties in the current research are pointed out, and the significance of modeling elastic rotor flowfield, including new blade-tip rotor flowfield is then described. In addition, the methodology used in the present research is briefly introduced.
     In order to model blade elastic movement, on the basis of modified spring simulation approach, the thesis establishes a method of blade body-fitted grid dynamic deformation wich is suitable for the flowfield solution of elastic rotor. According to the characteristics of rotor transient flowfield and the blade-tip vortex movement, a dynamic overset grid system, which is composed of a body-fitted grid used for simulating the blade aerodynamic circumstance in the near field and a background grid for capturing the movement of tip vortice, is constructed. Also, an efficient method for grid information search is given to reduce the searching cost. Based on the Hamilton’s principle and the beam theory of small strain and moderate deformation, a finite-element analysis model for rotor blade dynamics is established. In this model, the partial differential gorverning equation on blade movement is derived, and the equation is discretized and then solved by applying the improved implicit Newmark-beta method. Furthermore, a trim algorithm for the rotor system is coupled into the blade structural analysis for impoving the solution of blade structural response.
     Based on the overset grid, a CFD analyzing method for rotor flowfield is developed with the application of RANS equations. In this method, the high-order upwind scheme is combined with the flux-difference splitting scheme to discretize the rotor flowfield spatially. Then, the equation is integrated in the time domain with the matrix-free LU-SGS implicit scheme of Krylov subspace iteration, so as to improve the computational efficiency of rotor CFD simulation. With the help of‘Partitioned’method, the coupled solving strategy for the elastic rotor flowfield is also provided, by combining the elastic blade structural analysis. On this basis, the elastic rotor flowfield simulation is further carried out. Afterwards, the present rigid and elastic rotor flowfield simulation methods are validated by comparing with available reference results for different rotor cases.
     To study new blade-tip rotors, the author expands the above work to simulate flowfield of the elastic rotor with linear-changed blade tips, and a corresponding method is developed. The computations on the elastic rotor flowfield in hover with sweep, tapered, anhedral and combined shapes are performed by the use of the method, and the influence of elasticity on the rotor flowfield with new blade tips is analysed. From the analyses, the conclusions about how the tip shape parameters affect the blade surface airloading are drawn.
引文
[1]王适存,徐国华.直升机旋翼空气动力学的发展.南京航空航天大学学报, 2001, 33(3):203-211.
    [2]徐国华,招启军.直升机旋翼计算流体力学的研究进展.南京航空航天大学学报, 2003, 35(3):338-344.
    [3] Strawn, R. C., Caradonna, F X., and Duque, E. P. N.. 30 Years of Rotorcraft Computational Fluid Dynamics Research and Development. Journal of the American Helicopter Society, 2006, 51(1):5-21.
    [4] Leishman, J. G.. Principles of Helicopter Aerodynamics. 2nd Edition, Cambridge: Cambridge Uniersity Press, 2006.
    [5] Johnson, W.. Helicopter Theory. Princeton: Princeton University Press, 1980.
    [6] Friedmann, P. P., and Hodges, D. H.. Rotary Wing Aeroelasticity-A Historical Perspective. Journal of Aircraft, 2003, 40(6):1019-1046.
    [7] Johnson, W.. Rotorcraft Dynamics Models for a Comprehensive Analysis. Proceedings of the 54th Annual Forum of the American Helicopter Society, Washington, D. C., May 20-22, 1998.
    [8] Bir, G., and Chopra, I.. Status of University of Maryland Advanced Rotorcraft Code (UMARC). American Helicopter Society Aeromechanics Specialists Conference, San Francisco, CA, January 19-21, 1994.
    [9] Bauchau, O.A., and Kang, N. K.. A Multibody Formulation for Helicopter Structural Dynamic Analysis. Journal of the American Helicopter Society, 1993, 38(2):3-14.
    [10] Srinivasan, G. R., and Baeder, J. D.. TURNS: A Free Wake Euler/Navier-Stokes Numerical Method for Helicopter Rotors. AIAA Journal, 1993, 31(5):959-962.
    [11] Hariharan, N., and Sankar, L. N.. A Review of Computational Techniques for Rotor Wake Modelling. AIAA Paper 2000-0114, 2000.
    [12] Bousman, W. G.. Putting the Aero Back into Aeroelasticity. Proceedings of the 8th Workshop on Aeroelasticty of Rotorcraft Systems, University Park, PA, 1999.
    [13]招启军.新型桨尖旋翼流场及噪声的数值模拟研究.博士学位论文,南京航空航天大学, 2005
    [14] Murman, E. M., and Cole, J. D.. Calculation of Plane Steady Transonic Flows. AIAA Journal, 1971, 9(1):114-121.
    [15] Caradonna, F. X., and Isom, M. P.. Subsonic and Transonic Potential Flow over Helicopter Rotor Blades. AIAA Journal, 1972, 10(12):1606-1612.
    [16] Caradonna, F. X., and Isom, M. P.. Numerical Calculation of Unsteady Transonic Potential Flow over Helicopter Rotor Blades. AIAA Journal, 1976, 14(4):482-488.
    [17] Ballhaus, W. F., and Caradonna, F. X.. The Effect of Planform Shape on the Transonic Flow past Rotor Tips. AGARD Proceedings on Aerodynamics of Rotary Wings, February 1973.
    [18] Caradonna, F. X., and Tung, C.. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. NASA TM-81232, 1981.
    [19] Arieli, R., and Tauber, M. E.. Computation of Subsonic and Transonic Flow about Lifting Rotor Blades. AIAA Paper 1979-1667, 1979.
    [20] Steger, J. L., and Caradonna, F. X.. A Conservative Implicit Finite Difference Algorithm for the Unsteady Transonic Full Potential Equation. AIAA Paper 1980-1368, 1980.
    [21] Bridgeman, J. O., Steger, J. L., and Caradonna, F. X.. A Conservative Finite Difference Algorithm for the Unsteady Transonic Potential Equation in Generalized Coordinates. AIAA Paper 1982-1388, 1982.
    [22] Strawn, R. C., and Caradonna, F. X.. Conservative Full-Potential Model for Rotor Flows. AIAA Journal, 1987, 25(2):193-198.
    [23] Bridgeman, J. O., Prichard, D., and Caradonna, F. X.. The Development of a CFD Potential Method for the Analysis of Tilt-Rotors. American Helicopter Society Technical Specialists’Meeting on Rotorcraft Acoustics and Fluid Dynamics, Philadelphia, PA, October 1991.
    [24] Chang, I. C.. Transonic flow analysis for rotors. NASA TP-2375-PT-1, 1984.
    [25] Chang, I. C.. Transonic flow analysis for rotors. NASA TP-2375-PT-2, 1985.
    [26] Egolf, T. A., and Sparks, S. P.. Hovering Rotor Airload Prediction Using a Full-Potential Flow Analysis with Realistic Wake Geometry. Proceedings of the 41st Annual Forum of the American Helicopter Society, Ft. Worth, TX, May 15-17, 1985.
    [27] Egolf, T. A., and Sparks, S. P.. A Full Potential Rotor Analysis with Wake Influence Using an Inner-Outer Domain Technique. Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington, D. C., June 2-5, 1986.
    [28] Roberts, T. W., and Murman E. M.. Solution Method for Hovering Helicopter Rotor Using the Euler Equations. AIAA Paper 1985-0436, 1985.
    [29] Sankar, L. N., Wake, B. E., and Lekoudis, S. G.. Solution of the Unsteady Euler Equations for Fixed and Rotor Wing Configurations. AIAA Paper 1985-0120, 1985.
    [30] Wake, B. E., Sankar, L. N., and Lekoudis, S. G.. Compution of Rotor Blade Flows Using the Euler Equat ions. AIAA Paper 1985-5010, 1985.
    [31] Agarwal, R. K., and Deese, J. E.. Euler Calculations for Flowfield of a Helicopter in Hover. Journal of Aircraft, 1987, 24(4):231-238.
    [32] Chen, C. L., and McCroskey, W. J.. Numerical Simulation of Helicopter Multi-bladed Rotor Flow. AIAA Paper 1988-0046, 1988.
    [33] Boniface, J. C., Mialon, B, and Sides, J.. Numerical Simulation of Unsteady Euler Flow Around Multi-bladed Rotor in Forward Flight Using a Moving Grid Approach. Proceedings of the 51th Annual Forum of the American Helicopter Society, Ft. Worth, TX, May 9-11, 1995.
    [34] Strawn, R. C., and Barth, T. J.. A Finite-Volume Euler Solver for Computing Rotary-Wing Aerodynamics on Unstructured Meshes. Proceedings of the 48th Annual Forum of the American Helicopter Society, Washington, D. C., June 3-5, 1992.
    [35] Rruno, J. C.. Numerical Simulation of Unsteady Euler Flow Around Multibladed Rotor in Forward Flight Using a Moving Grid Approach. Proceedings of the 51th Annual Forum of the American Helicopter Society, Ft. Worth, TX, May 9-11, 1995.
    [36] Sheffer, S. G., Alonso, J. J., Martinelli, L., et al. Time-Accurate Simulation of Helicopter Rotor Flows Including Aeroelastic Effects. AIAA Paper 1997-0399, 1997.
    [37] Rouzaud, O., Raddatz, J., and Boniface, J. C.. Euler Calculations of Multibladed Rotors in Hover by DLR and ONERA Method and Comparison with Helishape Tests. Journal of the American Helicopter Society, 1998, 43(4):296-302.
    [38] Renzoni, P., D'Alascio, A., Kroll, N., et al. EROS-a Common European Euler Code for the Analysis of the Helicopter Rotor Flowfield. Progress in Aeospace Sciences, 2000, 36:437-485.
    [39] Liu, C. H., Thomas, J. L., and Tung, C.. Navier-Stokes Calculations for the Vortex Wake of a Rotor In Hover. AIAA Paper 1983-1676, 1983.
    [40] Srinivasan, G. R., and McCriskey, W. J.. Navier-Stokes Calculation of Hovering Rotor Flowfield. Journal of Aircraft, 1988, 25(10):871-872.
    [41] Wake, B. E., and Sankar, L. N.. Solutions of the Navier-Stokes Equations for the Flow about a Rotor Blade. Journal of the American Helicopter Society, 1989, 34(2):13-23.
    [42] Mello, O. A. F.. An Improve Hybrid Naiver-Stokes/Full Potential Method for Computation of Unsteady Compressible Flows. Ph.D. Dissertation, Georgia Institute of Technology, 1994.
    [43] Berezin, C. R., and Sankar, L. N.. An Improved Navier-Stokes/Full Potential Coupled Analysis for Rotors. Mathematical Computational Modeling, 1994, 19(3-4):125-133.
    [44] Moulton, M., Hafez, M., and Caradonna, F.. Zonal Procedure for Predicting the Hovering Performance of a Helicopter. ASME Journal, 1984, 184.
    [45] Bangalore, A. K., Moulton, M. A., and Caradonna, F. X.. The Development of an Overset/Hybrid Method for Rotorcraft Applications. American Helicopter Society Technical Specialists’Meeting for Rotorcraft Acoustics and Aerodynamics, Williamsburg, VA, October 28-30, 1997.
    [46] Yang, Z., Sankar, L.N., Smith, M., et al. Recent Improvements to a Hybrid Method for Rotors in Forward Flight. AIAA Paper 2000-0260, 2000.
    [47] Zhao, Q. J., Xu, G. H., and Zhao, J. G.. New Hybrid Method for Predicting the Flowfields of Helicopter Rotors. Journal of Aircraft, 2006, 43(2):373-380.
    [48] Srinivasan, G. R., Baeder, J. D., S. Obayashi, et al. Flowfield of a Lifting Rotor in Hover: a Navier-Stokes Simulation. AIAA Journal, 1992, 30(10):2371-2378.
    [49] Webster, R. S., Chen, J. P., Whitfield, D. L.. Numerical Simulation of a Helicopter Rotor in Hover and Forward Flight. AIAA Paper 1995-0193, 1995.
    [50] Bangalore, A., and Sankar, L. N.. Forward Flight Analysis of Slatted Rotors Using Navier-Stokes Methods. AIAA Paper 1996-0675, 1996.
    [51] Ahmad, J., and Duque, E. P. N.. Helicopter Rotor Blade Computation in Unsteady Flows using Moving Overset Grids., Journal of Aircraft, 33(1):54-60
    [52] Pomin, H., and Wagner, S.. Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight. Journal of Aircraft, 2001, 39(5):813-821.
    [53] Duque, E. P. N., and Srinivasan, G. R.. Numerical Simulation of a Hovering Rotor using Embedded Grids. Proceedings of the 48th Annual Forum of the American Helicopter Society, Washington, D. C., June 3-5, 1992.
    [54] Strawn, R. C., and Barth, T. J.. A Finite Volume Euler Solver for Computing Rotary-wing Aerodynamics on Unstructured Meshes. Journal of the American Helicopter Society, 1993, 38(2): 61-67.
    [55] Duque, E. P. N., Biswas, R., and Strawn, R. C.. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows. AIAA Paper 1995-1766, 1995.
    [56] Kang H. J., and Kwon, O. J.. Unstructured mesh Navier-Stokes Calculations of the Flowfield of a Helicopter in Hover. Journal of the American Helicopter Society, 2002, 47(2): 90-99.
    [57]许和勇,叶正寅,王刚,等.基于非结构嵌套网格的旋翼前飞流场计算.西北工业大学学报, 2006, 24(6):763-767.
    [58] Benoit, C., and Jeanfaivre, G.. Three-dimensional Inviscid Isolated Rotor Calculations using Chimera and Automatic Cartesian Partitioning Methods. Journal of the American Helicopter Society, 2003, 48(2):128-138.
    [59] Line, A. J., Brown, R. E.. High Resolution Wake Modelling using a Semi-Lagrangian Adaptive Grid Formulation. Proceedings of the 29th European Rotorcraft Forum, Friedrichshafen, Germany, September 16-18, 2003.
    [60]王立群,乔志德,钟伯文.直升机旋翼悬停流场的欧拉方程计算.空气动力学学报, 1998, 16(3):282-287
    [61]王立群,乔志德,张茹.基于动态网格的旋翼流场计算.计算物理, 2000, 17(4):367-371.
    [62]江雄,陈作斌,张玉伦,用双时间法数值模拟悬停旋翼流场(英文),空气动力学学报, 1998, 16(3):288-296.
    [63]江雄,肖中云,陈作斌,等.旋翼/机身气动干扰的数值模拟.直升机技术, 2007, 151(3):4-10.
    [64]杨爱明,翁培奋,乔志德.用多重网格方法计算旋翼跨声速无粘流场.空气动力学学报, 2004 22(3):313-318.
    [65]杨爱明,乔志德.基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算.航空学报, 2001, 22(5):434-436.
    [66]许和勇,叶正寅,王刚,等.聚合多重网格法在旋翼前飞流场计算中的应用.航空动力学报, 2007, 22(2):251-256.
    [67]韩忠华,宋文萍,乔志德. Kirchhoff方法在旋翼前飞噪声预测中的应用研究.空气动力学学报, 2004, 22(2):47-51.
    [68]韩忠华,宋文萍,乔志德.基于FW-H方程的旋翼气动声学计算研究.航空学报, 2003, 24(5):400-404.
    [69]童自力,孙茂.共轴式双旋翼流动的N-S方程模拟.航空学报, 1999, 19(1):1-5.
    [70]曹义华,王吉飞,苏媛,等. Jameson/TVD格式应用旋翼翼型绕流分析.航空动力学报, 2002, 17(3):297-301.
    [71]于子文,曹义华.前飞旋翼三维湍流场的数值模拟.北京航空航天大学学报, 2006, 32(7):751-755.
    [72] Cao, Y. H., Yu, Z. Q., and Su, Y.. Combined Free Wake/CFD Methodology for Predicting Transonic Rotor Flow in Hover. Chinese Journal of Aeronautics, 2002, 15(2).
    [73]招启军,徐国华,基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法,空气动力学学报, 2006, 24(1):15-21.
    [74] Hong, C. H., and Chopra, I.. Flap-Lag-Torsion Stability of a Circulation Control Rotor Blade in Forward Flight. NASA CP-2432, 1986.
    [75] Houbolt, J. C., and Brooks, G. W.. Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades, NACA Report 1346, 1958.
    [76] Arcidiacono, P.. Steady Flight Differential Equations of Motion for a Flexible Helicopter Blade with Chordwise Mass Unbalance. USAAVLABS. TR 68-188, Vol. 1, 1969.
    [77] Hodges, D. H., and Dowell, E. H., Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA TN-D-7818, 1974.
    [78] Kaza, K. R. V., and Kvaternik, R. G., Nonlinear Aeroelastic Equations for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Nonuniform Rotor Blades in Forward Flight. NASA TM-74059, 1977.
    [79] Rosen, A, and Friedmann, P P, Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation, NASA CR-159478, 1978.
    [80] Friedmann, P. P., and Straub, F. K.. Application of the Finite Element Method to Rotary-Wing Aeroelasticity. Journal of the American Helicopter Society, 1980, 25(1):36-44.
    [81] Sivanseri, N. T., and Chopra, I.. Finite Element Analysis for Bearingless Rotor Blade Aeroelasticity. Journal of the American Helicopter Society, 1984, 29(2):42-51.
    [82] Peleau, B., and Petot, D.. Aeroelastic Prediction of Rotor Loads in Forward Flight. Proceedings of the 13th European Rotorcraft Forum, Arles, France, September 8-11, 1987.
    [83] Johnson, W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part I: Analysis Development. NASA TM-81182, 1980.
    [84] Yuan, K. A., and Friedmann, P. P.. Aeroelasticity and Structural Optimization of Composite Helicopter Rotor Blades with Swept Tips. NASA CR-4665, 1995.
    [85] Datta, A., and Johnson, W.. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis, Proceedings of the 65th Annual Forum of the American Helicopter Society, Grapevine, Texas, May 27-29, 2009.
    [86] Hu, G. C., Xiang, J. W., and Zhang, X. G.. Dynamic Stability Analysis for Helicopter Rotor/Fuselage Coupled Nonlinear Systems. Chinese Journal of Aeronautics, 2003, 16(1):22-28.
    [87] Wang, H. W., Gao, Z., and Zheng, Z. C.. Aeroelastic Response and Stability of Helicopter Rotor Blades in Forward Flight. Journal of Vibration Engineering, 1999, 12(4):521-528.
    [88]杨卫东,邓景辉.直升机后掠桨尖旋翼气弹稳定性研究.南京航空航天大学学报, 2003,35(3):248-252.
    [89]夏品奇,徐桂祺.伽辽金有限元素法对旋翼气弹稳定性的应用,应用力学学报, 1997, 14(2(2):41-46.
    [90] Tung, C., Caradonna, F., X., and Johnson, W.. The Prediction of Transonic Flows on an Advancing Rotor. Journal of the American Helicopter Society, 1986, 32(7):4-9.
    [91] Strawn, R. C., and Tung, C.. Prediction of Unsteady Transonic Rotor Loads with a Full-Potential Rotor Code. Proceedings of the 43rd Annual Forum of the American Helicopter Society, St. Louis, MO, May 18-20, 1987.
    [92] Strawn, R. C., Desopper, A., Miller, J., et al. Correlation of Puma Airloads-Evaluation of CFD Prediction Methods. Proceedings of the 15th Rotorcraft Forum, Amsterdam, The Netherlands, September 12-15, 1989.
    [93] Strawn, R. C., and Bridgeman, J. O.. An Improved Three-Dimensional Aerodynamics Model for Helicopter Airloads Prediction. AIAA Paper 1991-0767, 1991.
    [94] Kim, K. C., Desopper, A., and Chopra, I.. Blade Response Calculations Using Three-Dimensional Aerodynamic Modeling. Journal of the American Helicopter Society, 1991, 36(1), 1991:68-77.
    [95] Lee, C. S., Saberi, H., and Ormiston, R. A.. Aerodynamic and Numerical Issues for Coupling CFD into Comprehensive Rotorcraft Analysis. Proceedings of the 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, April 29-May 1, 1997.
    [96] Bauchau, O. A., and Ahmad, J. U.. Advanced CFD and CSD Methods for Multidisciplinary Applications in Rotorcraft Problems. AIAA Paper 1996-4151, 1996.
    [97] Altmikus, A. R. M., Wagner, S., Beaumier, P., et al. A Comparison: Weak versus Strong Modular Coupling for Trimmed Aeroelastic Rotor Simulations. Proceedings of the 58th Annual Forum of the American Helicopter Society, Montreal, Canada, June 11-13, 2002.
    [98] Altmikus, A. R. M., Wagner, S., Hablowetz, T., et al. On the Accuracy of Modular Aeroelastic Methods Applied to Fixed and Rotary Wings. AIAA Paper 2000-4224, 2000.
    [99] Yang, Z., Smith, M. J., Bauchau, O., et al. A Hybrid Flow Analysis for Rotors in Forward Flight. American Helicopter Society Aeromechanics Specialists’Meeting, Atlanta, GA, November 13-15, 2000.
    [100] Pomin, H., and Wagner, S.. Aeroelastic Analysis of Helicopter Rotor Blades on Deformable Chimera Grids. Journal of Aircraft, 41(3), 2004.
    [101] Datta, A., Sitaraman, J., Chopra., I, et al. Analysis Refinements for Prediction of RotorVibratory Loads in High-Speed Forward Flight. Proceedings of the 60th Annual Forum of the American Helicopter Society, Baltimore, MD, June 7-10, 2004.
    [102]白俊强.直升机旋翼流场三维NS方程计算及及结构动态响应研究.博士学位论文,西北工业大学, 1997.
    [103] Stroub R. H.. Full-Scale Wind Test of a Modern Helicopter Main Rotor Investigation of Tip Mach Number Effects and Comparisons of Four Tip Shapes. Proceedings of the 34th Annual Forum of the American Helicopter Society, Washington, D. C., May 15-17, 1978.
    [104] Desopper, P., Lafon, P., Céroni, P., et al. Ten Years of Rotor Flow Flow Studies at ONERA. Journal of the American Helicopter Society, 1989, 34(1):34-41.
    [105] Desopper, A.. Study of the Unsteady Transonic Flow on Rotor Blades with Different Tip Shapes. Proceedings of the 10th European Rotorcraft Forum, The Hague, The Netherlands, August 28-31, 1984.
    [106] Perry, F. J., Aerodynamics of the Helicopter World Speed Record. Proceedings of the 44th Annual Forum of the American Helicopter Society, Washington, D. C., June 16-18, 1988.
    [107]徐国华,应用自由尾迹分析的新型桨尖旋翼气动特性研究.博士学位论文,南京航空航天大学, 1996.
    [108] Nam, C. J., and Lee, D.. Navier-Stokes Calculations of Rotating BERP Planform Blade Flowfields, AIAA Paper 1993-3527, 1993.
    [109]宋文萍,韩忠华,王立群,等.旋翼桨尖几何形状对旋翼气动噪声影响的定量计算分析.计算物理, 2001, 18(6):569-572.
    [110]王立群,宋文萍,旋翼桨尖形状对噪声影响量级的研究.航空学报, 2000, 21(1):49-52.
    [111] Hu, H., Jordan, L. A., Jr.. CFD Investigation of Double-swept Blade in BVI Noise Reduction, AIAA Paper 2003-3172, 2003.
    [112] Kim, K. C. and Chopra, I.. Aeroelastic Analysis of Rotor Blades with Advanced Tip Shapes. 31stAIAA/ASME/ASCE/ASC/AHS Structures, Structural Dynamics and Materials Conference, Long Beach, California, 1990.
    [113]杨卫东.后掠桨尖旋翼气弹耦合分析及优化研究.博士学位论文,南京航空航天大学, 1995.
    [114] Thompson, J. E., Warsi, Z. U. A, and Mastin, C.. Numerical Grid Generation. Elsevier Science Publishing Co., Inc., 1985.
    [115] Blazek, J.. Computational Fluid Dynamics: Principles and Applications, Second Edition, Elsevier Ltd., 2005.
    [116] Reese, L, and Sorenson, A.. Computer Program to Generate Two-dimensional Grids about Airfoils and Other Shapes by the Use of Poisson's Equation. NASA TM-81198, 1980.
    [117] Hilgenstock, A., A Fast Method for the Elliptic Generation of Three-Dimensional Grids With Full Boundary Control. Numerical Grid Generation in Computational Fluid Mechanics '88, Proceedings of the Second International Conference:137-146.
    [118] Charlton, E. F., and Powell, K. G.. An Octree Solution to Conservation laws over Arbitrary Regions(OSCAR), AIAA Paper 1997-0198, 1997.
    [119] Acikgoz, N., Bottasso, C. L.. A Unified Approach to the Deformation of Simplicial and Non-Simplicial Meshes in Two and Three Dimensions with Guaranteed Validity. Computers & Structures, 2007, 85(11-14):944-954.
    [120] Degand, C., and Farhat, C. A.. Three-dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes. Computers & Structures, 2002, 80:305-316.
    [121] Saad, Y.. Iterative Methods for Sparse Linear Systems. 1st edition, PWS, 1996.
    [122]叶靓.基于非结构网格的直升机旋翼流场及噪声研究.博士学位论文,南京航空航天大学, 2009.
    [123] Lohner, R., Sharov, D., Luo, H., et al. Overlapping Unstructured Grids. AIAA 2001-0439, 2001.
    [124] Arnold, VI.. Mathematical Methods of Classical Mechanics, 2nd ed., Springer Verlag, 1989.
    [125]康浩.舰面旋翼飞行器旋翼瞬态响应研究.博士学位论文,南京航空航天大学, 1998.
    [126] Wilson, E. L.. Dynamic Response by Step-By-Step Matrix Analysis. Symposium On The Use of Computers in Civil Engineering, Labortorio Nacional de Engenharia Civil, Lisbon, Portugal, 1962.
    [127]航空航天工业部科学技术研究院,直升机动力学手册,航空工业出版社, 1991.
    [128] Bailly, J., Delrieux, Y., and Beaumier, P.. HART II: Experimental Analysis and Validation of ONERA Methodology for the Prediction of Blade-Vortex Interaction. Proceedings of the 30th European Rotorcraft Forum, Marseille, France, September 14-16, 2004.
    [129] Hodges, D. H., and Ormiston, R. A.. Stability of Elastic Bending and Torsion of Uniform Cantilever Rotor Blade in Hover with Variable Structural Coupling. NASA TN D-8192, 1976.
    [130] Roe, P. L.. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, 1981, 43(2):357-372.
    [131] Venkatakrishnan, V.. On the Accuracy of Limiters and Convergence to Steady State Solutions. AIAA Paper 1993-0880, 1993.
    [132] Luo, H., Baum, J. D., and Lohner, R.. An Accurate, Fast, Matrix-free Implicit Method forComputing Unsteady Flows on Unstructured Grids. Computers & Fluids., 2001, 30:137-159.
    [133] Strawn, R. C., and Ahmad, J.. Computational Modeling of Hovering Rotors and Wakes. AIAA Paper 2000-0110, 2000.
    [134] Farhat, C., and Geuzaine, P.. The Discrete Geometric Conservation Law and its Effects on Nonlinear Stability and Accuracy. AIAA Paper 2001-2607, 2001.
    [135] Farhat, C., and Lesoinne, M.. Enhanced Partitioned Procedures for Solving Nonlinear Transient Aeroelastic Problems. AIAA Paper 1998-1806, 1998.
    [136] Farhat, C., Geuzaine, P., and Brown, G.. Application of a Three-field Nonlinear Fluid-Structure Formulation to the Prediction of the Aeroelastic Parameters of an F-16 Fighter. Computers & Fluids. 2003, 32(1):3-29
    [137] Lorber, P. F., Stauter, R. C., and Landgrebe, A. J.. A Comprehensive Hover Test of the Airloads and Airflow of an Extensively Instrumented Model Helicopter Rotor. Proceedings of 45th Annual Forum of the American Helicopter Society, Boston, MA, May 22-24, 1989.
    [138] Caradonna, F. X., Laub, G. H., Tung, C. An Experimental Investigation of the Parallel Blade-Vortex Interaction, NASA TM-86005, 1984.
    [139] Scheiman, J.. A Tabulation of Helicopter Rotor-blade Differential Pressures, Stresses and Motions as Measured in Flight, NASA TM X-952, 1964.
    [140] Heffernan, R. M., and Gaubert, M.. Structural and Aerodynamic Loads and Performance Measurements of an SA349/2 Helicopter with an Advanced Geometry Rotor. NASA TM-88370, 1986.
    [141] Panda, B.. Technical Note: Assembly of Moderate-Rotation Finite Elements Used in Helicopter Rotor Dynamics. Journal of the American Helicopter Society, 1987, 32(4):63-69.
    [142] Vellaichamy, S. and Chopra, I.. Effect of Modeling Techniques in the Coupled Rotor-Body Vibration Analysis. AIAA 1993-1360, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700