用户名: 密码: 验证码:
非线性偏微分方程的概周期型粘性解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究Hamilton-Jacobi方程的回复解,主要包括两部分内容:一部分是关于Hamilton-Jacobi方程的遥远概周期粘性解的存在性和唯一性,另一部分是关于二阶非线性抛物型偏微分方程的周期、概周期和遥远概周期粘性解的存在性和唯一性。
     Hamilton-Jacobi方程是流体力学、大气动力学、海洋内波动力学和光学中非常重要的数学模型之一。它在哈密顿动力学、最优控制理论以及微分对策理论中也有非常重要的应用。做为完全非线性的偏微分方程,Hamilton-Jacobi方程的经典光滑解不容易求出甚至不存在。许多应用学科的发展需要解决这个问题。上世纪八十年代初,Crandall、Evans和Lions等人打破了这个僵局,利用极值原理,创立了Hamilton-Jacobi方程的粘性解理论,极大地推进了偏微分方程弱解理论的发展。粘性解理论是Lions获得菲尔兹奖的重要内容。八十年代后期,Crandall、Lions、Ishii和Jensen等人推广了这一理论,建立了二阶Hamilton-Jacobi方程和椭圆型方程的粘性解理论。这一理论还在发展过程中,目前这方面的文献已有数千篇之多。其中非常值得注意的一个动向是,这一理论与动力系统的Arnold扩散和弱KAM理论有着深刻的联系。
     Bohr等人创立的概周期函数理论领域已经得到很大的发展,产生了许多具有更广泛意义的函数类,譬如概自守函数、渐近概周期函数、弱概周期函数,一致概周期函数等。到了上世纪八十年代Sarason提出了遥远概周期函数和缓慢震荡函数。九十年代初,张传义提出了伪概周期函数。这些函数类的分析与代数性质得到广泛研究。它们在动力系统和微分方程定性理论中有着广泛的应用。
     本文欲在上述两个数学发展进程的交叉领域开展研究,主要研究Hamilton-Jacobi方程的概周期型粘性解的存在唯一性。我们应用Perron方法和粘性解的比较定理,对Hamilton-Jacobi方程及二阶非线性抛物型偏微分方程(二阶Hamilton-Jacobi方程)的概周期和遥远概周期粘性解的存在性和唯一性进行了系统研究。
     本文主要做了以下工作
     第一,提出并证明了遥远概周期函数和缓慢震荡函数的几个性质和引理。
     第二,对Hamilton-Jacobi方程,证明了其遥远概周期粘性解的存在性和唯一性,并证明了该方程的高频率的遥远概周期粘性解的渐近行为。
     第三,推广了已有的Hamilton-Jacobi方程粘性解的比较定理,得到适用于有界区域上带有Dirichlet边界条件的Hamilton-Jacobi方程的比较定理,并证明了该方程的遥远概周期粘性解的存在性。
     第四,推广了适用于Hamilton-Jacobi方程粘性解的比较定理,得到了适用于二阶非线性抛物型偏微分方程的比较定理,并证明了该方程的周期、概周期及遥远概周期粘性解等回复解的存在性和唯一性,研究了该方程的高频率的概周期及遥远概周期粘性解的渐近行为。
This paper studies recurrent solutions of Hamilton-Jacobi equations, it consistsmainly of two parts: one part concerns on the existence and uniqueness of remotely al-most periodic viscosity solutions of Hamilton-Jacobi equations, the other part concernson the existence and uniqueness of periodic, almost periodic and remotely almost pe-riodic viscosity solutions of second order nonlinear parabolic partial differential equa-tions.
     The Hamilton-Jacobi equation is one of the most important mathematical modelsof ?uid mechanics, atmospheric dynamics, ocean internal wave dynamics and optics.Also it has very important applications in Hamiltonian dynamics, optimal control the-ory and differential games. As a fully nonlinear partial differential equations, the classi-cal smooth solution of Hamilton-Jacobi equation is not easy to find or even not exist. Itis necessary to solve this problem for the development of many application disciplines.In the early 1980s, Crandall, Evans and Lions broke this impasse, using extremum prin-ciple, they found the viscosity theory of Hamilton-Jacobi equation which had greatlyadvanced the development of weak solution theory of partial differential equations. Theviscosity theory is the key elements for Lions to get Fields Medal. In the late 1980s,Crandall, Lions, Ishii and Jensen etc promoted this theory, built the viscosity theory ofsecond order Hamilton-Jacobi equations and elliptic equations. This theory is still inthe development, thousands of articles in this area have been written so far. One of avery noteworthy trends are deep contact between this theory and the Arnold prolifera-tion and weak KAM theory of dynamic system.
     The field of almost periodic function theory founded by Bohr etc has been devel-oped greatly, there are many function classes which have broader sense, for example,almost automorphic function, asymptotically almost periodic function, weakly almostperiodic function, uniformly almost periodic function etc. Up to 1980s, D. Sarasonproposed remotely almost periodic function and slowly oscillating function. In theearly 1990s, Chuanyi Zhang proposed pseudo almost periodic function. The analysisand algebra properties of these function classes have been extensively studied. Theyhave extensively applications in dynamic system and qualitative theory of differentialequations.
     This paper will start the research in the cross-cutting areas of the two above mathe-matical development processes, mainly focus on the existence and uniqueness of almostperiodic type viscosity solutions of Hamilton-Jacobi equations. We will use Perron’smethod and comparison theorem of viscosity solutions to do systematic study in theexistence and uniqueness of almost periodic and remotely almost periodic viscositysolutions of Hamilton-Jacobi equations and second order nonlinear parabolic partialdifferential equations (second order Hamilton-Jacobi equations).
     In this paper, some aspects of concrete work are done.
     First, we propose and prove some properties and lemmas of remotely almost peri-odic functions and slowly oscillating functions.
     Second, for Hamilton-Jacobi equations, we prove the existence and uniqueness oftime remotely almost periodic viscosity solutions, and also we study the asymptoticbehavior of time remotely almost periodic viscosity solutions for high frequencies.
     Third, we extend the comparison theorem of viscosity solutions of Hamilton-Jacobi equations, and get a new comparison theorem of Hamilton-Jacobi equations withthe Dirichlet boundary condition in a bounded domain. Then we prove the existence oftime remotely almost periodic viscosity solutions of such equations.
     Fourth, we extend the comparison theorem of viscosity solutions of Hamilton-Jacobi equations, and get a new comparison theorem of second order nonlinearparabolic partial differential equations, then we prove the existence, uniqueness andasymptotic behavior for high frequencies of time almost periodic and remotely almostperiodic viscosity solutions of such equations.
引文
[1] S. B. Yoon and P.L.-F. Liu. A note on Hamiltonian for long water waves in varying depth.Wave Motion, 1994, 20:359–370.
    [2] W. Craig and M. Groves. Hamiltonian long-wave approximations to the water-wave problem.Wave Motion, 1994, 19:367–389.
    [3] D. Ambrosi. Hamiltonian formulation for surface waves in a layered ?uid. Wave Motion,2000, 31:71–76.
    [4] W. Craig, P. Guyenne and H. Kalisch. A new model for large amplitude long internalwaves. C. R. Mecanique, 2004, 332:525–530.
    [5] W. Craig, P. Guyenne and H. Kalisch. Hamiltonian long wave expansions for free surfacesand interfaces. Communications on pure and applied mathematics, 2005, 58:1587–1641.
    [6] W. Craig,P. Guyenne,D. P. Nicholls and C. Sulem. Hamiltonian long wave expansionsfor water waves over a rough bottom. Proc. R. Soc. A, 2005, 461:839–873.
    [7] A. Bensoussan,J. L. Lions and G. Papanicolaou. Asymptotic analysis for periodic struc-tures. North-Holland, Amsterdam, 1978.
    [8] W. H. Fleming. The cauchy problem for a nonlinear first order partial differential equation.J. Differential Equations, 1969, 5:515–530.
    [9] W. H. Fleming. Nonlinear Partial Differential Equations. Probabilistic and Game TheoreticMethods. Roma: Problems in Nonlinear Analysis, C. I. M. E., Ed. Cremonese, 1971.
    [10] W. H. Fleming and R. Rishel. Deterministic and Stochastic Optimal Control. Berlin:Springer, 1975.
    [11] A. Friedman. Differential Games. No 18, Regional Conference series in mathematics, AMS,Providence, R.I.
    [12] A. Friedman. The cauchy problem for first order partial differential equations. Ind. Univ.Math. J., 1973, 23:27–40.
    [13] R. Isaacs. Differential Games. New York: Wiley, 1965.
    [14] S. H. Benton. The Hamilton-Jacobi Equations: A Global Approach. New York: AcademicPress, 1977.
    [15] G. A. Bliss. Lectures on the Calculus of Variations. Chicago: Univ. of Chicago Press, 1946.
    [16] H. Rund. The Hamilton-Jacobi Theory in the Calulus of Variations. NJ: Van Nostrand,Princeton, 1966.
    [17] L. C. Young. Lectures on the Calculus of Variations and Optimal Control Theory. Saunders:Philadelphia, 1969.
    [18] M.G. Crandall and P.-L. Lions. Condition d’unicite′pour les solutions ge′nc′ralise′es dese′quations de Hamilton-Jacobi du premier order. C.R.Acad.Sci.Paris, Se′r.I Math., 1981,292:183–186.
    [19] M.G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans.Amer. Math. Soc., 1983, 277:1–42.
    [20] M.G. Crandall, L.C. Evans and P.-L. Lions. Some properties of viscosity solutions ofHamilton-Jacobi equations. Trans. Amer. Math. Soc., 1984, 282:487–502.
    [21] R. Jensen. The maximum principle for viscosity solution of fully nonlinear second orderPDEs. Arch. Rat. Mash. Anal., 1988, 101(1):1–27.
    [22] R. Jensen,P. L. Lions and P. E. Souganidis. A uniqueness result for viscosity solutions ofsecond order fully nonlinear partial differential equations. Proc. Amer. Math. Soc., 1988,102:975–978.
    [23] P. L. Lions and P. E. Souganidis. Viscosity Solutions of Second-order Equations, StochasticControl and Stochastic Differential Games, volume 1988, 10. Stochastic Differential Sys-tems, Stochastic Control Theory and Applications (W. H. Fleming and P. L. Lions, eds.).IMA Vol. Math. Appl., Springer, Berlin.
    [24] R. Jensen. Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differ-ential equations. Indiana Univ. Math. J., 1989, 38:629–667.
    [25] M. G. Crandall. Quadratic forms, semidifferential and viscosity solutions of fully nonlinearelliptic equations. Ann. I. H. Poinvare′Anal. Non Line′aire, 1989, 6:419–435.
    [26] M. G. Crandall, P.L. Lions and P. E. Souganidis. Maximal solutions and universal boundsfor some quasilinear evolution equations of parabolic type. Arch. Rat. Mech. Anal., 1989,105:163–190.
    [27] M. G. Crandall, R. Newcomb and Y. Tomita. Existence and uniqueness of viscosity solu-tions of degenerate quasilinear elliptic equations in Rn. Appl. Anal., 1989, 34:1–23.
    [28] P.-L. Lions. Generalized Solutions of Hamilton-Jacobi Equations. Pitman: Research Notesin Mathematics, 1982.
    [29] M. Bardi and F. Da Lio. On the bellman equation for some unbounded control problems.NoDEA Nonlinear Differential Equations Appl., 1997, 4:491–510.
    [30] N. Barron and R. Jensen. Semicontinuous viscosity solutions for Hamilton-Jacobi equationswith convex Hamiltonians. Comm. Partial Differential Equations, 1990, 15:1713–1742.
    [31] N. Barron and R. Jensen. Optimal control and semicontinuous viscosity solutions. Proc.Amer. Math. Soc., 1991, 113:397–402.
    [32] G. Barles. Uniqueness for first-order Hamilton-Jacobi equations and hopf formula. J. Differ-ential Equations, 1987, 69:346–367.
    [33] I. Capuzzo-Dolcetta and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations withstate contraints. Trans. Amer. Math. Soc., 1990, 318:643–683.
    [34] M. G. Crandall, H. Ishii and P.-L. Lions. Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited. Japan: J. Math. Soc., 1987, 39:581–596.
    [35] M. G. Crandall and P.-L. Lions. On existence and uniqueness of solutions of Hamilton-Jacobiequations. Nonlinear Anal., 1986-10:353–370.
    [36] M. G. Crandall and P.-L. Lions. Remarks on the existence and uniqueness of unboundedviscosity solutions of Hamilton-Jacobi equations. Illinois J. Math., 1987, 31:665–688.
    [37] H. Ishii. Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations. IndianaUniv. Math. J., 1984, 33:721–748.
    [38] H. Ishii. Viscosity solutions and their applications. Sugaku Expositions, 1997, 10:123–141.
    [39] M.G.Crandall and P.-L.Lions. On existence and uniqueness of solutions of Hamilton-Jacobiequations. Nonlin. Anal. TMA, 1986, 10:353–370.
    [40] H. Ishii. Remarks on existence and uniqueness of viscosity solutions of Hamilton-Jacobiequations. Bull. Fac. Sci. Eng. Chuo Univ., 1983, 26:5–24.
    [41] H. Ishii. Existence and uniqueness of solutions of Hamilton-Jacobi equations. Funkcial.Ekvac., 1986, 29:167–188.
    [42] M. G. Crandall and P.L. Lions. Two approximations of solutions of hamilton-jacobi equa-tions. Math. Comp., 1984, 43:1–19.
    [43] D. Nunziante. Existence and uniqueness of unbounded viscosity solutions of parabolic equa-tions with discontinuous time-dependence. Nonlinear analysis, TAM, 1992, 18:1033–1062.
    [44] D. Nunziante. Uniqueness of viscosity solutions of fully nonlinear second-order parabolicequations with discontinuous time-dependence. Differential Integral Equations, 1990, 3:77–91.
    [45] M. Bostan. Periodic solutions for evolution equations. Electronic J. Differential EquationsMonograph, 2002, 3:41 pp.
    [46] A. Fathi. Weak KAM Theorem in Lagrangian Dynamics. Seventh Preliminary Version, 2006.
    [47] H. Ishii. Homogenization of the cauchy problem for Hamilton-Jacobi equations. Stochasticanalysis, control, optimization and applications, Systems Control Found. Appl., BirkhauserBoston, Boston, MA, pages 1999, 305–324.
    [48] H. Mitake. Large time behavior of solutions of Hamilton-Jacobi equations with periodicboundary data. preprint.
    [49] J.-M. Roquejoffre. Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations. J. Math. Pures Appl., 2001, 80(1):85–104.
    [50] H. Ishi and H. Mitake. Two remarks on periodic solutions of Hamilton-Jacobi equations.preprint.
    [51] M. Bostan, G. Namah. Time periodic viscosity solutions of Hamilton-Jacobi equaitons.Commun. Pure Appl. Anal., 2007, 6(2):389–410.
    [52] M. G. Crandall, H. Ishii and P.-L.Lions. User’s guide to viscosity solutions of second orderpartial differential equations. Bull. Amer. Math. Sco., 1992, 27:1–67.
    [53] Petri Juutinen. On the definnition of viscosity solutions for parabolic equations. Amer. Math.Soc., 2001, 129(10):2907–2911.
    [54] M. G. Crandall. Viscosity solutions: a primer. Viscosity solutions and applications (Monte-catini Terme, 1995), Berlin: Lecture Notes in Math., 1660, Springer, 1997:1–43.
    [55] H. Ishii and P. E. Souganidis. Generalized motion of noncompact hypersurfaces with velocityhaving arbitrary growth on the curvature tensor. To?hoku Math. J., 1995, 47:227–250.
    [56] P. Juutinen, P. Lindqvist and J. Manfredi. On the equivalence of viscosity solutions andweak solutions for a quasilinear equation. SIAM J. Math. Anal., 2001, 33:699–717.
    [57] H. Bohr. Zur theorie der fastperiodischen funktionnen i-iii. Acta Math, 1925-1926, 45,19-127; 46,101-214; 47,237-281.
    [58] A. S. Besicovitch. Almost Periodic Functions. New York, Dover, 1954.
    [59] S. Bochner. Beitra¨ge zur theorie der fastperiodischen funktionen. Math. Ann., 1927, 96:119–147.
    [60] S. Bochner. A new approach to almost periodicity. Proc. Nat. Acad. Sci. U.S.A., 1962,48:2039–2041.
    [61] S. Bochner and J. von Neumann. Almost periodic functions in groups ii. Trans. Amer. Math.Soc., 1935, 37:21–50.
    [62] N. N. Bogoliubov and Y. A. Mitropolskii. Asymptotic Methods in the Theory of NonlinearOscillations. New York: Gordon and Breach, 1961.
    [63] J. Favard. Sur le′s equations diffe′rentielles a` coefficients pre′sque-pe′riodiques. Acta Math,1935, 37:31–81.
    [64] M. Fre′chet. Les functions asymptotiquement pre′sque-pe′riodiques. Rev. Sci., 1941, 79:341–354.
    [65] M. Fre′chet. Les functions asymptotiquement pre′sque-pe′riodiques contunues. C. R. Acad.Sci. Paris, 1941, 213:520–522.
    [66] W. F. Eberlein. Abstract ergodic theorems and weakly almost periodic functions. Trans.Amer. Math. Soc., 1949, 69:217–240.
    [67] G. H. Meisters. On almost periodic solutions of a class of differential equations. Proc. Amer.Math. Sooc., 1959, 10:113–119.
    [68] C. Corduneanu. Almost Periodic Functions. New York: Chelsea Publishing Company, Firsted., 1968, Second ed., 1989.
    [69] A. M. Fink. Almost Periodic Differential Equations. New York: Lecture Notes in Mathemat-ics 377, Springer-verlag, Berlin Heidelberg, 1974.
    [70] T.Yoshizawa. Stability properties in almost periodic syetem of functional differential euqa-tions. Lecture Notes in Mathmatics, 1980, 799.
    [71] D.Sarason. Remotely almost periodic functions. Conttemporary Mathematics, 1984,32:237–242.
    [72] D. Sarason. Toeplitz opeators with semi-almost periodic symbols. Duke. Math. J., 1977,44:357–364.
    [73] H. O. Cordes and D. A. Williams. An algebra of pseudo-differential operators with non-smooth symbols. Pacific J., 1978, 78:279–290.
    [74] D. Sarason. Toeplitz operators with piecewise quasicontinuous symbols. Indiana Univ. Math.J., 1977, 26:817–838.
    [75] C. Zhang and F. Yang. Remotely almost periodic solutions of parabolic inverse problems.Nonlinear Analysis, 2006,65:1613–1623.
    [76] C. Zhang. Pesudo Almost Periodic Functions and Their Applications. [Ph.D. Thesis]. Uni-versity of Western Ontario, 1992.
    [77] J. F. Berglund,H. D. Junghenn and P. Milnes. Analysis on Semigroup, Funciton Spaces,Compactification, Representations. New York: Wiley, 1989.
    [78] B. M. Levitan. Almost Periodic Functions. Higher Education Press, 1956.
    [79] S. Zaidman. Almost Periodic Functions in Abstract Spaces. Pitman, Boston, 1985.
    [80] C. Zhang. Almost Periodic Type Functions and Ergodicity. Boston Dordrecht London BeijingNew York: Science Press/Kluwe, 2003.
    [81] C. He. Almost Periodic Differential Equations. Beijing: Higher Education Press, 1992.
    [82] D. Piao. Periodic and almost periodic solutions for differential equations with re?ection ofthe argument. Nonlinear Analysis, 2004, 57:633–637.
    [83] Z. Teng. The almost periodic kolmogorov competitive systems. Nonlinear Analysis, 2000,42:1221–1230.
    [84] G. Seifert. Second order neutral delay differential equations with piecewise constant timedependence. J. Math. Anal. Appl., 2003, 281:1–9.
    [85] R. P. Agarwal, Jialin Hong and Ying Liu. A class of ergodic solutions of nonlinear dif-ferential equations and numerical treatment. Mathematical and Computer Modelling, 2000,32:493–506.
    [86] A. I. Alonso, Jialin Hong and R. Obaya. Almost periodic type solutions of differentialequations with piecewise constant argument via almost periodic type sequences. AppliedMathematical Letters, 2000, 12:131–137.
    [87] R. Yuan. Stability and almost periodic solutions of neutral functional differential equationswith infinite delay. Acta Mathematicae Applicatae Sinica, 1998, 14(1):68–73.
    [88] J. Hong and C. Nunez. The almost periodic type differential equations. Mathl. Comput.Modelling, 1998, 28(12):21–31.
    [89] B. Guo and R. Yuan. On existence of almost periodic solution of Ginzburg-Landau equation.Communications in Nonlinear Science and Numerical Simulation, 2000, 6:74–79.
    [90] E. Ait Dads and O. Arino. Exponential dichotomy and existence of pseudo almost periodicsolutions of some differential equations. Nonlinear Analysis, 1996, 27(4):369–386.
    [91] Miklos Farkas,John R. Grarf and Chuanxi Qian. Asymptotic periodicity of delay differen-tial equations. J. Math. Anal. Appl., 1998, 226:150–165.
    [92] C. F. Muckenhoupt. Almost-periodic function and vibrating systems. J. Math. Phys., 1929,8:163–198.
    [93] S. Bochner. Fast-periodische losungen der wellengleichung. Acta. Matm., 1934, 62:227–237.
    [94] L. Amerio. Quasi-periodicita` degli integrali ad energia limitata dell’equazione delle onde,con termine noto quasi-periodico i,ii,iii. Rend. Accad. Naz. Dei Lincei, 1960, 28.
    [95] S. Bochner. Almost-periodic solutions of the inhomogeneous wave equation. Proc. Nat.Acad. Sei., U. S. A., 1960, 46:1233–1236.
    [96] S. Zaidman. Sur la presque-pe′riodicite′des solutions de l’e′quation non homoge`ne des ondes.J. Math. and Mech., 1959, 8:369–382.
    [97] C. Foiab and S. Zaidman. Almost-periodic solutions of parabolic systems. Ann. ScuolaNorm. Sup. Pisa, (1961, 15):247–262.
    [98] C. Carminati. Forced systems with almost periodic and quasiperiodic forcing term. NonlinearAnalysis, TMA, 1998, 32:727–739.
    [99] M. S. Berger and Y. Y. Chen. Forced quasiperiodic and almost periodic oscillations of non-linear duffing equations. Nonlinear Analysis, TMA, 1992, 19:249–257.
    [100] M. S. Berger and Y. Y. Chen. Forced quasiperiodic and almost periodic oscillations fornonlinear systems. Nonlinear Analysis, TMA, 1993, 21:949–965.
    [101] K. Schmitt and J. R. Ward. Almost periodic solutions of nonlinear second order differentialequations. Results in Mathematics, 1992, 21:191–199.
    [102] P. W. Bates,P. C. File, X. Ren and X. F. Wang. Traveling waves in a convolution modelfor phase transitions. Arch. Rational Mech. Anal., 1997, 138:105–136.
    [103] X. Chen. Existence, uniqueness and asymptotic stability of traveling waves in nonlocalevolution equations. Adv. Differential Equations, 1997, 2:125–160.
    [104] P. C. File and J. B. Mcleod. The approach of solutions of nonlinear diffusion equations totraveling front solutions. Arch. Rational Mech. Anal., 1997, 65:335–361.
    [105] P.-L. Lions and P.E. Souganidis. Fully nonlinear stochastic partial differential equations.C.R. Acad. Sci. Paris Ser., 1998, 326:1085–1092.
    [106] P.-L. Lions and P.E. Souganidis. Fully nonlinear stochastic partial differential equations:Non-smooth equations and applications. C.R. Acad. Sci. Paris Ser., 1998, 327:735–741.
    [107] M.Bardi,M.G.Crandall,L.C.Evans, H.Mete Soner and P.E.Souganidis. Viscosity Solu-tions and Applications. Lecture Notes in Mathematics, 1995.
    [108] Thomas Stro¨mberg. On viscosity solutions of the Hamilton-Jacobi equation. Hokkaidomathematical journal, 1999, 28:475–506.
    [109] Banu Baydil.’Viscosity Solutions’- An Introduction to the Basic of the Theory. [Master ofScience Thesis]. Turkey: Sabanci University, 2002.
    [110] P.E. Souganidis. Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differen-tial Equations, 1985, 56:345–390.
    [111] G. Barles. Solutions de Viscosite′des e′quations de Hamilton-Jacobi. Paris: Springer-Verlag,1994.
    [112] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. With Appendices by Maurizio Falcone and Pierpaolo Soravia.Boston: MA, Systems & Control: Foundations & Applications. Birkha¨user Boston, Inc.,1997.
    [113] H. Ishi and H. Mitake. Representation formulas for solutions of Hamilton-Jacobi equationswith convex Hamiltonians. Indian Univ. Math. J., 2007, 56(5):2159–2184.
    [114] H. Ishii. Perron’s method for Hamilton-Jacobi equations. Duke Math. J., 1987, 55:369–384.
    [115] M. G. Crandall and H. Ishii. The maximum principle for semicontinuous functions. Differ-ential Integral Equations, 1990, 3:1001–1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700