用户名: 密码: 验证码:
氮化物中空纤维膜制备及膜蒸馏应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业化的快速发展和人口的迅速膨胀,世界各国对淡水资源的需求日益增加,“向海洋要水”已经成为全球的一个共识。而膜蒸馏海水淡化技术作为解决水资源紧缺的一种新兴技术,越来越受到人们的广泛关注。目前,用于膜蒸馏海水淡化应用的膜材料主要分为高分子聚合物膜和陶瓷膜。高分子聚合物膜的热稳定性和化学稳定性差,而且在海水中微生物等作用下易腐蚀、膜寿命短。与高分子膜相比,陶瓷膜具有寿命长、耐高温、抗微生物能力强、化学稳定性好(耐酸碱腐蚀、有机溶剂等)、机械强度高等优点,因此陶瓷膜在海水淡化领域中的应用,近些年来越来越受到人们的重视。目前对于陶瓷膜的研究,主要集中在氧化物,包括氧化铝、氧化锆、氧化钛、二氧化硅等等。为了保证膜在膜蒸馏应用中具有高的渗透通量,膜必须具有高的孔隙率,但高孔隙率的氧化物陶瓷膜强度低,膜在组装和封接的过程中易折断,不易操作,而且传统膜的制膜工艺比较复杂,设备大,制备成本高,也限制了其广泛应用。
     本文是在湿法纺丝成型的基础上,采用相转化与烧结相结合的方法第一次成功地制备了氮化物陶瓷中空纤维膜。此工艺过程简单,一步成型,简化了多孔膜的制备工艺,降低了制备成本。制备的氮化硅和β-sialon陶瓷中空纤维膜孔隙率大、强度高、渗透性能优异。同时本文是首次将氮化硅和β-sialon中空纤维进行疏水性表面改性并应用于膜蒸馏实验中,这部分工作为非氧化物陶瓷膜在膜蒸馏应用方面的后续研究奠定了基础。
     第一章主要介绍了陶瓷浆料的分散、流变学特性及影响浆料粘度和流动性的主要因素。其次介绍了几种制备多孔陶瓷的传统方法以及相转化法,重点介绍了膜蒸馏工艺的发展、现状、原理、分类及所用的膜材料,最后提出了本文的主要思路和研究内容。
     第二章主要介绍了实验原料、制备工艺、膜制备设备以及表征设备等。
     第三章主要研究了分散剂种类、煅烧处理、分散剂含量、固含量以及球磨时间等对氮化硅陶瓷浆料的影响。通过沉降实验我们最终确定分散剂O-(2-氨丙基)-O’-(2-甲氧基乙基)聚丙二醇(AMPG)对氮化硅粉体的分散效果最好,而且600℃/6h煅烧处理能显著增加粉体表面的氧含量,降低浆料的粘度、提高流动性。浆料的流变特性测试结果表明:浆料的最佳分散剂含量为4wt.%,而且不随固含量变化;浆料球磨16h具有最佳的流动性,通过优化的浆料固含量可以达到50vo1.%,并且浆料仍保持低粘度和好的流动性。
     第四章是在氮化硅陶瓷浆料稳定分散的基础上,通过相转化与烧结相结合的方法制备了氮化硅中空纤维膜。探讨了陶瓷粉体与粘结剂的比值、浆料的粘度等对氮化硅陶瓷中空纤维膜的形貌、强度、孔隙率、孔径分布以及渗透性能的影响。制备的氮化硅膜管具有典型的非对称结构,靠近内外表面处为指状孔层,中间层为海绵状结构。随着陶瓷粉体与粘结剂比值的增大,浆料的粘度增加,陶瓷纤维外表面处的指状孔逐渐减小,甚至完全消失,而烧结后的膜管外表面逐渐趋向致密化。当陶瓷粉体与粘结剂的比值为1/7时,纤维具有优异的气体和水渗透性能、弯曲强度高(290MPa)、孔隙率大(50%)和孔径分布窄(平均孔径:0.74μm)。此纤维是最适合膜蒸馏应用的理想膜材料。
     第五章研究了氮化硅陶瓷中空纤维膜的表面改性以及膜蒸馏应用。采用氟硅烷对纤维表面进行改性,改性后的膜管水接触角从56°变为136°,红外光谱在膜表面上也探测到了碳和氟的存在。渗透测试表明膜表面额外的氟硅烷层增加了气体渗透的阻力但并没有严重影响气体渗透,而氟硅烷改性对水渗透有很大的影响,改性后直到气体压力达到3.25bar时膜管才有少量的水透过。上述这些结果都充分的说明了膜管疏水性能的获得。最后,我们采用真空膜蒸馏(VMD)和直接接触式膜蒸馏(DCMD)两种方式对所制备的膜进行了MD脱盐实验。在VMD中,探讨了温度、盐溶液浓度、真空度等因素对MD性能的影响。膜表现了优异的MD性能,当盐溶液浓度为4wt.%、温度为80℃、渗透端真空度保持在0.02bar时,膜的渗透通量达到679L/m2·day,截留率达到99%以上,而且膜具有很好的长期稳定性。而在DCMD中,膜的通量只有VMD的35%左右,这主要是由于DCMD存在温度极化效应,MD驱动力减小,而且膜两端温度不稳定,难以控制。VMD虽然需要额外提供一定的能量,但是优异的MD性能可以弥补这方面的不足。
     第六章介绍了相转化与烧结法对β-sialon中空纤维膜的制备以及膜蒸馏应用。制备的纤维膜具有典型的结构:靠近内表面为指状孔层,而外表面为海绵状孔层。膜管具有优异的渗透性能和机械强度,1600℃/2h烧结的Z=2的纤维符合膜蒸馏用膜的要求。经氟硅烷表面改性后,膜管具有优异的疏水性能,成功地应用于直接接触式膜蒸馏海水淡化中并取得了优异的膜蒸馏性能。当盐溶液浓度为4wt.%、热料液温度为80℃,渗透端温度为20℃时,膜蒸馏通量达到10.76L/m2·h(258L/m2·day),截留率能维持在99.5%以上,因此β-sialon中空纤维膜在膜蒸馏海水淡化应用中也有很大的潜力。
     第七章对全文进行了简要的总结,提出了工作中的不足及对未来工作的展望。
With the rapid development of the global industrialization and the expansion of the population, the demand for fresh water is increasing all over the world. Obtaining fresh water from the sea has become a global consensus. More and more people pay attention to the membrane distillation desalination technology which is regarded as a new technology to solve the scarce problem of water resources. At present, membrane materials applied in membrane distillation process can be divided into two kinds: polymer membrane and ceramic membrane. As we known, the thermal and chemical stability of the polymer membrane are very bad, what is more, the membrane is very easy to be corroded when in contact with microorganisms, so its life time is very short. Compared with the polymer membrane, ceramic membrane has many advantages, such as longer life time, better high temperature resistant, stronger anti-microbial capability, better chemical stability (acid and alkali corrosion resistant, organic solvent resistant) and high mechanical strength. Therefore, ceramic membrane has attracted more and more attention in the field of seawater desalination in recent years. Now the researches of ceramic membrane mainly focus on the oxide, including alumina, titania, silica, zirconia and so on. In order to ensure that the membrane has a high permeate flux in the application of membrane distillation, the membrane must have high porosity. But the mechanical strength of the oxide ceramics is very low at high porosity, which means that the membranes are easy to break in the process of membrane assembling and sealing. What is more, the preparation process of traditional membrane is more complex and the equipment is very big, which leads a high cost and limited application scope.
     This thesis is based on the process of wet spinning, non-oxide nitride hollow fiber membranes have been successfully prepared by a combined phase-inversion and sintering method for the first time. This process is very simple, one-step forming, and it can simplify the process in preparation of porous ceramic membranes. Therefore, the preparation cost can be greatly reduced. The prepared silicon nitride and β-sialon hollow fibers have large porosity, high strength and excellent permeate performance. At the same time, this study is the first time to fulfill the surface modification of silicon nitride and (3-sialon hollow fibers from hydrophilicity to hydrophobicity and the application of membrane distillation. This work lays a foundation for further researches of non-oxide ceramic membranes in membrane distillation applications.
     The first chapter mainly introduces the dispersion of the ceramic suspension, rheological properties and the main factors influencing the suspension viscosity and fluidity. Secondly, it simply describes several traditional methods and phase-inversion process in the preparation of porous ceramic, and detailedly introduces the development, present situation, principle, classification of membrane distillation process and the use of membrane materials in this process. Finally, the the main ideas and research content of this thesis were proposed.
     The second chapter mainly introduces the experimental materials, preparation process and the equipments in preparation and characterization of the membrane.
     The third chapter mainly studies the effect of the dispersant category, calcination treatment, dispersant content, solids content of the powders and the milling time on the silicon nitride ceramic suspension. O-(2-aminopropyl)-O'-(2-methoxyethyl)-polypropylene glycol (AMPG) was selected as the best dispersant for the dispersion of silicon nitride powders by sedimentation tests. Calcination treatment at600℃for6h in air can significantly increase the oxygen amount of the powders surface, reduce the viscosity and improve the fluidity of the suspension. The test results of the rheological properties indicate that the optimal dispersant amount is4wt%, which is independent of the solids volume content of the suspension. Milling process can effectively improve the fluidity of the suspension. The optimal milling time is16h. The solids volume content of the suspension can reach50vol%with a low viscosity and good fluidity.
     The forth chapter is on the preparation of the silicon nitride hollow fibers by a combined phase-inversion and sintering method based on the stable dispersion of silicon nitride ceramic suspension, and the influence of ceramic powders/binder ratio, the viscosity of the suspension on the morphology, structure, strength, porosity, pore size distribution and permeability were discussed. The prepared membrane has typical asymmetric structure with a long finger-like layer near the inner and outer surface and a sponge-like region in the middle of the fiber. With increasing of the powders/PESf ratio, the viscosity of the suspension increases and the finger-like voids extending from the outer surface is greatly reduced, even disappears completely. In addition, the outer surface of the fiber is tended to densification after sintering. When the ceramic powders/binder ratio is fixed to7/1, the obtained fiber shows a good combination of gas and water flux, bending strength (290MPa), porosity (50%) and average pore size (0.74μm), which are the most suitable ceramic membranes for membrane distillation applications.
     The fifth chapter studies the surface modification and membrane distillation (MD) applications of the silicon nitride hollow fiber. The surface of the fiber was grafted by fluoroalkysilane. The water contact angles were changed from56°to130°, carbon and fluorine were detected on the surface of the grafted membrane by infrared spectroscopy test. Permeability test indicates that the additional FAS coating increases the membrane resistance to gas permeation but does not sacrifice too much permeability. However, the FAS grafting has a great effect on the permeance of water. The liquid water permeation was not detected for the grafted membrane until the pressure up to3.25bar. These results adequately demonstrate the hydrophobicity of the modified membrane. After surface modification, the water desalination performance of the prepared fiber was tested using two MD methods:vacuum membrane distillation (VMD) and direct contact membrane distillation (DCMD). In VMD, the influence of temperature, salt concentration, vacuum degree on the MD performance are studied. The membrane exhibits satisfactory membrane distillation performance with a high flux of679L/m2·day, a rejection rate over99%and good long-term stability for desalination of4wt.%NaCl solution at80℃when the permeate side is under a vacuum pressure of0.02bar. In DCMD, the membrane flux is only about35%compared with the flux in VMD. This is mainly due to the existence of temperature polarization effect which leads to the decrease of the driving force. What is more, the DCMD process is difficult to control due to the presence of temperature instability at both sides of the membrane. Though VMD needs provide some extra energy, the excellent MD performance can make up this deficiency.
     The sixth chapter introduced the preparation of P-sialon hollow fibers by a combined phase-inversion and sintering method and their application in membrane distillation process. The prepared membrane also has a typical structure with a long finger-like layer near the inner surface and a sponge-like layer near the outer surface. The prepared membrane has excellent permeability performance and mechanical strength. The fibers (Z=2) which sintered at1600℃for2h can meet all the requirements of the membrane used in membrane distillation process. The membrane has excellent hydrophobic property after grafting by FAS. The grafted fibers were successfully applied to desalination by direct contact membrane distillation process. The membrane exhibits excellent membrane distillation performance with a high flux of10.76L/m2·h (258L/m2·day) and a rejection rate over99.5%for desalination of4wt.%NaCl solution at80℃when the temperature of the permeate side was fixed at20℃. Therefore, the β-sialon hollow fiber membrane also has great potential in the application of membrane distillation for desalination.
     In Chapter7, a short conclusion of this dissertation has been made. The lack of this work and the direction of our future work have been discussed.
引文
[1]王瑞刚,吴厚政,陈玉如,杨正方,陶瓷料浆稳定分散进展,陶瓷学报,1999,20(1):35-40.
    [2]孙静,高濂,郭景坤,湿法成型中稳定浆料的制备,硅酸盐通报,1999,(3):29-34.
    [3]T.F. Tadros, Steric stabilization and flocculation by polymer, Polymer,1991,23 (5):683-696.
    [4]D.H. Napper, Steric stabilization, Journal of Colloid and Interface Science,1977,58(2):390-407.
    [5]R.H. Ottewill, Stability and instability in disperse systems, Journal of Colloid and Interface Science,1977,58 (2):357-373.
    [6]J. Cesarano, I.A. Aksay, Processing of highly concentrated aqueous a-alumina suspensions stabilized with polyelectrolytes, Journal of the American Ceramic Society,1988,71 (21):1062-1067.
    [7]J. Cesarano, I.A. Aksay, A. Bleier, Stability of aqueous a-Al2O3 suspensions with poly (methacrylic acid) polyelectrolyte, Journal of the American Ceramic Society,1988,71 (4): 250-255.
    [8]D. H. Napper, "The Effects of Free Polymers on Colloid Stability"; pp.332-413 (Chs.15-17) in Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, U.K,1983.
    [9]Y. Mao, M. E. Cates, H. N. W. Lekkerkerker, Depletion Force in Colloidal Systems," Physica A (Amsterdam),1995,222:10-24.
    [10]郑忠,胶体分散体系的空缺稳定理论,大学化学,1988,3(4):10-14.
    [11]L.W. Wang, W.G. Sigmund, F. Aldinger, Systematic approach for dispersion of silicon nitride powder in organic media:Ⅱ, dispersion of the powder, Journal of the American Ceramic Society,2000,83 (4):697-702.
    [12]陈大明,先进陶瓷材料的助凝技术与应用[M],国防工业出版社,2011.
    [13]H. A. Barnes, J.F. Hutton, K. Walters, An introduction to rheology, Rheology Series Vol.3 Elsevier, Amsterdam,1989.
    [14]H.A. Barnes, J.F. Hutton, K. Walters, An introduction to Rheology, Rheology series Vol.3, Else vier, Amsterdam,1989.
    [15]仝建峰,陈大明,碱性水基氧化铝陶瓷浆料的流变学研究,材料工程,2003,(01).
    [16]仝建峰,陈大明,影响氧化铝水基料浆流变学特性的关键因素,硅酸盐学报,2007,35(10):1323-1326.
    [17]仝建峰,陈大明,PH值对凝胶胶注模氧化铝陶瓷料浆性能的研究,航空材料学报,2003,9(3):50-53.
    [18]X.J. Liu, L.P. Huang, X. Xu, X.R. Fu, H.C. Gu, Optimizing the rheological behavior of silicon nitride aqueous suspensions, Ceramics International,2000,26:337-340.
    [19]A. C. Young, O. O. Omatete, M. A. Janney, P. A. Menchhofer, Gelcasting of Alumina, Journal of the American Ceramic Society,74 [3]:1991,612-618.
    [20]Y.-L. Yang, Studies on colloidal forming process of ceramics and its consolidation in-situ mechanism [D]. Tsinghua University, Beijing, China,1996.
    [21]H.Fang,高性能陶瓷多孔膜制备表征及膜蒸馏海水淡化应用研究[D],中国科学技术大学博士学位论文,2012.
    [22]尚双银,方宏,任春雷,杨萍华,陈初升,膜蒸馏海水淡化用疏水性钇稳定的氧化锆中空纤维膜的制备与表征,2013,28(4):1-5.
    [23]J.Q. Dai, Y. Huang, Z.P. Xie, X.L. Xu, J.L. Yang, Effect of acid cleaning and calcination on rheological properties of concentrated aqueous suspensions of silicon nitride powder, Journal of the American Ceramic Society,2002,85 [2]:293-98.
    [24]A. Nagel, G. Petzow, P. Greil, Rheology of Aqueous Silicon Nitride Suspensions, Journal of the European Ceramic Society,1989,5:371-378.
    [25]V. A. Hackley, Colloidal processing of silicon nitride with poly(acrylic acid):I, adsorption and electrostatic interactions, Journal of the American Ceramic Society,1997,80 [9]:2315-2325.
    [26]L. Bergstrom, Rheology of concentrated suspensions; pp.193-244 in surface and colloid chemistry in advanced ceramics processing. Edited by R. Pugh and L. Bergstrom. Marcel Dekker, New York,1994.
    [27]L. Bergstrom, Rheological properties of concentrated, non-Aqueous silicon nitride suspensions, Journal of the American Ceramic Society,1996,79 [12]:3033-3040.
    [28]X. Xu, S. Mei, J.M. F. Ferreira, Fabrication of a-sialon sheets by tape casting and pressureless sintering, Journal of Materials Research,2003,18 [6]:1363-1367.
    [29]L.W. Wang, W.G. Sigmund, F. Aldinger, A novel class of dispersants for colloidal processing of Si3N4 in non-aqueous media, Materials Letters,1999,40:14-17.
    [30]徐荣久,陈大明,周洋,李斌太,固相含量对料浆及瓷体性能的影响,航空材料学报,2000,20(30)134-137.
    [31]刘晓光,氧化锆基固体电解质低成本制备及其性能研究[D],北京:北京航空材料研究院博士学位论文,2004.
    [32]X.J. Liu, L.P. Huang, X. Xu, X.R. Fu, H.C. Gu, Optimizing the rheological behavior of silicon nitride aqueous suspensions, Ceramics International,2000,26:337-340.
    [33]R.L. Seely, Process for forming honeycamb extrusion die [P], US Pat No.5,865,983,1999.
    [34]A. Larbot, Ceramic porous membranes:preparation, applications and future developments, Journal of Ceramics,2005,26 (3):169-176.
    [35]徐南平,刑卫红,赵宜江,无机膜分离技术与应用[D],北京:化学工业出版社,2003.
    [36]B.E. Yoldas, Alumina gels that from porous transparent Al2O3, Journal of Membrane Science, 1975,10:1856-1862.
    [37]A. Ali, S. Hossein, K Mehrdad, Sol-gel preparation of titania multilayer membrane for photocatalytic application, Ceramic international,2009,35 (5):1837-1843.
    [38]王公应,微孔膜的研究进展,无机材料学报,1993,8(3):257-231.
    [39]B. L. Bischoff, M. A. Anderson, Peptization process in the sol-gel preparation of porous anatase (TiO2), Chemistry of Materials,1995,7 (10):1772-1778.
    [40]S. Q. Zhang, L. Bi, L. Zhang, Z. T. Tao, W. P. Sun, H. Q. Wang, W. Liu, Stable BaCe0.5Zr0.3Y0.16Zn0.04O3-a thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells, Journal of Power Sources,2009,188 (2):343-346.
    [41]C.A. Gutierrez, R. Moreno, Tape casting of non-aqueous silicon nitride slips, Journal of the European Ceramic Society,2000,20:1527-1537.
    [42]张尚权,流延法制备固体氧化物燃料电池关键材料研究[D],中国科学技术大学博士学位论文,2010.
    [43]王圣威,金宗哲,黄丽容,多孔陶瓷材料的制备及应用研究进展,硅酸盐通报,2006,25(4):124-129.
    [44]O. Lyckfeldt, J.M.F. Ferreia, Processing of porous ceramics by starch consolidation, Journal of the European Ceramic Society,1998,18:131-140.
    [45]D M. Liu Control of pore geometry on influencing the mechanical property of porous hydroxyapat-atite bioceramic, Journal of Materials Science Letters,1996,15:419-421.
    [46]B.D. Film, R.K. Bordia, A. Zimmerman, Evolution of defect size and strength of porous alumina during sintering, Journal of the European Ceramic Society,20:2561-2568.
    [47]曹慧,从川波,宋泳,田斌,周琼,添加剂造孔剂法制备多孔陶瓷及其强度与孔径控制,中国陶瓷,45(2):33-38.
    [48]K.Werner, S. Maria, Method of manufacturing porous sintered inorganic bodies with large open pore volume [P], United State Patent, No:4588540,1986-05-13.
    [49]朱时珍,赵振波,多孔陶瓷材料的制备技术,Materials Science & Engineering,1996,14 (3):33-39.
    [50]张智慧,李楠,多孔陶瓷材料制备方法,2003,17(17):30-49.
    [51]K. Schwartzwalder, A.V. Somers, Method of making porous ceramic articles, United State Patent,1963, No.3,090,094.
    [52]H. Nakijima, T. Ito, Y. Muragachi, United State Patent,1990, No.4,965,230.
    [53]S. Loeb, S. Sourirajan. High flow porous membranes for separating water from saline solutions [P], United State Patent,1964, No.3,133,132.
    [54]K.H. Lee, Y.M. Kim, Asymmetric hollow inorganic membranes, Key Engineering Materials, 1992,61/62:17-22.
    [55]R.Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membranes, Desalination,2003,157 (1-3):113-125.
    [56]J. Galuszka, R.N. Pandey, S. Ahmed, Methane conversion to syngas in a palladium membrane reactor, Catalysis Today,1998,46 (2-3):83-89.
    [57]J.N. Keuler, L. Lorenzen, The dehydrogenation of 2-butanol in a Pd-Ag membrane reactor, Journal of Membrane Science,2002,202 (1-2):17-26.
    [58]H.W.J.P. Neomagus, G. Saracco, H.F.W.Wessel, G.F. Versteeg, The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants, Chemical Engineering Journal,2000,77 (3):165-177.
    [59]C.C. Wei, K. Li, Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells, Industrial & Engineering Chemistry Research,47 (5):2008,1506-1512.
    [60]S. Koonaphapdeelert, K. Li, The development of ceramic hollow fibre membranes for a membrane contactor, Desalination,2006,200 (1-3):581-583.
    [61]Z.D. Hendren, Brant, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, Journal of Membrane Science,2009, 331:1-10.
    [62]J.W. Zhang, H. Fang, L.Y. Hao, X. Xu, C.S. Chen, Preparation of silicon nitride hollow fibre membrane for desalination, Materials Letters,2012,68:457-459.
    [63]张小珍,新型中空纤维陶瓷膜的制备科学研究与性能表征[D],中国科学技术大学博士学位论文,2010.
    [64]方大儒,中空纤维陶瓷膜的制备研究,中国科学技术大学硕士学位论文[D],2009.
    [65]C. C. Wei, K. Li, Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique, Industrial & Engineering Chemistry Research,2009,48:3446-3452.
    [66]M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Science and technology for water purification in the coming decades, Nature,2010,452:301-310.
    [67]D. Y. Hou, J. Wang, D. Qu, Z. K. Luan, C. W. Zhao and X. J. Ren, Desalination of brackish groundwater by direct contact membrane distillation, Water Science & Technology,61 (8): 2013-2020.
    [68]M. Gryta, Desalination of thermally softened water by membrane distillation process, Desalination,2010,257:30-35.
    [69]B. R. Bodell, Silicone rubber vapor diffusion in saline water distillation, United States Patent, 1963, No.285,032.
    [70]M. E. Findley, Vaporization through porous membranes, Industrial & Engineering Chemistry Process Design and Development,1967,6:226-230.
    [71]D. W. Gore, Gore-Tex membrane distillation, in:proceedings of the 10 th annual convention of the water supplyimprovement assoc, Hononulu, USA,1982.
    [72]K. Schnieder, T. J. van Gassel, Membrane distillation, chemical engineering & technology, 1984,56:514-521.
    [73]S. I. Anderson, N. Kjellander, B. Rodesjo, Design and field tests of a new membrane distillation desalination process, Desalination,1985,56:345-354.
    [74]A. Larbot, L. Gazagnes, S. Krajewski, M. Bukowska, W. Kujawski, Water desalination using ceramic membrane distillation, Desalination,2004,168:367-372.
    [75]A.G. Fane, R.W. Schofield, C.J.D. Fell, The efficient use of energy in membrane distillation, Desalination,1987,64:231-243.
    [76]A.M. Alkaibi, N. Lior, Membrane-distillation desalination:status and potential, Desalination, 2004,171:111-131.
    [77]C. Cabbasud, D. Wirth, Membrane distillation for water desalination:how to choose an appropriate membrane?, Desalination,2003,157:307-314.
    [78]A. Criscuoli, E. Drioli, Energetic and exergetic analysis of an integrated membrane desalination, Desalination,1999,124:243-249.
    [79]Z. Wang, F. Zheng, S. Wang, Experimental study of membrane distillation with brine circulated in the cold side, Journal of Membrane Science,2001,183:171-179.
    [80]K. Karakulski, M. Gryta, A. Morawski, Membrane processes for portable water quality improvement, Desalination,2002,145:315-319.
    [81]E. Drioli, A. Criscuoli, E. Curcio, Integrated membrane operation for seawater desalination, Desalination,2002,147:77-81.
    [82]M. Khayet, J. I. Mengual, G. Zakrzewska-Trznadel, Direct contact membrane distillation for nuclear desalination. Part II. Experiments with radioactive solutions, International Journal of Nuclear Desalination,2006,56:56-73.
    [83]M. Khayet, M. P. Godino, J. I. Mengual, Possibility of nuclear desalination through various membrane distillation configurations:a comparative study, International Journal of Nuclear Desalination,2003,1 (1):30-46.
    [84]M. Khayet, J. I. Mengual, G. Zakrzewska-Trznadel, Direct contact membrane distillation for nuclear desalination. Part I. Review of membranes used in membrane distillation and methods for their characterization, International Journal of Nuclear Desalination,1 (4):2005, 435-449.
    [85]M. Banat, R. Jumah, M. Garaibeh, Exploitation of solar energy collected by solar stills from desalination by membrane distillation, Renewable Energy,2002,25:293-305.
    [86]P. A. Hogan, Sudjito, A. G. Fane, G. L. Morrison, Desalination by solar heated membrane distillation, Desalination,1991,81:81-90.
    [87]Z. Ding, L. Liu, M. S. EL-Bourawi, R. Ma, Analysis of a solar-powered membrane membrane distillation system, Desalination,2005,172:27-40.
    [88]S. Cerneaux, I. Struzynskab,W.M. Kujawski, M. Persin, A. Larbot, Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes, Journal of Membrane Science,2009,337:55-60.
    [89]K. W. Lawson, D. R. Lloyd, Membrane distillation, Journal of Membrane Science,1997,124: 1-25.
    [90]Y. Fujii, S. Kigoshi, H. Iwatani, M. Aoyama, Selectivity and characteristics of direct contact membrane distillation type experiment:I..Permeability and selectivity through dried hydrophobic fine porous membranes, Journal of Membrane Science,1992,72:53-72.
    [91]C. A. Smolders, A. C. M. Franken, Terminology for membrane distillation, Desalination, 1989,72:249-262.
    [92]M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation, Desalination,1996,104:1-11.
    [93]M. Tomaszewska, M. Gryta, A.W. Morawski, Mass transfer of HC1 and H2O across the hydrophobic membrane during membrane distillation, Journal of Membrane Science,2000, 166:149-157.
    [94]L. Martinez, F.J. Florido-Diaz, A. Hernandez, P. Pradanos, Characterization of three hydrophobic porous membranes used in membrane distillation. Modelling and evaluation of their water vapour permeability, Journal of Membrane Science,2002,203:15-27.
    [95]A.V. Narayan, N. Nagaraj, H.U. Hebbar, A. Chakkaravarthi, K.S.M.S. Raghavarao, S. Nene, Acoustic field-assisted osmotic membrane distillation, Desalination,2002,147:149-156.
    [96]V.V. Ugrozov, I.B. Elkina, V.N. Nikulin, L.I. Kataeva, Theoretical and experimental research of liquid-gap membrane distillation process in membrane module, Desalination,2003,157: 325-331.
    [97]A.S. Jonsson, R. Wimmerstedt, A.C. Harrysson, Membrane distillation, a theoretical study of evaporation through microporous membranes, Desalination,1985,56:237-250.
    [98]E. Drioli, V. Calabro, Y. Wu, Microporous membranes in membrane distillation, Pure and Applied Chemistry,1986,58:1657-1662.
    [99]M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation, Desalination,1996,104:1-11.
    [100]L. Martinez, F.J. Florido-Diaz, A. Hernandez, P. Pradanos, Characterization of three hydrophobic porous membranes used in membrane distillation. Modelling and evaluation of their water vapour permeability, Journal of Membrane Science,2002,203:15-27.
    [101]D.Y. Hou, J. Wang, D. Qu, Z.K. Luan, X.J. Ren, Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation, Separation and Purification Technology,2009,69:78-86.
    [102]S. Simone, A. Figoli, A. Criscuoli, M.C. Carnevale, A. Rosselli, E. Drioli, Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD, Journal of Membrane Science,2010,364:219-232.
    [103]C. Picard, A. Larbot, E. Tronel-Peyroz, R. Berjoan, Characterization of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes, Solid State Science, 2004,6:605-612.
    [104]S.R. Krajewski, W. Kujawski, F. Dijoux, C. Picard, A. Larbot, Grafting of ZrO2 powder and ZrO2 membrane by fluoroalkylsilanes, Colloids and Surfaces A. Physicochemical and Engineering Aspects,2004,243:43-47.
    [105]P. Janknecht, P.A. Widerer, C. Picard, A. Larbot, Ozone-water contacting by ceramic membranes, Separation and Purification Technology,2001,25:341-346.
    [106]S.R. Krajewski, W. Kujawski, M. Bukowska, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, Journal of Membrane Science,2006,281:253-259.
    [107]L.Gazagnes, S. Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination,2007,217:260-266.
    [1]杨辉,张玲洁,郭国忠,杨理博,沈建超,吴梦怡,林志建,透明氧化铝薄膜的疏水性能研究,稀有金属材料与工程,2010,39(2):232-235.
    [2]C. Picard, A. Larbot,E.Tronel-Peyroz, R. Berjoan, Characterization of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes, Solid State Sciences, 2004,6:605-612.
    [3]陈国平,王永鹏,氟代烷基硅烷在玻璃表面形成憎水膜层的研究,云南大学学报(自然科学版),2005,27(3A):302-304.
    [4]W.C Wu, X,L. Wang, D.A. Wang, M. Chen, F. Zhou, W.M. Liu, Alumina nanowire forests via unconventional anodization and super repellency plus low adhesion to diverse liquids, Chemical Communications,2009,1043-1045.
    [5]D. Schondelmaier, S. Cramm, R. Klingeler, J. Morenzin, Ch. Zilkens, W. Eberhardt, Orientation and self-assembly of hydrophobic fluoroalkylsilanes, Langmuir,2002,18:6242-6245.
    [6]陈国平,氟代烷基硅烷-Si02对玻璃表面的憎水改性,有机硅材料,2007,21(3):125-128.
    [7]A.Y. Fadeev, V.A. Yaroshenko, Wettability of porous silicas chemically modified with fluoroalkylsilanes according to data on water porosimetry, Colloid Journal,1996,58 (5):654-657.
    [8]Y. Akamatsu, K. Makita, H. Inaba, T. Minami, Water-repellent coating films on glass prepared from hydrolysis and polycondensation reactions of fluroalkyltrialkoxysilane, Thin Solid Films, 2001,289:138-145.
    [9]B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow membranes, Journal of Membrane Science,2009,328:134-140.
    [10]C.C. Wei, O.Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process, Journal of Membrane Science,2008,320:191-197.
    [11]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, Journal of Membrane Science,2007,291:70-76.
    [12]X.Y. Tan, S.M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, Journal of Membrane Science,2001,188:87-95.
    [13]周玉,武高辉,材料分析测试技术[M],哈尔滨:哈尔滨工业大学出版社
    [14]周玉,材料分析方法(第二版)[M],北京:机械工业出版社,2004.
    [15]J.N. Cernica, Strength of Materials,2nd edition, Holt, Rinehart, and Winston, New York, 1977, p.469.
    [16]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminum oxide (Al2O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International, 2003,29:875-881.
    [17]J.B. Wachtman, Mechanical Properties of Ceramics, Wiley, New york,1996, pp.74-77.
    [18]W. Li, J.J. Liu, C.S. Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, Journal of Membrane Science,2009,340:266-271.
    [1]V. A. Hackley, P. S. Wang, S. G. Malghan, Effects of Soxhlet Extraction on the Surface Oxide Layer of Silicon Nitride Powders, Materials Chemistry and Physics,1993,36:112-118.
    [2]R. de Jong and R. A. McCauley, Dispersion of Silicon Nitride Powders in an Aqueous Medium, pp.477-92 in Ceramic Transactions, Vol.1, Ceramic Powder Science IIA. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner. Journal of the American Ceramic Society, Westerville, OH,1988.
    [3]H. Schmidt, G. Nabert, G. Ziegler, and H. Goretzki, Characterization and Surface Chemistry of Uncoated and Coated Silicon Nitride Powders, Journal of the European Ceramic Society,1995, 15:667-674.
    [4]H. Schmidt, G. Ziegler, Analysis and Surface Chemistry of Si3N4 Powders pp.137-42 in Third Euro-Ceramics, Vol.1, Processing of Ceramics. Edited by P. Duran and J. F. Fernandez. Editrice Iberica, San Vicente, Spain,1993.
    [5]M. Chen, J. W. T. Rutten, R. Metselaar, Study of Temperature Programmed Desorption of Silicon Nitride and Sialon by Means of Mass Spectrometry, ibid, pp.597-602.
    [6]G. Wotting, G. Ziegler, Powder Characteristics and Sintering Behavior of Si3N4 Powders, Part Ⅰ: Sintering Behavior, International Ceramics,1986,35 [3]:57-60.
    [7]P. Greil, R. Nitzsche, H. Friedrich, and W. Hermel, Evaluation of Oxygen Content on Silicon Nitride Powder Surface from the Measurement of the Isoelectric Point, Journal of the European Ceramic Society,1991,7:353-359.
    [8]L. Bergstrom, R. J. Pugh, Interfacial Characterization of Silicon Nitride Powders, Journal of the American Ceramic Society,1989,72 [1]:103-109.
    [9]K. R. Han, C. S. Lim, M. J. Hong, S. K. Choi, and S. H. Kwon, Surface Modification of Silicon Nitride Powder with Aluminum, Journal of the American Ceramic Society,1996,79 [2]:574-576.
    [10]W. H. Shih, L. L. Pwu, and A. A. Tseng, Boehmite Coating as a Consolidation and Forming Aid in Aqueous Silicon Nitride Processing, Journal of the American Ceramic Society,1995, 78[5]:1252-1260.
    [11]E. P. Luther, F. F. Lange, and D. S. Person, Alumina:Surface Modification of Silicon Nitride for Colloidal Processing, Journal of the American Ceramic Society,1995,78 [8]:2009-2014.
    [12]C. Wang and F. L. Riley, Alumina-Coating of Silicon Nitride Powder, Journal of the European Ceramic Society,1992,10:83-93.
    [13]M. Kulig, W. Oroschin, P. Greil, Sol-Gel Coating of Silicon Nitride with Mg-Al Oxide Sintering Aid, Journal of the European Ceramic Society,1989,5:209-217.
    [14]A. Nagel, G. Petzow, and P. Greil, Rheology of Aqueous Silicon Nitride Suspensions, Journal of the European Ceramic Society,1989,5:371-378.
    [15]V. A. Hackley, Colloidal Processing of Silicon Nitride with Poly(acrylic acid):I, Adsorption and Electrostatic Interactions, Journal of the American Ceramic Society,1997,80 [9]:2315-2325.
    [16]M. Schwelm, Dispersion of Si3N4 with Y2O3-Al2O3 Sintering Additives for Pressure Casting, Dissertation, University of Stuttgart, Stuttgart, Germany,1992.
    [17]T. Kramer and F. F. Lange, Rheology and Particle Packing of Chem-and Phys-Adsorbed, Alkylated Silicon Nitride Powders, Journal of the American Ceramic Society,1994,77 [4]: 922-928.
    [18]E. P. Luther, T. M. Kramer, F. F. Lange, and D. S. Pearson, Development of Short-Range Repulsive Potentials in Aqueous, Silicon Nitride Slurries, Journal of the American Ceramic Society,77 [4]:1994,1047-1051.
    [19]M. R. Porter, Speciality Surfactants; pp.277-91 in Handbook of Surfactants,2nd Ed. Blackie Academic and Professional, London, U.K,1994.
    [20]K. Lindqvist, E. Carlstrom, M. Persson, and R. Carlsson, Organic Silanes and Titanates as Processing Additives for Injection Molding of Ceramics, Journal of the American Ceramic Society,1989,72 [1]:99-103.
    [21]K.C. Vrancken, L. De Coster, P. Van der Voort, P. J. Grobet, E. F. Vansant, The Role of Silanols in the Modification of Silica Gel with Aminosilanes, Journal of Colloid and Interface Science,1995,170:71-77.
    [22]P. N. Joshi and R. A. McCauley, Metal-organic Surfactants as Sintering Aids for Silicon Nitride in an AqueousMedium, Journal of the American Ceramic Society,1994,77 [11]: 2926-2934.
    [23]L. Bergstrom, Rheological properties of concentrated, non-Aqueous silicon nitride suspensions, Journal of the American Ceramic Society,1996,79 [12]:3033-3040.
    [24]L. Bergstrom, Rheology of concentrated suspensions, pp.193-244 in surface and colloid chemistry in advanced ceramics processing. Edited by R. Pugh and L. Bergstrom. Marcel Dekker, New York,1994.
    [25]J.Q. Dai, Y. Huang, Z.P. Xie, X.L. Xu, J.L. Yang, Effect of acid cleaning and calcination on rheological properties of concentrated aqueous suspensions of silicon nitride powder, Journal of the American Ceramic Society,2002,85 [2]:293-298.
    [26]X. Xu, S. Mei, J.M. F. Ferreira, Fabrication of a-sialon sheets by tape casting and pressureless sintering, Journal of Materials Research,2003,18 [6]:1363-1367.
    [27]H. Fang, J.F. Gao, H.T. Wang, C.S.Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process, Journal of Membrane Science,2012,403 404:41-46.
    [28]L.W. Wang, W.G. Sigmund, F. Aldinger, A novel class of dispersants for colloidal processing of SijN4 in non-aqueous media, Materials Letters,1999,40:14-17.
    [29]L.W. Wang, W.G. Sigmund, F. Aldinger, Systematic approach for dispersion of silicon nitride powder in organic media:II, dispersion of the powder, Journal of the American Ceramic Society,2000,83 [4]:697-702.
    [30]X.J. Liu, L.P. Huang, X. Xu, X.R. Fu, H.C. Gu, Optimizing the rheological behavior of silicon nitride aqueous suspensions, Ceramics International,2000,26:337-340.
    [31]代建清,黄勇,酸洗和热氧化对氮化硅粉料表面特性与浆料流变性能的影响,无机材料学报,2008,23:165-170.
    [32]C. G. de Kruif, Hydrodynamics of Dispersed Media; pp.79-85. Edited by J. P. Hulin, A. M. Cazabat, E. Guyon, and F. Carmona. Elsevier Science, Amsterdam, The Netherlands,1990.
    [33]R. M. German, "The Rheological Characteristics of Powder-Binder Mixtures"; pp.147-79 in Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ,1990.
    [34]J. H. Song and J. R. G. Evans, Ultrafine Ceramic Powder Injection Molding:The Role of Dispersants, Journal of Rheology, New York,1996,40 [1]:131-152.
    [35]H. A. Barnes, Shear-Thickening ('Dilatancy') in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids, Journal of Rheology, New York,1989,33 [2]:329-366.
    [36]R.L. Hoffman, Discontinueous and Dilatant Viscosity Behavior in Concentrated Suspensions, I. Observation of a Flow Instability, Transactions of the Society of Rheology,1972,16:155-173.
    [37]A.L. Ogden, J.A. Lewis, Effect of nonadsorbed polymer on the stability of weakly flocculated suspensions, Langmuir,1996,12:3413-3424.
    [38]L. Marshall, C. F. Zukoski, Journal of Physics and Chemistry,1990,94,1164.
    [39]R. L. Hoffman, MRS Bulletin,1991,16,32.
    [40]陈大明,先进陶瓷材料的注凝技术与应用[M],北京:国防工业出版社,2011.
    [41]仝建峰,陈大明,影响氧化铝水基料浆流变学特性的关键因素,硅酸盐学报,2007,35(10):1323-1326.
    [1]M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow fiber membranes, Desalination, 2002,148:31-37.
    [2]D. Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, Journal of Membrane Science,1999,163:211-220.
    [3]M.L. Yeow, Y.T. Liu, K. Li, Morphological studies of poly(vinylidene fluoride) asymmetric membranes:effect of the solvent, additive and dope temperature, Journal of Applied Polymer Science,2004,92:1782-1789.
    [4]M. Khayet, C. Feng, K.C. Khulbe, T. Matsuura, Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration, Polymer,2002,43:3879-3890.
    [5]S. Bonyadi, T.S. Chung, Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach, Journal of Membrane Science,2009,331:66-74.
    [6]K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chemical Engineering Science,2008,63:2587-2596.
    [7]L. Gazagnes, S.Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination,2007,217:260-266.
    [8]M.M. Cortalezzi, et al., Characteristics of ceramic membranes derived from alumoxane nanoparticles, Journal of Membrane Science,2002,205:33-43.
    [9]M.M. Cortalezzi, et al., Ceramic membranes derived from ferroxane nanoparticles:a new route for the fabrication of iron oxide ultrafiltration membranes, Journal of Membrane Science, 2003,227:207-217.
    [10]C. Leger, H.D.L. Lira, R. Paterson, Preparation and properties of surface modified ceramic membranes. Part II. Gas and liquid permiabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil, Journal of Membrane Science,1996,120:135-146.
    [11]Z.D. Hendrena, J. Brantb, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, Journal of Membrane Science,2009, 331:1-10.
    [12]F. L. Riley, Silicon nitride and related materials, Journal of the American Ceramic Society, 2000,83:245-265.
    [13]X. Xu, T. Nishimura, N. Hirosaki, R.J. Xie, Y. Yamamoto, H. Tanaka, Superplastic deformation of nano-sized silicon nitride ceramics, Acta Materialia.2006,54:255-262.
    [14]P. Reis, J.P.Davim, X. Xu, J.M. Ferreira, Friction and wear behaviour of β-silicon nitride-steel couples under unlubricated conditions, Materials Science and Technology,2006,22:247 252.
    [15]X. Xu, T. Nishimura, N. Hirosaki, R.J. Xie, H. Tanaka, Fabrication of a Nano-Si3N4/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering, Journal of the American Ceramic Society,2007,90:1058-1062.
    [16]X. Xu, T. Nishimura, N. Hirosaki, R.J. Xie, Y.C. Zhu, Y. Yamamoto, New strategies to preparing nano-sized silicon nitride ceramics, Journal of the American Ceramic Society,2005, 88:934-937.
    [17]J.I. Calvo, A. Hernandez, P. Pradanos, L.Martinez, W.R. Bowen, Pore size distributions in Microporous Membranes Ⅱ. Bulk Characterization of Track-Etched Filters by Air Porometry and Mercury Porosimetry, Journal of Colloid and Interface Science,1995,176:467-478.
    [18]S. Lowell, J.E. Shields, Powder Surface Area and Porosity,3rd ed., Chapman and Hall, New York,1991.
    [19]A. Carlos, L. Leony, New perspectives in mercury porosimetry, Advanced in Colloid and Interface Science.,1998,76-77:341-372.
    [20]J.I. Calvo, P. Pradanos, A. Hernandez, W.R. Bowen, N. Hilal, R. W. Lovitt, P. M. Williams, Bulk and surface characterization of composite UF membranes atomic force microscopy, gas adsorption-desorption and liquid displacement techniques, Journal of Membrane Science, 1997,128:7-21.
    [21]K. Michal, J. Mietek, Gas adsorption characterization of ordered organic-Inorganic nano composite materials, Chem. Mater.,2001,13 (10):3169-3183.
    [22]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique, Journal of Membrane Science,1997,124:149-159,
    [23]丁详全,张继周,宝志琴,丁传贤,泡点法测定微孔孔径分布的改进算法,无机材料学报,2000,15(3):493-498.
    [24]Peter R. Johnston. Journal of Testing and Evaluation,1983,11 (2):117-121.
    [25]刘培生,马晓明,多孔材料检测方法[M],北京,冶金工业出版社,2006.
    [26]冯健,陈平,膜科学与技术,1994,14(1):54-59。
    [27]B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes, Journal of Membrane Science,2009,328:134-140.
    [28]C.C. Wei, O.Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process, Journal of Membrane Science,2008,320:191-197.
    [29]朱小龙,苏雪筠,多孔陶瓷材料,中国陶瓷.,2000,36(4):36-39.
    [30]L. J. Gibson, M. F. Ashby, Cellular Solids:Structure and properties-second edition, Cambridge University Press,1997.
    [1]R.W. Van Gemert, F. Petrus-Cuperus, Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation, Journal of Membrane Science,1995, 105:287-291.
    [2]H. Verweij, Ceramic membranes:Morphology and transport, Journal of Membrane Science, 2003,38:4677-4695.
    [3]A.W. Verkerk, P. Van Male, M.A.G. Vorstman, J.T.F. Keurentjes, Properties of high flux ceramic pervaporation membranes for dehydration of alcohol/water mixtures, Separation and Purification Technology,2001,22 and 23:689-695.
    [4]N. Wynn, Dehydration with silica pervaporation membranes, Membrane Technology,2001, 2001:10-11.
    [5]S. Vercauteren, K. Keizer, E.F. Vansant, J. Luyten, R. Leysen, Porous Ceramic Membranes: Preparation, Transport Properties and Applications, Journal of Porous Materials,1998,5: 241-258.
    [6]M.M. Cortalezzi, et al., Characteristics of ceramic membranes derived from alumoxane nanoparticles, Journal of Membrane Science,2002,205:33-43.
    [7]M.M. Cortalezzi, et al., Ceramic membranes derived from ferroxane nanoparticles:a new route for the fabrication of iron oxide ultrafiltration membranes, Journal of Membrane Science, 2003,227:207-217.
    [8]C. Leger, H.D.L. Lira, R. Paterson, Preparation and properties of surface modified ceramic membranes. Part Ⅱ. Gas and liquid permiabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil, Journal of Membrane Science,1996,120:135-146.
    [9]Z.D. Hendrena, J. Brantb, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, Journal of Membrane Science,2009, 331:1-10.
    [10]A.B. Larbot, Fundamentals on inorganic membranes:present and new developments, Pol. Journal of Chemistry and Technology,2003,6 (2):8-13.
    [11]A. Larbot, L. Gazagnes, S. Krajewski, M. Bukowska, W. Kujawski, Water desalination using ceramic membrane distillation, Desalination,2004,168:367-372.
    [12]C. Picard, A. Larbot, F. Guida-Pietrasanta, B. Boutevin, A. Ratsimihety, Grafting of ceramic membranes by fluorinated silanes:hydrophobic features, Separation and Purification Technology,2001,25:65-69.
    [13]M.P. Rigney, E.F. Funkenbush, P.W. Carr, Physical and chemical characterization of microporous zirconia, Journal of Chromatography A,1990,499:291-304.
    [14]S. Alami-Younssi, C. Kiefer, A. Larbot, M. Persin, J. Sarrazin, Grafting alumina microporous membranes by organosilanes:characterization by pervaporation, Journal of Membrane Science,1998,143:27-36.
    [15]J. Caro, M. Noack, P. Kolsch, Chemically modifed ceramic membranes, Microporous Mesoporous Materials,1998,22:321-332.
    [16]C. Picard, A. Larbot, E. Tronel-Peyroz, R. Berjoan, Characterization of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes, Solid State Science, 2004,6:605-612.
    [17]S.R. Krajewski, W. Kujawski, F. Dijoux, C. Picard, A. Larbot, Grafting of 2rO2 powder and ZrO2 membrane by fluoroalkylsilanes, Colloids and Surfaces A:Physiochemical and Engineering Aspects,2004,243:43-47.
    [18]P. Janknecht, P.A. Widerer, C. Picard, A. Larbot, Ozone-water contacting by ceramic membranes, Separation and Purification Technology,2001,25:341-346.
    [19]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, Journal of Membrane Science,2007,291:70-76.
    [20]A. Criscuoli, M.C. Carnevale, E. Drioli, Evaluation of energy requirements in membrane distillation, Chemical Engineering Processing,2008,47:1098-1105.
    [1]张玉军,张伟儒,结构陶瓷材料及其应用,北京:化学工业出版社,2004.
    [2]姜涛,薛向欣,杨建,Sialon陶瓷材料的结构、性质及应用,耐火材料,2001,35(4):229-232.
    [3]陈祖熊,Sialon的结构、性质与应用,材料导报,1993,(1):29-32.
    [4]Z.K. Huang, W.Y. Sun, D.S. Yan, Phase relation of the Si3N4-AlN-CaO system, Journal of materials Science Letters,1985,4(3):255-259.
    [5]L.J. Gauckler, H.L. Lukas, G. Petzow, Contribution to the phase diagram Si3N4-AlN-Al2O3-SiO2, Journal of the American Ceramic Society,1975,58(7-8):246-247.
    [6]B.S.B. Karunaratne, H.D. Kim, Fabrication of low cost shirinkage-free porous sialon ceramics, Journal of Ceramic Processing Research,10(5):581-588.
    [7]X.M.Yi, A. Yamauchi, K. Kurkawa, T. Akiyamam, Oxidation of p-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering, Corrosion Science 52(2010):1738-1745.
    [8]L.K.L. Falk, SAlON microstructure, Journal of the Ceramic Society of Japan, 2008,116(6):685-687.
    [9]O. Eser, S. Kurama, The effect of the wet-milling process on sintering temperature and the amount of additive of SiAlON ceramics, Ceramics International 2010,36: 1283-1288.
    [10]O. Eser, S. Kurama, G. Gunkaya, the production of β-SiAlON ceramics with low amounts of additive, at low sintering temperature, Journal of the European Ceramic Society,2010,30:2985-2990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700