用户名: 密码: 验证码:
胶接接头动态应力分布的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用数值模拟的方法,以单搭接接头及常见到的QFP电子封装受载胶接接头为主要的研究对象,以优化胶接接头应力分布、提高胶接接头的强度为目标,对在动载荷和温度载荷作用下的上述胶接接头的应力响应及其影响因素进行了研究,得出了如下主要结论:
     1)在塑性模型的基础上,用APDL高级语言编制循环程序,研究了加载速率对单搭接接头应力分布的影响。计算结果表明:终止载荷一定时,加载速率对接头应力分布有一定的影响:当加载速率比较大时,SEQV等效应力峰值较小;反之,当加载速率比较小时,SEQV等效应力峰值较大。实际应用过程中,胶接接头承受不同加载速率载荷的可能性很高,这对了解实际应用中的胶接接头的承载有着重要意义。
     2)在弹塑性模型的基础上,首次研究了冲击载荷对胶接接头应力分布的影响。计算结果表明:加载速率为3m/s至7m/s时,胶层中最高应力所在点的SEQV等效应力从101MPa提高到156MPa,当冲击载荷作用到上部被粘物的一瞬间,胶层中的最大应力即超过了胶粘剂的强度极限,胶层可能被迅速撕裂而导致接头分离;当加载速率为0.3m/s至0.7m/s时,随着速率的增大,胶层中最高应力所在点的SEQV等效应力从20.2MPa提高到55.6MPa,胶层中发生了弹塑性变形,在撞击结束后,胶层中最大应力又快速下降,且发生粘弹性响应;在冲击载荷的作用下,应力波首先从接触点处开始传播,当脱离接触后,应力波向后部传播并迅速减小,即胶粘剂本体的卸载扰动(如弹性作用)产生了反向加载波,与外载波的作用相互抵消。
     3)用数值模拟的方法研究了胶层不同程度的吸湿对单搭接接头应力分布的影响,计算结果表明:随着吸湿程度的增大,胶粘剂的屈服强度下降很快;胶层中的应力由胶瘤承载逐渐转变为搭接区中央的胶层承载,胶瘤的作用越来越弱化;在相同承载条件下,随着胶层吸湿程度的增加,接头的承载能力下降。
     4)建立了单搭接接头的断裂力学模型,研究了不同裂纹长度对单搭接接头应力分布的影响,计算结果表明:随裂纹长度的增加,裂纹尖端SEQV等效应力逐渐增大,并且裂纹尖端的应力远大于搭接区中央的胶层应力,由此可知高值的裂纹尖端应力为裂纹在胶层中的扩展提供了驱动力;研究了I型和II型断裂因子同初始裂纹长度及外载荷大小的关系,结果表明:随裂纹长度的增加,I型和II型断裂因子呈逐渐增大的趋势;随外载荷的增大,I型和II型断裂因子也呈逐渐增大的趋势。
     5)在黏塑性模型的基础上,用APDL高级语言编制的循环程序,用数值模拟的方法研究了温度加载率、保温时间以及循环次数这三个因素对广泛应用的焊料63Sn37Pb温度循环下QFP焊点界面应力的影响。计算结果表明:温度加载率对63Sn37Pb焊点界面应力的影响非常大:温度加载率越大,应力峰值越高;保温时间对63Sn37Pb焊点界面应力也有一定影响,时间越长,应力峰值越大;循环次数对63Sn37Pb焊点界面应力也有影响,但在循环10次后这种影响开始减弱。
     6)在多线性随动强化模型的基础上,用APDL高级语言编制的循环程序,首次研究了温度载荷作用下的QFP微电子封装结构中不同种常用封装胶粘剂形成的胶点的界面应力及其应力应变滞后环,计算结果表明:3种常用封装胶粘剂与FR-4板界面处的应力相差较大,以ASA丙烯腈胶形成的胶点的SEQV等效应力最小,有利于提高电子封装器件的连接可靠性;经历10次温度循环加载后,ASA丙烯腈胶形成的胶点上应力累积的最大值一般出现在左端倒角、右端内倒角交界处这两个部位。
In this paper, a single-lap joints and electronic package to the common electronic QFP package containing the plastic joints as the main object has been studied by finite element method to optimize the distribution of joint stress and improve the joint strength, the plastic joints of the stress response and its impact factors under the dynamic load and load temperature have been investigated, the results indicated that:
     1) Based on the plastic model, the effect of the loading rate on stress distribution of single-lap joint was studied though high-level language of the APDL cycle process. The results shows that, the loading rate on joint stress distribution have a certain impact on termination of certain load: When loading rate is relatively larger, SEQV peak was smaller. Contrarily, loading rate is relatively smaller, SEQV peak was larger. The plastic joints possibly bear different loading rate in practical application, which has great significance of understanding the practical application of the plastic bearing joints.
     2) The effect of high or low-speed impact load on stress distribution of joints was studied using elasto-plastic model. The results show that, the stress of the most dangerous point in adhesive layer didn’t change greatly with time under high-speed loading, which because when the hammer hit by stick-on, the adhesive layer was torn quickly. Under low rate loading, with the increase of the rate, the stress of the most dangerous point in adhesive layer increased. When the hammer was hit on the adherend, the stress of adhesive layer increased rapidly. The stress of adhesive layer has viscoelastic response to time after the collision.
     3) The effect of different levels of moisture in adhesive layer on the stress distribution of single-lap joint was studied by numerical simulation .The results showed that, With the increased level of moisture, the yield strength of adhesives decreased greatly; main load was born by the adhesive layer in fillet transferred to middle zone with the weak function of the fillet. Under the same condition, the load bearing of joint declines as the moisture level of adhesive layer increases.
     4) Based on the fracture mechanics model of a single-lap joint, the effect of crack length on the distribution of stress in a single-lap joint was studied. The results showed that, crack point SEQV equivalent stress gradually increased as the increase of the crack length, and the stress of the crack point is far greater than the stress of the adhesive layer in the central area of the overlap, thus the high-value stress of the crack point provided a driving to the expansion of the crack in the adhesive layer; studied on the relationship between the fracture gene of the type I and type II and the initial crack length and the size of the load, the results showed that, the fracture gene of the type I and type II gradually increased trend as the increase of the crack length; with the increasing load, I and type II-type fracture Factor was also gradually increasing trend. As the size of the load increasing, the fracture gene was also gradually increasing trend.
     5)Based on the viscous plasticity model, using the cycle process which workout by the APDL senior language, the first time studied on the effect of temperature loading rate, holding time and cycle times on the QFP spot interface stress in the wider application of the solder temperature cycle under 63Sn37Pb the impact by the numerical simulation. The results showed that, temperature loading rate had a great impact on 63Sn37Pb spot interface stress: the greater the temperature loading rate, the higher the peak stress; holding time had a certain impact on 63Sn37Pb spot interface stress: the longer the time, the higher the peak stress; the number of recycling also had the impact on the 63Sn37Pb spot interface stress, but the impact began weakened after the loop 10 times.
     6) Based on the multilinear kinematic hardening model, using the cycle process which workout by the APDL senior language, the first time studied on the interface stress and stress-strain loop which formed by different common packaging adhesive in the QFP Microelectronics Packaging under the temperature impact, pointed out: the interface stress between this three kinds of commonly used packaging adhesives and FR-4 board was very different, the SEQV equivalent stress in the adhesive point which formed by ASA acrylonitrile is minimum, would help improve the reliability of the connection in the electronic packaging device; after experiencing 10 times the temperature cyclic loading, the maximum of the stress accumulated which formed by ASA acrylonitrile was generally in the left chamfer and the right inner chamfer crossing.
引文
1.游敏,郑小玲,郑勇编著.金属结构胶接[M].武汉:武汉水利电力大学出版社,2000.
    2.殷立新,徐修成编著.胶粘基础与胶粘剂[M].北京:航空工业出版社,1988.
    3. R.D.Adams.Adhesive bonding-Science, technology and applications [M].England: WOODHEAD PUBLISHING LIMITED Cambridge England.
    4.北京天山新材料技术有限责任公司,http://www.ts.com.cn/.
    5.李子东编著.实用粘接手册[M].上海:上海科学技术文献出版社,1986.
    6. C. Borsellino,G. Di Bella and V.F. Ruisi. Adhesive joining of aluminum AA6082: The effects of resin and surface treatment[J].International Journal of Adhesion and Adhesives,2008(1):244.
    7.张玉龙主编.粘接技术手册[M].北京:中国轻工业出版社,2001.
    8.殷勇,涂善东.胶接接头力学研究回顾[J].化工机械,2001(4):244.
    9.孔凡荣,游敏,郑小玲等.搭接长度对胶接接头工作应力分布影响的数值分析[J].机械强度,2004(2).
    10.孔凡荣,游敏,郑小玲等.胶粘剂特性和厚度对劈裂载荷作用下胶接接头应力分布的影响[J].弹性体,2004(4).
    11.郑小玲,游敏,孔凡荣等.胶层厚度对拉伸试样应力分布影响的数值分析[J].粘接,2004(4).
    12. Fan-Rong Kong,Min You,Xiao-Ling Zheng.Three-dimensional stress analysis of adhesive-bonded joints under cleavage loading[J].International Journal of Adhesion and Adhesives,2007 (17):298-305.
    13.郑祥明.胶接接头强度及环境退化的超声波无损定征[D].北京工业大学博士学位论文.
    14.徐修祝,涂善东.胶接接头断裂及相关断裂准则探讨[J].石油化工设备,2005(5):37.
    15.郭忠信,胡凌云,陈福升等编著.铝合金结构胶粘剂[M].北京:国防工业出版社,1993.
    16. K.L.密特.粘接表面处理技术[M].北京:化学工业出版社,2004.
    17. M.Kayupov,Y. A.Dzenis. Stress concentration caused by bond cracks in single-lap adhesive composite joints[J].CompositeStructures,2001,(54): 15-220.
    18. J.P.M. Goncalves,M.F.S.F.de Moura,P.M.S.T.de Castro.A three-demensional finite element model for stress analysis of adhesive joints.[J]International Journal of Adhesion & Adhesives ,2002(22): 357~365.
    19. Min You,Yong Zheng,Xiao-Ling Zheng etc.Effect of metal as part of fillet on thetensile shear strength of adhesively bonded single lap joints[J]International Journal of Adhesion & Adhesives ,2003,24(5): 365-369.
    20. Adrian.R.Rispler,Liyong.Tong,Grant.P.Steven.Shape optimization of adhesive fillets[J].International Journal of Adhesion& Adhesives,2000(20): 221~231.
    21. Rebecca Stewarta, Vannessa Goodship.Investigation and demonstration of the durability of air plasma pre-treatment on polypropylene automotive bumpers. [J].International Journal of Adhesion& Adhesives,2005(25): 93~99.
    22. R.D.亚当斯,W.C.维克著,陈惠君译.工程结构中的胶接技术[M].北京:北京科学技术出版社,1991.
    23.翟海潮,李印柏,林新松编著.粘接与表面粘涂技术[M].北京:化学工业出版社,1997.
    24.陈道义,张军营编著.胶接基本原理[M].北京:科学出版社,1992.
    25.史中利编著.粘接技术在设备维修中的应用[M].北京:冶金工业出版社,1992.
    26. Adamvalli, Venkitanarayanan.Dynamic strength of adhesive single lap joints at high temperature[J].International Journal of Adhesion& Adhesives,2008(28): 321~327.
    27.顾继友编著.胶接理论与胶接基础[M].北京:科学出版社,2004.
    28. P.R.Underhill,A.N.Rider.The effect of warm water surface treatments on the fatigue life in shear of aluminum joints[J].International Journal of Adhesion& Adhesives,2006(26): 199~205.
    29. Gang Li and Pearl Lee-Sullivan. Finite element and experimental studies on single-lap balanced joints in tension[J].International Journal of Adhesion& Adhesives,2001(3):211-220.
    30. I.Pires , L.Quintino,J.F.Durodola,A.Beevers.Performance of bi-adhesive bonded aluminium lap joints[J].International Journal of Adhesion& Adhesives,2003(23):215-223.
    31. R.E. Litchfield,G.W. Critchlow and S. Wilson. Surface cleaning technologies for the removal of crosslinked epoxide resin[J].International Journal of Adhesion& Adhesives 2006(26):295-303.
    32. M.D.Fitton,J.G.Broughton. Variable modulus adhesives.An approach to optimized joint performance[J].International Journal of Adhesion& Adhesives,2005(25):329-336.
    33. Lang. T.P,Mallick. P.K. The effect of recessing on the stresses in adhesively bonded single-lap joints[J].International Journal of Adhesion& Adhesives ,1999(19) : 257-271.
    34. Moura. M.F.S.F,Daniaud. R and Magalh?es. A.G.Simulation of mechanical behaviour of composite bonded joints containing strip defects[J].International Journal of Adhesion& Adhesives,(in press).
    35. Giovanni Belingardi, Luca Goglio,Andrea Tarditi.Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joint[J].International Journal of Adhesion& Adhesives,2002(22): 273–282.
    36. Chang B-H, Shi Y-W, Dong S-J. Numerical analysis of the effect of plate thickness on the stress distribution in weldbonded joints with different types of adhesives[J].China Mechanical Engineering,1999 (10):341-344.
    37. Chang B-H,Shi Y-W,Dong S-J. Numerical analysis on effect of plate width on stress distribution in weldbonded joints[J].Journal of Aeronautical Materials,1998,(18):34-39.
    38. Can Ha?imo?lu,Murat Ciniviz.Performance characteristics of a low heat rejection diesel engine operating with biodiese[J].Renewable Energy,2008(28):1709-1715.
    39. Douglas M,Baker,Assanis.A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine[J].Applied Mathematical Modelling.1994 (18):590-601.
    40. Shang-Sheng Wu,Chia-Lin Shiu and Wen-Jyi Wu.Analysis on transient heat transfer in annular fins of various shapes with their bases subjected to a heat flux varying as a sinusoidal time function[J].Computers & Structures. 1996 (11):725-734.
    41. B.B.Johnsen, A.J.Kinloch. Toughening mechanisms of nanoparticle-modified epoxy polymers [J].Polymer.2007(48):530-541.
    42. L.F. Kawashita, A.J. Kinloch, D.R. Moore.A critical investigation of the use of a mandrel peel method for the determination of adhesive fracture toughness of metal-polymer laminates[J].Engineering Fracture Mechanics,2006,73(11):2304-2323.
    43. M.-L. Abel,A.N.N. Adams,A.J. Kinloch.The effects of surface pretreatment on the cyclic-fatigue characteristics of bonded aluminium-alloy joints[J].International Journal of Adhesion and Adhesives.2006(48):50-61.
    44. ANSYS. Finite element code and manual,version 5.7 USA: ANSYS Inc,2000.
    45. Lang T P. Mallick P K. The effect of recessing on the stresses in adhesively bonded single-lap joints[J].International Journal of Adhesion&Adhesive,1999(19):257-271.
    46. T.P.Lang,P.K.Malick.The effect of spew geometry on the stresses in single-lap adhesive joints[J]. International Journal of Adhesion & Adhesives.1998(18): 167-177.
    47. S.M.Darwish. Analysis of weld-bonded dissimilar materials[J].International Journal of Adhesion& Adhesives,2004(24):347-354.
    48. G. Belingardi, L. Goglio, A. Tarditi. Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints [J].International Journal of Adhesion& Adhesives,2002(22): 273-282.
    49. J. Cui, R. Wang, A.N. Sinclair,J.K. Spelt. A calibrated finite element model of adhesive peeling [J]. International Journal of Adhesion& Adhesives,2003(23):199-206.
    50. Y. J. Cui, M. Yahia-Aissa and P. Delage.A model for the volume change behavior of heavily coMPacted swelling clays[J].Engineering Geology,2002(64):233-250.
    51. Harald Osnes,Alfred Andersen. Computational analysis of geometric nonlinear effects in adhesively bonded single lap composite joints[J].Composites Part B Engineering,2003 (34): 417-427.
    52. A.B.Morais, A.B.Pereira, J.P.Teixeira.Strength of epoxy adhesive-bonded stainless- steel joints[J].International Journal of Adhesion ad Adhesives,2007 (27): 679-686.
    53.黄丽主编.高分子材料[M].北京:化学工业出版社,2005.
    54.周其凤编著.高分子化学[M].北京:化学工业出版社,2006.
    55. R.W.卡恩主编.材料的塑性变形与断裂[M].北京:科学出版社,1998.
    56.埃伦斯坦编著.聚合物材料-结构、性能、应用[M].北京:化学工业出版社,2007.
    57. E.L.拖马斯主编.聚合物的结构与性能[M].北京:科学出版社,1999.
    58. P. Marashi,M. Pouranvari,S.Amirabdollahian.Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels[J].Materials Science and Engineering,2008,480(5):175-180.
    59.张向宇编著.胶粘剂分析与测试技术[M].北京:化学工业出版社,2004.
    60.许金泉著.界面力学[M].北京:科学出版社,2006.
    61.杜庆华主编.工程力学手册[M].北京:高等教育出版社,1994.
    62.田民波著.电子封装工程[M].北京:清华大学出版社,2003.
    63.田民波,马鹏飞,张成.电子封装无铅化现状[J].封测试技术,2003(107):65-69.
    64.田民波,马鹏飞.电子封装无铅化技术进展[J].电子工艺技术,2003,24(6):231-237.
    65. Hongsheng Zhao,Tongxiang Liang,Bing Liu.Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles[J].International Journal of Adhesion and Adhesives,2007,27(9):429-433.
    66. Myung Jin Yim,Kyung Wook Paik.Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor packaging applications[J].International Journal of Adhesion and Adhesives,2006, (26):304-313.
    67. A. Mikrajuddin,F. G. Shi,S. Chungpaiboonpatana,K. Okuyama.Onset of electrical conduction in isotropic conductive adhesives: a general theory in Processing [J].Materials Science,1999, (12):309-319.
    68. H. K. Kim,F. G. Shi.Electrical reliability of electrically conductive adhesive joints:dependence on curing condition and current density[J].Microelectronics Journal,2001,32(4):315-321.
    69. Mikel R. Miller,Ilyas Mohammed and Paul S. Ho.Quantitative strain analysis of flip-chip electronic packages using phase-shifting moiréinterferometry [J].Optics and Lasers in Engineering,2001,36(8):127-139.
    70.李恒德主编.材料科学与工程国际前沿[M].山东:山东科学技术出版社,2002.
    71. ANAND L,J Engineering Materials and Technology[J].Transactions of the ASME, 1982(104): 12-17.
    72. Xiao-dong HU,Dong-ying JU.Application of Anand's constitutive model on twin roll casting process of AZ31 magnesium alloy.Transactions of Nonferrous Metals Society of China,2006,16(6):586-590.
    73. DARBHA K,DASGUPTA A. Nested Finite Element Methodology for Stress Analysis of Electronic Products-Ⅱ. ASME Trans. in Electronic Packaging,2001(123): 147-155.
    74. C. Andersson.Effect of corrosion on the low cycle fatigue behavior of Sn4.0Ag0.5Cu lead-free solder joints[J].International Journal of Fatigue,2008(30):917-930.
    75. Lihua Qi,Jihua Huang,Xingke Zhao,Hua Zhang.Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder[J].Journal of Alloys and Compounds,2008(40).
    76. Jiri Vizdal,Maria Helena Braga,Ales Kroupa.Thermodynamic assessment of the Bi–Sn–Zn System[J].Calphad,2007(11):2040-2047.
    77. Shirakawa H,Louis J,MacDiarmid A G,Chiang C K,Heeger A J[J].J Chem Soc Chem Commun,1977:578.
    78. Yoshimi Yonemoto,Kazunori Matsumoto.Effects of rootstock and crop load on sap flow rate in branches of‘Shirakawa Satsuma’mandarin[J].Scientia Horticulturae.2004,102(11):295-300.
    79. Jui-Hung Wu and Chih-Kuang Lin.Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels [J]. Materials Science and Engineering A2005 (390):291-298.
    80. C. Kanchanomai,Y. Mutoh.Effect of temperature on isothermal low cycle fatigue properties of Sn–Ag eutectic solder.[J].Materials Science and Engineering A,2004(38):113-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700