用户名: 密码: 验证码:
体积拉伸流场中PS/LLDPE共混物的强制增容及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料共混改性是材料加工领域经久不衰的课题。在研究与开发新型高性能聚合物合金的同时,也需要协调资源,环境与能源之间的关系,实现聚合物产业的真正的可持续发展。探索高效循环利用聚合物的途径是近年来的一个重要的发展趋势。对于多组分不相容聚合物共混物来说,较弱的相容性会极大地限制其应用范围。其中一种值得关注的方法是在其成型过程中,通过加工参数的调控,进而改变物理场,从而最大程度地提升组分间的相容性,最终简便,高效,环保地实现聚合物合金的高性能化。
     常规塑料混炼改性普遍采用螺杆机械,主要受到剪切力场支配,不同组分的熔体只能在层与层之间进行分散,对共混体系的相容性提高有限。而新型的体积拉伸流变技术的出现,实现了塑料加工过程由剪切力场支配到拉伸形变支配的重大转变。从而使得聚合物的共混体系在熔融塑化过程中能够突破层与层之间的界限,能够更有效的发生链段的空间扩散及渗透,并且改善了分散相熔体液滴的破碎效果以及相界面的结合能力,实现多组分聚合物之间相容性的提升。
     基于文献调研,在选定双转子拉伸流变挤出机为加工设备,以聚苯乙烯(PS)和线性低密度聚乙烯(LLDPE)为研究对象前提下,提出以下几种方案:改变PS和LLDPE的组分;更改双转子拉伸流变挤出机的转速;变换物料在双转子拉伸流变挤出机中的停留时间;改换双轴拉伸流变挤出设备的加工温度;在PS/LLDPE共混加工过程中添加不等量的相容剂SEBS等。对PS/LLDPE共混物的微观形貌,力学性能,热性能,以及结晶性能,相容性进行了系统的研究,最终结果表明,“加工参数-微观形态-热、力学性能-相容性”之间存在密切关系。通过加工参数的调控,并且通过加工参数的调控,最终实现了体积拉伸流场中PS/LLDPE不相容共混物的强制增容。
     研究发现,通过双转子拉伸流变挤出机加工后,不同配比的PS/LLDPE两相共混物除了存在“海-岛”结构,还出现了独特的“蜂-巢”结构,不同组分的“蜂-巢”结构形状不同,而此结构在PS和LLDPE两相配比为20和80时最为稳定,这种结构能够在一定程度上提升两相不相容结构的稳定性。可以通过提高转速至不超过30Hz,或者转速在10-15Hz下延长停留时间,控制加工温度在180oC,以及添加相容剂SEBS的方式来完善该结构,从而提升体系的力学性能和相容性。
     结果显示,PS的Tg值随着自身含量减少从纯料的93.4oC降至86.0oC;转速为26Hz时的LLDPE的Tg值要高于13Hz下的Tg值13.7oC;10Hz时,停留时间的增加使得共混物的弯曲强度从7.56MPa提升至8.13MPa,停留时间越长,PS的Tg值越低;180oC时PS的Tg值为76oC,LLDPE的Tg值为-30.9oC,此时体系的相容性最好;相容剂SEBS含量为20%时,体系的断裂伸长率从不含SEBS时的8.7%达到260.34%,冲击强度从4.2MPa升至52.6MPa,PS的Tg值为86.6oC,而LLDPE的Tg值为-54.4oC,相容性达到最佳。
Polymer blends modification is the enduring issue in polymer processing field. In orderto achieve the truly sustainable development of polymer industry, new high-performancepolymer blends are researched and developed, meanwhile, the relationships that among re-source, environment and energy should be coordinated. It is a significant development ten-dency that exploring efficient means of recycling polymers in recent years. Referring to mul-ticomponent incompatible polymer blends, the application areas would be greatly restrictedfor its poor compatibility. There is an attractive method. Physical field is changed by control-ling processing parameters, so that the compatibility among components can be enhanced tothe maximum. In other words, the high performance of polymer blends can be achieved sim-ply, efficiently, and environmental friendly.
     The screw processing machine is commonly used in conventional polymer blendingmodification, which is dominated by shear force field. Molten fluid of different componentscan only be dispersed among layers, it will improve the compatibility of polymer blends lim-ited. A new volume elongation rheological technology comes out and achieves the significantchange of plastics processing procedure, which from dominated by shear force field to domi-nated by elongation force field. It makes polymer blends break the boundary among layersduring melting and plasticating process, the diffusion and penetration of chains can be ful-filled more efficiently in space, moreover, it is improved with the breaking effect of the dis-persed phase molten droplet and the combining ability on the phase boundary, the compatibil-ity among multicomponent polymers is promoted.
     Based on documents research, in the premise of choosing twin-rotor extruder dominatedby elongation rheology as the processing device, five experimental programs were proposed:altering the ratios of PS and LLDPE; changing the rotation speed of twin-screw extruderdominated by elongation rheology; extending the residence time of materials in thetwin-screw extruder dominated by elongation rheology; Altering the processing temperaturein the twin-screw extruder dominated by elongation rheology; and adding different ratios ofunreact compatibility agent SEBS. The micromophology, mechanical properties, thermal per-formance, and crystality properties were all researched systematically, which all reflected thecompatibility properties. Final results showed that a close relationship existed in “processingparameters-micromophology-thermal, mechanical properties-compati bility”. Elongationalflow field induced forced compatibilization on Polystyrene/Linear low-density polyethyleneimmiscible blends were finally fulfilled through controlling processing parameters.
     It was shown in the research that, except “sea-island” structure, a particular “bee-comb”structure existed in PS/LLDPE blends, in which different component appeared with different“bee-comb” structures, the structure was in the most steady state especially when the ratio ofPS and LLDPE was20and80. Such structure could promote the stability of the two-phaseincompatible structure in a certain degree, which could be completed through four methods,such as raising the rotation speed to not more than30Hz; extending the residence time in thecase that the rotation speed was between10to15Hz; controlling processing temperature at180oC; and adding compatibilizer SEBS, so that the mechanical properties and compatibilitycould be promoted.
     The results also showed that the Tgvalue of PS decreased from93.4oC to86.0oC with thecontent dropping from100%to20%; the Tgvalue of LLDPE in the rotation speed of26Hzwas13.7oC higher than that of LLDPE in the rotation speed of13Hz; the flexural strength in-creased from7.56MPa to8.13MPa with the extending of residence time when the rotationspeed was10Hz, the longer of the residence, the lower of the Tgvalue of PS; the Tgvalue ofPS was76oC, while the Tgvalue of LLDPE was-30.9oC when the processing temperaturewas180oC, the compatibility of system was the best; The elongation at break of the systemincreased from8.7%to260.34%, and the impact strength of the system increased from4.2MPa to52.6MPa with the compatibilizer SEBS content raised from0%to20%, mean-while, the Tgvalue of PS was86.6oC, and the Tgvalue of LLDPE was-54.4oC, the compati-bility of system achieved the best.
引文
[1]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000:107-109
    [2]王国全,王秀芬.聚合物改性[M].北京:中国轻工业出版社,2000:1
    [3]何道纲,共混聚合物的相容性[J].塑料科技,1990,2:44-46
    [4] L. A. Utracki. Polymer alloys and blends. Thermodynamics and Rheology[M]. Münich,Vienna, New York: Hanser Publishers,1989:75-79
    [5] N. G. Gaylord. In copolymers, polyblends and composites[J]. Advances in chemistry se-ries,1975,142:76-84
    [6] D. R. Paul. In polymer blends[M]. New York: Academic Press,1978:35-62
    [7] M. Xanthos. Interfacial agents for multiphase polymer systems: Recent advance[J]. Pol-ymer Engineering and Science,1988,28(21):1392
    [8] J. W. Barlow. Polymer blends and alloys[J]. Macromolecular Symposia,1993,70-71(1):235-244
    [9] O. Olabisi, L. M. Robeson, M. T. Shaw. Polymer-polymer miscibility[M]. New York:Academic Press,1979:154
    [10]姜胶东.聚合物共混.Ⅱ.聚合物的相容性[J].高分子通报,1993,(3):178-179
    [11]赵孝彬,杜磊,张小平,等.聚合物共混物的相容性及相分离[J].高分子通报,2001,4:75-78
    [12]P. C. Hiemenz. Polymer chemistry[M]. The Basic Concepts, New York, Marcel DekkerInc,1984:505-582
    [13]H. R. Allcock, F. W. Lampe. Contemporary polymer chemistry[J]. Journal of PolymerScience: Polymer Letters Edition.1981,19(5):275-276
    [14]R. D. Deanin. Polyblends: Encyclopedia of Polymer[J]. Science and Technology, supple-ment.1992,2:458-484
    [15]唐萍,李光宪. Flory状态方程理论研究PS/PMMA/SAN相行为[J].高等学校化学学报.2000,21:136-139
    [16]沈家瑞,贾德民.聚合物共混物与合金[M].广州:华南理工大学出版社,1999:16-20
    [17]R. C Willemse. Co-continuous morphologies in polymer blends: a new model[J]. Polymer.1998,39(24):5879-5887
    [18]T. J Cavanaugh, K Buttle, J N Turner. The study of various styrene-butadiene copolymersas compatibilisers in bulk blends of polystyrene/polybutadiene[J]. Polymer.1998,39(18):4191-4197
    [19]J W Ten, A Rudin. A review of polyethylene-polypropylene blends and their compatibili-zation[J]. Advanced in Polymer Technology.1994,13(1):1-23
    [20]胡慧霞, PMMI/PVDF共混体系的相行为研究[D].浙江大学硕士学位论文,2008
    [21]J Gunton, M. San Miguel, P. S Sahni. The dynamics of first order phase transitions inphase transitions and critical phenomena[M]. New York: Academic Press,1978
    [22]J. W Cahn, J. E Hilliard. Free energy of a non-uniform system: Ⅰ. Interfacial free en-ergy[J]. Chemical Physics,1958,28:258-267
    [23]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1996
    [24]杜仕国.聚合物共混相容性研究进展[J].现代化工,2004,(5):43-48
    [25]卢秀萍,李树材,李治明. PVC/CPE共混体系相容性-形态-冲击强度关系的研究[J].高分子科学与工程,1998,4(6):51-54
    [26]许承威,袁幼菱,章淼晶.聚合物(3)-聚合物(2)-溶剂(1)体系中相互作用的研究Ⅰ聚氯乙烯-氯丁橡胶的相容性[J].合成橡胶工业,1989,12(1):34-38
    [27]B M Huerta-Martínez, E Ramírez-Vargas. Compatibility mechanisms between EVA andcomplex impact heterophasic PP-EPx copolymers as a function of EP content[J]. Euro-pean Polymer Journals,2005,41,519-525
    [28]王硕,刘哲,张明耀,等. SAN共聚物组成对PVC/ABS共混物相容性的影响[J].高分子学报.2007,1:31-36
    [29]柯清泉,严海标,陈名华,等.多相聚合物体系及其应用[J].现代塑料加工应用.2000,12(5):42-43
    [30]N. Petchwattana, S. Covavisaruch, S. Chanakul. Mechanical properties, thermal degrada-tion and natural weathering of high density polyethylene/rice hull composites compatib-lized with maleic anhydride grafted polyethylene[J]. Journal of Polymer Research,2012,19:9921
    [31]A. Marais, J. J. Kochumalayil, C. Nilsson, L. Fogelstr m, E. K. Gamstedt. Toward an al-ternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan withPLA[J]. Carbohydrate Polymers,2012,89(4):1038-1041
    [32]J. Lee, J. K. Kim, Y. Son. Evaluation of polypropylene grafted with maleic anhydride andstyrene as a compatibilizer for polypropylene/clay nanocomposites[J]. Polymer Bulletin,2012,68(2):541-551
    [33]N. Ayrilmis. Combined effects of boron and compatibilizer on dimensional stability andmechanical properties of wood/HDPE composites[J]. Composites Part B: Engineering,2013,44(1):745-747
    [34]S. Lin, W. N. Guo, C. Y. Chen, J. L. Ma, B. B. Wang. Mechanical properties and mor-phology of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blendscompatibilized by transesterification[J]. Meterials&Design,2012,36:604-605
    [35]J. P. Qu, H. Z. Chen, S. R. Liu, B. Tan, L. M. Liu, X. C. Yin, Q. J. Liu, R. B. Guo. Mor-phology study of immiscible polymer blends in a vane extruder[J]. Journal of AppliedPolymer Science,2013,128(6):3576-3585
    [36]A. R. Kakroodi, S. Leduc, D. Rodrigue. Effect of hybridization and compatibilization onthe mechanical properties of recycled polypropylene-hemp composites[J]. Journal of Ap-plied Polymer Science,2012,124(3):2494-2500
    [37]B. Imre, B. Pukánszky. Compatibilization in bio-based and biodegradable polymerblends[J]. European Polymer Journal,2013,49(6):1215-1218
    [38]S. Li, T. Liu, L. J. Wang, Z. B. Wang. Dynamically culcanized nitrile butadiene rub-ber/ethylene-vinyl acetate copolymer blends compatibilized by chlorinated polyethyl-ene[J]. Journal of Macromolecular Science, Part B: Physics,2013,52(1):13-20
    [39]T. Sadik, V. Massardier, F. Becquart, M. Taha. Polyolefins/poly (3-hydroxybutyrate-co-hydroxyvalerate) blends compatibilization: Morphology, rheological, and mechanicalproperties[J]. Journal of Applied Polymer Science,2013,127(2):1149
    [40]C Koning, M. V Duin, C Pagnoulle, R Jerome. Strategies for compatibilization of poly-mer blends[J]. Progress of Polymer Science,1998,(23):717-748
    [41]B. Nandan, B. Lal, K. N. Pandey. Miscibility behavior of poly(ether ether ketone)/poly(ether ketone) blends-thermal and morphological studies[J]. European PolymerJournal,2001,37(10):2147-2151
    [42]P. Szabó, E. Epacher. Miscibility, structure and properties of PP/PIB blends[J]. Materialsof Science&Engineering. A.2004,383(2):307-315
    [43]J. Y. Feng, C. M. Chan. Compatibility and properties of alternating ethylene-tetrafluoro-ethylene copolymer and poly (methyl methacrylate) blends[J].1997, Polymer,38(26):6371-6378
    [44]叶佳佳,杨青芳,张爱军,等.聚合物合金相容性的预测和表征[J].工程塑料应用,2007,35(12):82
    [45]吕亚非.高分子的相容性及其测定方法与评价[J].成都科技大学学报,1986:102-103
    [46]Kulshreshtha, B. P. Singh, Y. N. Sharma. Viscometric determination of compatibility inPVC/ABS polyblends Ⅰ. Viscosity-composition plots[J]. European Polymer Journal,1988,24(1):29-31
    [47]朱平平,杨海洋.稀溶液粘度法研究聚合物之间混溶性[J].功能高分子学报,1997,10(3):436-442
    [48]K. K. Chee. Determination of polymer-polymer miscibility by viscometry[J]. EuropeanPolymer Journal,1990,26(4):423-426
    [49]Z. H. Sun, W. Wang, Z. L. Feng. Criterion of polymer-polymer miscibility determined byviscometry[J]. European Polymer Journal,1992,28(10):1259-1261
    [50]P. P. Zhu. A new criterion of polymer-polymer miscibility detected by viscometry[J]. Eu-ropean Polymer Journal,1997,33(3):411-413
    [51]李雪娟,宋文生,刘翠云,等.稀溶液黏度法测定聚合物共混物相容性理论及应用[J].塑料工业,2007,35:285-287
    [52]S. C. Tai, N. Paul. S. R. Chen. Film and membrane properties of polybenzimida-zole(PBI)and polyarylate alloys[J]. Polymer Engineering and Science,2004,30(1):1-6
    [53]肖雪春,李文刚,黄象安. PET/PTT共混体系相容性的研究[J].合成纤维,2003,6:22-25
    [54]陈燕,陈群.聚(3-烃基丁酸酯)/聚氧化乙烯共混物非晶区相容性的固体核磁共振研究[J].高分子学报,2003,1:115-118
    [55]Y. He, N. Asakawa, Y Inoue. Biodegradable blends of high molecular weightpoly(ethylene oxide) with poly(3-hydroxypropionic acid) and poly(3-hydroxybutyric ac-id): a miscibility study by DSC, DMTA and NMR spectroscopy [J]. Polymer International,2000,49(6):609-617
    [56]Y. P. Singh, R. P. Singh. Compatibility studies on solutions of polymer blends by vis-cometric and ultrasonic techniques[J]. European Polymer Journal,1983,19(6):535-541
    [57]M. A. Sidkey, A. A. Yehia, N. A. Abd EI Malak, M. S. Gaafar. Compatibility studies onsome rubber blend systems by ultrasonic techniques[J]. Materials Chemistry and phusics,2002,74(1):23-32
    [58]K. A. Mazich, S. H. Carr. The effect of flow on the miscibility of a polymer blend[J].Journal of Apply Physics,1983,54:5511-5514
    [59]J. D. Katsaros, M. F. Malone, H. H. Winter. Extensional flow induced miscibility in apolymer blend[J]. Polymer Bulletin,1986,16:83-88
    [60]J. D. Katsaros, M. F. Malone, H. H. Winter. The effects of flow on miscibility in a blendof polystyrene and poly(vinyl methyl ether)[J]. Polymer Engineering and Science,1989,29:1434-1445
    [61]Z. Tadmor, C. G. Gogos.聚合物加工原理[M].北京:化学工业出版社,1990
    [62] F. N. Cogswell. Converging flow of polymer melts in extrusion dies[J]. Polymer Engi-neering and Science,1972,1:64-72
    [63]B. J. Bentley, L. G. Leal. An experimental investigation of drop deformation and breakupin steady, two-dimensional linear flows[J]. Journal of Fluid Mechanics,1986,167:241-283
    [64]P. H. M. Elemans, H. L. Bos, J. M. H. Janssen. Transient phenomena in dispersive mix-ing[J]. Chemical Engineering Science,1993,48(2):267-276
    [65]Oswald, G. Menges. Materials Science of polymers for engineers[M]. Hanser, Munish,1995
    [66]祝卫国,汪传生.单螺杆挤出机分散混炼的改进[J].特种橡胶制品,2003,24(4):31-34
    [67]H. P. Grace. Dispersion phenomena in high-viscosity immiscible fluid systems and appli-cation of static mixers as dispersion devices in such systems[J]. Chemical EngineeringCommunications,1982,14(3):225-277
    [68]R. R. Lagnado, L. G. Leal. The stability of two-dimensional linear flows[J]. Physics ofFluids,1984,27(5):1094
    [69]H. A. Stone. Dynamics of Drop Deformation and Breakup in Viscous Fluids[J]. AnnualReview of Fluid Mechanics,1984,26(4):65-102
    [70]J. M. Rallison. The deformation of small viscous drops and bubbles in shear flows[J].Annual Review of Fluid Mechanics,1984,16:45-46
    [71]J. M. H. Janseen, H. E. H. Mejijer. Droplet Breakup Mechanisms:Stepwise EquilibriumVersus Transient Dispersion[J]. Journal of Rheology,1993,37(4):597-608
    [72]J. Kang,T. G. Simth. Study of Breakup Mechanisms in Cavity Flow[J]. AICHE Journal,1996,42(3):649-659
    [73]C. E. Scott, C. W. Macosko. Model Experiments Concerning Morphology Developmentduring the Initial Stages of Polymer Blending[J]. Polymer Bulletin,1991,26(3):341-348
    [74]Luker, Keith. Summary result of a novel single screw compounder[A]. Society of PlasticsEngineers Annual Technical Conference: Plastics Encounter at ANTEC2007, ConferenceProceeding v12007
    [75]C. Carrot, J. Guillet, J.F. May, J.P. Puaux. Molding of the conveying of Solid Polymer inthe Feeding Zone of Intermeshing Co-rotating Twin Screw Extruder[J]. Polymer Engi-neering and Science,1993,33(11):572-580
    [76]吴大鸣,孟庆云,刘颖.原位气泡拉伸分散法研究[J].中国塑料,2004,18(4):59-63
    [77]C D. Han.聚合物加工流变学[M].北京:科学出版社,1985
    [78]P. J. Gramann, B. A. Davis, T. A. Osswald, C. Rauwenduaal. A New Dispersive and Dis-tributive Static Mixer for the Compounding of Highly Viscous Materials [A]. ANTEC-Conference, New York,1999
    [79]Y. Suzaka, Ooita. Mixing Device[P]. USP:4334783,1982-06-15
    [80]许政仓.我国塑料机械制造工业概况及展望[J].工程塑料应用,2002,30(7):51-53
    [81]吴大鸣,刘颖,李晓林等.精密挤出成型原理及技术[M].北京:化学工业出社,2004
    [82]C. I. Chung. Plasticating single-screw extrusion theory[J]. Polymer Engineering Science,1971,11:93-98
    [83]F. H. Zhu, L. Q. Chen. Studies on the theory of single-screw plasticating extrusion[J].Polymer Engineering Science,1991,31:1113-1116
    [84]C.劳温代尔,陈文瑛等译.塑料挤出[M].北京:轻工业出版社,1996
    [85]瞿金平.聚合物电磁动态塑化挤出方法及设备.中国专利90101034.0,1990;美国专利5217302,1993;欧洲专利044306B1,1995
    [86]瞿金平.电磁式聚合物动态注射成型方法及装置.中国专利ZL96108387.5,1999;美国专利005951928A,1999;俄罗斯专利2145543,2000;欧洲专利0818298,2000;澳大利亚专利711248,2000
    [87]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005
    [88]J. P. Qu, Y. H. Cai. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders[J], Polymer-Plastics Technology and Engineering,2006,45(10):1137-1142
    [89]J. P. Qu, G. S. Zeng, Y.H. Feng, G. Jing, H. Z. He, X.W. Cao. Effect of Screw Axial Vibra-tion on Polymer Melting Process in Single-Screw Extruders[J]. Journal of Applied Poly-mer Science,2006,100(5):3860-3876
    [90]J. P. Qu, B. S. Shi, Y. H. Feng, H. Z. He, Dependence of Solids Conveying on Screw Ax-ial Vibration in Single Screw Extruders[J], Journal of Applied Polymer Science,2006,102(3):2998-3007
    [91]J. P. Qu, Y. H. Feng, H. Z. He, G. Jin, X. W. Cao. Effects of the Axial Vibration of Screwon Residence Time Distribution in Single-Screw Extruders[J]. Polymer Engineering Sci-ence,2006,46(2):198-204
    [92]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报,1992,20(4):1-8
    [93]S. Bakalis, M. V. Karwe. Velocity distributions and volume flow rates in the nip andtranslational regions of a co-rotating, self-wiping, twin-screw extruder[J]. Journal of FoodEngineering,2002,5(4):273-282
    [94]刘廷华.双转子挤出可视化实验与非充满固体输送及熔融理论研究[D].北京化工大学博士研究生学位论文,1995
    [95]L. P. B. M. Jassen,耿孝正译.双转子挤出[M].北京:轻工业出版社,1987
    [96]R. P. Lagendijk, A. H. Hogt, A. Buijtenhuijs, A. D. Gotsis. Peroxydicarbonate modi-fic-ation of polypropylene and extensional flow properties[J]. Polymer,2001,42(25):10035-10043
    [97]李笑喃,刘鹏波.聚丙烯熔体拉伸流变行为的研究[J].塑料工业,2007,35(3):45-47
    [98]C. Carrot, J. Guillet, J. F. May, J. P. Puaux. Molding of the conveying of Solid Polymer inthe Feeding Zone of Intermeshing Co-rotating Twin Screw Extruder[J]. Polymer Engi-neering Science. Mid-June,1993,33(11):572-580
    [99]米德尔曼.聚合物加工基础[M].北京:科学出版社,1984
    [100]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国专利申请号:200810026054. X,2008
    [101] J. P. Qu, Z. T. Yang, X. C. Yin, H. Z. He, Y. H. Feng. Characteristics study of polymermelt conveying capacity in vane plasticization extruder[J]. Polymer-Plastics Technol-ogy and Engineering,2009,48(12):1269-1274
    [102] J. P. Qu, L. M. Liu, B. Tan, S. R. Liu, H. X. Chen, Y. H. Feng. Effect of dynamicalconverging channels on fiber organization and damage during vane extrusion of sisalfiber-reinforced polypropylene composites[J]. Polymer Composites,2012,33(2):185-191
    [103] J. P. Qu, G. Z. Zhang, H. Z. Chen, X. C. Yin, H. Z. He. Solid conveying in vane ex-truder for polymer processing: Effects on pressure establishment[J]. Polymer Engi-neering&Science,2012,52(10):2147-2156
    [104] J. P. Qu, X. Q. Zhao, J. B. Li, S. Q. Cai. Power consumption in the compacting processof polymer particulate solids in a vane extruder[J]. Journal of Applied Polymer Science,2013,127(5):3923-3932
    [105] J. P. Qu, S. F. Zhai, H. Y. Liu, H. Z. Chen, S. K. Jia, Z. Huang, Y. Q. Zhao, L. M. Liu.Bulk density of polymer solid granules in vane cylinder[J]. Journal of Applied PolymerScience,2013,130(2):842-850
    [106] J. P. Qu, N. Zhang, X. P. Yu, G. Z. Zhang, S. R. Liu, B. Tan, L. M. Liu. Experimentalinvestigation of polymer pellets melting mechanisms in vane extruders[J]. Advances inPolymer Technology,2013,32(2):21336
    [107] J. S. Wen, Y. H. Liang, Z. M. Chen. Numerical simulation of elongational flow in pol-ymer vane extruder[J]. Advanced Materials Research,2012,421:415-418
    [108]日本高分子学会.塑料加工原理及实用技术[M].北京:中国轻工业出版社,1991:174-179
    [109]张洪斌,周持兴.流场中聚合物共混体系液滴形变的理论模型[J].力学进展,1998,28(3):406-407
    [110] B. J. Buckmaster. Pointed bubbles in slow viscous flow[J]. Journal of Fluid Mechanics,1972,55:385-400
    [111] B. J. Buckmaster. The burst of pointed drops in slow viscous flow[J]. Journal of Ap-plied Mechanics,1973,40:18-24
    [112] A. Acrivos, T. S. Lo. Deformation and break up of a single slender drop in an exten-sional flow[J]. Journal of Fluid Mechanics,1978,86:641-672
    [113] E. J. Hinch, A. Acrivos. Steady of long slender droplets in two-dimensional strainingmotion[J]. Journal of Fluid Mechanics,1979,91:401-414
    [114] E. J. Hinch, A. Acrivos. Long slender drops in a shear flow[J]. Journal of Fluid Me-chanics,1980,98:305-328
    [115] S. M. Bhattacharjee, G. H. Fredrickson, E. Helfand. Phase separation of polymer solu-tions in elongational flow[J]. Journal of Chemical Physics,1989,90(6):3305-3315
    [116] C. W. Macosko. Rheology: Principles, measurements, and applications[M]. New York,VCH,1994
    [117] D. F. James. In recent developments in structured continua[M]. London, Longman,1990
    [118] J. Ferguson, Z. Kemblowski. Applied Fluid Rheology[M], New York,1991
    [119] A. V. Pendse, J. R. Collier.[J]. Elongational viscosity of polymer melts: A lubricatedskin-core flow approach[J]. Journal of applied Polymer and Science,1996,59:1305
    [120] H. W. Kim, A. Pendse, J. R. Collier. Polymer melt lubricated elongational flow[J].Journal of Rheology,1994,38(4):831
    [121] J. R. Collier, O. Romanoschi, S. Petrovan. Elongational rheology of polymer melts andsolutions[J].1998,69(12):2357-2367
    [122] V. Kitoko, M. Keentok, R. I. Tanner. Study of shear and elongational flow of solidify-ing polypropylene melt for melt for low deformation rates[J]. Korea-Australia Rheol-ogy Journal,2003,15(2):63-73
    [123] R. González-Nu ez, M. Arellano, F. J. Moscoso, V. M. González-Romero, B. D. Favis.Determination of a limiting dispersed phase concentration for coalescence inPA6/HDPE blends under extensional flow[J]. Polymer,2001,42(12):5485-5489
    [124] W. G. P. Mietus, O. K. Matar, C. J. Lawrence, B. J. Briscoe. Droplet deformation inconfined shear and extensional flow[J]. Chemical Engineering Science,2002,57(7):1217-1230
    [125] A. Kirchberger, H. Münstedt. Droplet deformation under extensional flow in immis-cible and partially miscible polymer blends based on poly(syrene-co-acrylonitrile)[J].Journal of Rheology,2010,54(3):687-704
    [126] J. D. Katsaros, M. F. Malone, H. H. Winter. Extensional flow induced miscibility in apolymer blend[J]. Polymer Bulletin,1986,16:83-88
    [127] C. Lacroix, M. Grmela, P. J. Carreau. Morphological evolution of immiscible polymerblends in simple shear and elongational flows[J]. Journal of Non-Newtonian FluidMechanics,1999,86(1):37-59
    [128] F.N. Cogswell, Converging flow of polymer melts in extrusion dies[J], Polymer Engi-neering and Science.1972,12(1):64-73
    [129] D.M. Binding, An approximate analysis for contraction and converging flows[J]. Jour-nal of Non-Newtonian Fluid Mechanics,1988,27(2):173-189
    [130] M.E. Mackay, G. Astarita, Analysis of entry flow to determine elongation flow proper-ties revisited[J]. Journal of Non-Newtonian Fluid Mechanics,1997,70(3):219-235
    [131] Y. H. Kim, M. Okamoto, T. Kotaka, T. Ougizawa, T. Tchiba, T. Inoue. Polymer,2000,41(1):4747-4749
    [132] S. Filipe, M. T. Cidade, J. M. Maia. Uniaxial extensional flow behavior of immiscibleand compatibilized polypropylene/liquid crystalline polymer blends[J]. RheologicalActa,2006,45:281-289
    [133]王传洋.剪切与拉伸流场中HDPE/PA6混合物形态演变研究[J].苏州大学学报,2005,25(4):19-21
    [134]钟磊,梁基照.聚合物流体拉伸流变测量技术的进展[J].材料导报A:综述篇,2011,25(1):108
    [135] Z. Stary, H. Münstedt. Morphology development in PS/LLDPE blend during and afterelongational deformation[J]. Journal of Polymer Science Part B: Polymer Physics,2008,46(1):16-27
    [136]包亦望,金宗哲.脆性的定量化和冲击模量[J].材料研究学报.1994,8(5):420-422
    [137]杨华明,曹建红,胡岳华,等. PP/Talc共混材料的非等温结晶动力学[J].高分子材料科学与工程,2004,20(4):174
    [138]黄利.单轴叶片挤出机加工的PS/HDPE合金形态结构及性能的研究[D].广州:华南理工大学硕士学位论文,2010
    [139]杨其,田野春,毛益民,等. PP/LLDPE共混体系的相容性及结晶行为[J].高分子材料科学与工程.2004,20(5):157
    [140]李象晋. X射线晶体衍射实验[J].物理实验.1985,5(1):30-33
    [141]袁玉珍,邓尚民.布拉格方程在高聚物结构研究中的应用[J].工科物理.1998,8(3):34-35
    [142]李忠明. GEP/PO共混物的原位成纤及其形态-结构与性能[D].四川大学博士学位论文,2003
    [143]张爽,冯钠,刘俊龙,等.原位成纤复合材料研究进展[J].橡塑技术与装备,2005,31(12):25-29
    [144]余焜.广义布拉格方程及其应用[J].理化检验-物理分册.2003,39(4):197
    [145]伍青,张启兴,卢泽俭,等.聚合所得初生聚乙烯的晶型[J].高等化学学报,1995,(16):823-825
    [146]卢琰,秦川,景遐斌,等.线性低密度聚乙烯在于丁苯橡胶的共混体系中的结晶行为[J].应用化学,1989,6(6):38-43
    [147] Z. H.Wu, Y. Q. Zhao, G. Z. Zhang, Z. T. Yang, J. P. Qu. Multifractal analysis on disper-sion of immiscible high-density polyethylene/polystyrene blends processed via poly-mer vane plasticating extruder[J]. Journal of Applied Polymer Science,2013,130(4):2328-2335
    [148]宫崎兴二.建筑科学百科[M].北京:中国建筑出版社,2003,87
    [149]黎学东,陈鸣才,黄玉惠,等. PP/PA6原位成纤复合材料Ⅱ.加工条件对性能,形态的影响[J].复合材料学报,1998,15(2):65-66
    [150]沈勇.聚苯乙烯(PS)/聚烯烃(PO)合金的制备[D].四川大学硕士学位论文,2004
    [151] G.霍尔登,等.热塑性弹性体[M].化学工业出版社,2000:294-295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700