用户名: 密码: 验证码:
全身弥散加权成像技术及在肿瘤诊断中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分全身磁共振弥散加权成像的技术改进及参数优化可行性研究
     目的在自由呼吸状态下,采用短TI翻转恢复平面回波弥散加权成像序列(STIR-EPI-DWI)及大体线圈进行全身磁共振弥散加权成像(whole body diffusion weighted imaging, WB-DWI)。所得图像再进行最大密度投影(maximum intensity projection, MIP)重建,得到类PET效果图像,进而观察全身各部位的弥散受限情况,通过探讨本方法的技术改进及扫描参数优化,了解该方法在全身肿瘤显像及临床诊断中的可行性。
     材料及方法①以优化后的中心频率(center frequency,CF)作为全身扫描的CF。②选用b值为400 s/mm2、600 s/mm2和800 s/mm2的STIR-EPI-DWI进行扫描,③比较三种序列所得弥散图像的肿瘤信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR),以及对病灶的检出率。比较STIR-EPI-DWI原始资料图像与同层面T2WI图像的SNR及CNR。同时,对60例患者行冠状面STIR序列扫描,获脂肪抑制图像,以肉眼与STIR-EPI-DWI进行比对。
     结果统一的中心频率是取第一和第三段中心频率的平均值。采用b值为600s/mm2 STIR-EPI-DWI序列时图像的SNR及CNR为60.94±14.69和56.03±11.82。采用b值为400s/mm2 STIR-EPI-DWI序列时图像的SNR及CNR为58.76±17.45和48.9±13.54。采用b值为800 s/mm2的STIR-EPI-DWI序列时图像的SNR及CNR为56.40±17.27和51.32±15.11。以b值为600 s/mm2具有最佳效果,重建后的3D MIP可充分显示患者病变部位。用STIR序列行全身脂肪抑制冠状面像需多段采集后并进行逐层图像拼接后处理,虽也可用于诊断,但耗费时间巨大,在实际工作中难于应用。
     结论合适的CF对成像质量至关重要。b值越高越能显示弥散差异,但b值越高,图像信噪比越低,影响图像清晰度。以b值在600 s/mm2为宜。预扫描技术的提高,可成功获得稳定且分辨率高的WB-DWI图像,WB-DWI使用STIR技术能很好地抑制脂肪和肌肉组织造成的信号污染。
     第二部分正常成人全身磁共振弥散加权成像ADC值的定量研究
     目的探讨正常成人各组织器官的弥散特点,建立不同器官的表观弥散系数(ADC)值标准,并探讨其与性别、年龄的关系。
     材料与方法健康志愿者20例,男女各10例,年龄41-50岁,平均年龄47.5岁。采用短TI翻转恢复平面回波序列(STIR-EPI)行WB-DWI检查,b值分别为0和600 s/mm2。分别测量脑灰质和白质,尾状核头,豆状核,丘脑,桥脑,双侧颌下腺,双侧腮腺,左心室壁、胃体大弯侧胃壁、肝脏(左、右叶)、脾脏、胰头、双侧肾脏、T8椎体、T5-9椎间盘、L2椎体、L2-3椎间盘、前列腺中央带及外周带、双侧乳腺、子宫体及子宫腔的ADC值,对不同性别组ADC值的差异进行统计学分析。
     结果各器官的平均ADC值在中年健康人波动较小。双侧脑灰质、白质、尾状核头部及双侧肾脏、乳腺及肝左、右叶的ADC值没有显著差异,男性与女性之间的ADC值无性别差异。
     结论通过测量正常中年人各主要脏器的ADC值,建立了各器官的ADC值标准,正常器官组织的ADC值与性别及侧别无显著差异,为全身DWI图像评价及半定量分析提供了参考依据。
     第三部分全身磁共振弥散加权成像对恶性肿瘤诊断的价值
     目的探讨WB-DWI对肿瘤及其转移灶的检出准确性。
     材料与方法对68例临床已发现原发肿瘤及多个转移灶或发现多个肿瘤病灶但原发灶不明确的患者,进行WB-DWI检查。其中男性49例,女性19例,中位年龄61岁。68例均与CT和/或MRI的检查结果进行比较,其中17例与PET的检查结果相比较。对病灶的检出率,以病灶长径大小分为:<1cm,≥1-<2 cm,≥2-<3 cm及≥3cm四组进行计数分析,同时,对不同部位的病灶检出情况进行分析。
     结果WB-DWI对四组病灶的敏感度分别为30%、78%、96%及100%。在各个部位的敏感性和准确性中以骨骼最高。对位于肺部小于1 cm的病灶和位于颈部、盆腔小于2 cm的淋巴结的诊断存在一定困难。结果显示,WB-DWI对大范围的肿瘤病灶筛查是安全、简便、有效和经济的检查方法。
     结论随着技术参数的进一步完善,WB-DWI在发现和诊断全身多发肿瘤方面,具有良好的发展潜力。
Part I
     Objective:In the free-breathing state, short TI inversion recovery echo-planar imaging diffusion weighted sequence (STIR-EPI-DWI) and body coil were used to obtain the whole body diffusion-weighted imaging (WB-DWI). Then, the WB-DWI images were reconstructed using the maximum intensity projection (MIP) and images similar to PET images can be achieved. Through technical improvement and optimization of scan parameter, to explore the value of this method in the clinical diagnosis of tumor and the feasibility of search for tumor metastasis in patients with new non-invasive method.
     Materials and methods:1) The optimized center frequency was selected as a CF of whole body scan.2) Choose the sequence of STIR-EPI-DWI with b=400 s/mm2, 600 s/mm2 and 800 s/mm2.3)The signal-to-noise ratio (SNR) and contrast noise ratio (CNR) of images of three sequences and their detection rate of lesions were compared. The SNR and CNR of original images of STIR-EPI-DWI were compared with T2W image of the same slice. Meanwhile, lipid-suppressed coronal images of six cases of tumor patients obtained using STIR sequence were compared with the STIR-EPI-DWI reconstructed images by the naked eyes.
     Results:The suitable CF is crucial to the image quality. When b=600 s/mm2, SNR of images obtained using STIR-EPI-DWI sequence was 60.94±14.69 and CNR was 56.03±11.82.When b=400 s/mm2, SNR was 58.76±17.45 and CNR was 48.90±13.54, When b=800 s/mm2,SNR was 56.40±17.27 and CNR was 51.32±15.11. The results reveal b=600 s/mm2 is the best choice, reconstructed 3D MIP images can fully demonstrate lesions in patients. Application of STIR sequence to obtain whole-body coronal plane with fat suppression requires multi-segment collection and image mosaicking. Although it can be used in clinical diagnosis, it is difficult to perform in practice due to its time-consuming.
     Conclusion:unification CF should be calculated manually, the average of CFs of the first and third segment. The selection of b value is very important, the higher b values, the bigger differences in diffusion, but the higher b values, the lower the SNR of image, and this impacts image clarity. Reducing the b value to 400 s/mm2 can make up insufficient SNR, but also lower the diffusion limited features. This may overestimate the diffusion-limited lesions. Therefore, the rational choice of b values in different parts of and optimization of imaging parameters appear particularly important to the lesions reveal. Our experience is that b value=600 s/mm2 is appropriate. Through the improvement of the pre-scanning technology, stable and high-resolution WB-DWI images can be successfully obtained. Using STIR fat suppression techniques will reduce signal contamination of fat and muscle tissue. WB-DWI technique has important clinical value not only in detecting primary malignant tumor and distant metastasis, but also in tumor diagnosis and monitoring effects of chemotherapy.
     PartⅡ
     Objective:To investigate the diffusion characteristics of the normal adult tissues and organs, establish standard values of apparent diffusion coefficient (ADC) of different organs, and explore its relationship with gender and age.
     Materials and Methods:20 cases of healthy volunteers,41-50 years old, both 10 cases of men and women, short TI inversion recovery echo-planar imaging sequence (STIR-EPI) whole-body diffusion-weighted imaging (WB-DWI) was used and b values were 0 and 600s/mm2. ADC values were measured in brain gray and white matter, caudate nucleus head, lentiform nucleus, thalamus, pons, bilateral submandibular gland, bilateral parotid gland, left ventricular wall, greater curvature side of stomach, liver (left and right lobe), spleen, head of pancreas, bilateral kidneys, T8 thoracic vertebrae, T5-9 disc, L2 lumbar vertebrae, L2-3 intervertebral disc, prostate peripheral zone in the central lobe and, bilateral breast, uterus and uterine cavity. The difference of ADC values between sexual groups were analyzed statistically.
     Results:The average ADC values in various organs of the middle-aged healthy people is in the small volatile, following the laws of nature, there was no significant difference of ADC values among bilateral cerebral gray matter and white matter, caudate nucleus and bilateral kidney, breast and liver lobe. And there was no significant difference of ADC values between the men and women.
     Conclusion:In our study, the ADC values of all major organs of the normal middle-aged people were measured, and the standards of the ADC values of the various organs were established. The results show that the ADC value of the normal tissues had no significant difference in gender and between the left and right side. This provids basis of reference in whole body DWI and the semi-quantitative analysis.
     PartⅢ
     Objective:The number of advanced tumor is increasing obviously,in order to know the actual changes of the size and number of the metastatic tumors pre-and post-treatment,CT and/or MRI scaning were usually applied in the past,only a small number of patients could payed for PET(positron emition tomography).But there exists many problems,including redundantly exposure to radiation,too long check and heavy financial burden.Therefore we evaluate the application of whole body diffusion weighted imaging in diagnosis of tumor and metastatic tumor. To evaluate the accuracy of detecting tumor and metastasis using whole body diffusion weighted imaging (WBDWI)
     Methods:sixty-eight patients (49 male,19 female, age ranging from 29 to 84 years with mean age of 61 years) with variety tumors were investigated by CT and/or MRI scan, seventeen patients were compared with positron emission tomography (PET).All tumors were classified according to diameter into four groups of<1 cm,≥1-<2 cm,≥2-<3 cm and≥3cm. At the same time, detection condition of lesions from different parts was analysed.
     Results:The detection rate of four groups were 30%,78%,96% and 100% respectively. The skeletal system had the highest sensitivity and accuracy among parts of body. There exists some difficulty in diagnosing lesion of which diameter is small than 1 cm in lung and small 2cm in the neck and cavitas pelvis. Conclusion:whole body diffusion weighted imaging is safe, convenient, effective and economic for screening wide-ranging tumor focus. After improvement of parameter, WBDWI could be as a new effective whole body examination technique.
引文
1. Takahara T,Imai Y,Yamashita T,et al. Diffusion weighted whole body imaging with background body signal suppression(DWIBS):technical improvement using free breathing, STIR and high resolution 3D display.Radiat Med,2004,22:275-282.
    2. Nonomura Y,Yasumoto M,Yoshimura R ,et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging,2001,13 :757-760.
    3. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans.Am Neuroradiol, 1992,13:1097-1102.
    4. Holtas S, Geijer B, Stromblad LG, et al. A ring enhancing metastasis with central high signal on diffusion weighted imaging and low apparent diffusion coefficients. Neuroradiology, 2000,42: 824.
    5. Denis Le Bihan, Peter van Ziji.From the diffusion coefficient to the diffusion tensor. NMR in Biomedicine.2002,15:431-434.
    6. Steinborn MM, Heuck AF, Tiling R, et al. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr, 1999,23:123-129.
    7. Kim T, Murakami T, Takahashi S ,et al. Diffusion weighted single shot echo planar MR imaging for liver disease. AJR Am Roentgenol, 1999,173 :393-398.
    8. Moteki T, Sekine T. Echo planar MR imaging of the liver: comparison of images with and without motion probing gradients. J Magn Reson Imaging, 2004,19:82-90.
    9. Guo Y, Cai YQ, Cai ZL ,et al. Differentiation of clinically benign and malignant breast lesions using diffusion weighted imaging. J Magn Reson Imaging, 2002 ,16:172-178.
    10. Colagrand S,Pallotla S,Vanzulli A,et al.The diffusion parameter in magnetic resonance: Physics,techniques and semeiotics.Radiol Med,2005,2:109:1-16
    11. Lauenstein TC,Goehde SC,Herborn CU,et al.Whole-body MR imaging: evaluation of patients for metastases. Radiology ,2004,233:139-148.16
    12. Li S, Sun F, Jin ZY, et al. Whole Body diffusion-weighted imaging:technical improvement and prelimimary results. JMRI,2007,26:1139-1144.
    13. Nakanishi K, Kobayashi M, Takahashi S ,et al. Whole body MRI for detecting metastatic bone tumor: comparison with bone scintigrams.Magn Reson Med Sci,2005,4(1):11.
    14. Yang TH, Lin JZ, Wang X,et al.Preliminary study of feasibility of whole body diffusion weighted imaging in diagnosis of metastasis of tumor. Chin J Med Sci, 2008;,23:187-192.
    15. Koh D.M, Collins D.J, David J, et al.Diffusion-weighted MRI in the body: Applications and challenges in oncology.American Journal of Roentgenology, 2007,188:1622-1635.
    16. Abdel Razek AA, Soliman NY, Elkhamary S, et al. Role of diffusion weighted MR imaging in cervical lymphadenopathy. Eur Radiol, 2006, 16:1468-1477.
    17. Murtz P, Flack S, Traber F,et al.Abdomen: Diffusion-weighted MR imaging with pluse-triggred single-shot sequences, Radiology, 2002,224:258-264.
    18. Naganowa S,Sato C,nakamura T,et al. Diffusion-weighted imaging of liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide.J Magn Reson Imaging, 2005 ; 21:836-840.
    19. Kim T, MurakamiT, Takahashi S, et a.l Diffusion-weighted single-shot echo planar MR imaging for liver disease.AJR, 1999,173: 393-398.
    20. Hori M, Ichikawa T, Sou H, et al.Improving diffusion-weighted imaging of liver with SENSE technique: a preliminary study. Nippon Igaku Hoshasen Gakkai Zassh, 2003,63:177-179.
    21. Murtz P,Krautmacher C, Traber F, et al.Difussion-weighted whole-body MR imaging with background body signal suppression:a feasibility study at 3.0 tesla. Eur Radiol,2007,173031-3037.
    1. Helenius J, Soinne L, Perki6, et al. Diffusion-Weighted MR Imaging in Normal Human Brains in Various Age Groups. Am J Neuroradiol, 2002;23:194-199.
    2. Schaefer PW, Grant PE, Gonzalez RG Diffusion-weighted MR Imaging of the Brain. Radiology, 2000;217:331-345.
    3.Naganawa S, Sato K, Katagiri T, ct al. Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol, 2003; 13:6-11.
    4 .Engelter ST, Provenzale JM, Petrella JR, et al. The Effect of Aging on the Apparent Diffusion Coefficient of Normal-Appearing White Matter. Am J Roentgenol, 2000;175:425-430.
    5 .Drachman DA. Aging and the brain:a new frontier. Ann Neurol, 1997; 42:819-828.
    6 .Chow LC, Bamrner R, Moseley ME, et al. Single breath hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging, 2003, 18:377-382.
    7. 孙月浪,孙兴旺,强永乾.正常腹部实质脏器磁共振弥散加权成像AD值和b值研究.中国医学影像学杂志,2006;14:265-268.
    8 .Yamada I,Aung W,Himeno Y, et al. Difusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging, Radiology, 1999,210:617-623.
    9 .Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC Measurement of Abdominal organs and Lesions Using Parallel Imaging Technique. Am J Roentgenol, 2006;187:1521-1530.
    10. Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurement for clinical use. J Magn Reson Imaging, 2000;11:156-160.
    11. Allen KS, Kressel HY, Arger PH, et al. Age-related changes of the Prostate: evaluation by MR imaging. Am J Roentgenol, 1989; 152:77-81.
    12. Ward R,Caruthers S,Yablon C,et al. Analysis of diffusion changes in posttraumatic bone marrow using navigator-correeted diffusion gradients. Am J Roentgenol, 2000; 174:731 -734.
    1. Jin ZY, Xue HD, Tao H. Whole body diffusion weighted imaging:A new era of oncological radiology. Chin Med Sci.2008,23:129-132.
    2. Steinert H.C. PET/CT in lymphoma patients. Radiologe,2004,44:1060-1067.
    3. Madsen M.T, Anderson J.A, Halama J.R, et al,AAPM task group 108:PET and PET/CT shielding requirements, Med Phys,2006,33:4-15.
    4. Steinborn MM, Heuck AF, Tiling R, et al. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr, 1999,23:123-129.
    5. Koh D.M, Collins D.J, David J.Diffusion-weighted MRI in the body: Applications and challenges in oncology, American Roentgen Ray Society,2007, 188:1622-1635.
    6. Le Bihan D. Diffusion and perfusion magnetic resonance imaging. Applications to functional MRI. New York:Raven Press,1995.
    7. Guo Y, Cai YQ, Cai ZL, et al. Differentiation of clinically benign and malignant breast lesions using diffusion weighted imaging. JMRI,2002,16:172-178.
    8. Shinya S, Sasaki T, Nakagawa Y, et al, The usefulness of diffusion-weighted imaging (DWI) for the detection of gastric cancer. H G E Update Medical Publishing,2007, Greece,54:1378-1381.
    9. Donahue M.J, Lu H.Z, Jones C.K, Jet al. An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR in Biomedicine,2006,19:1043-1054.
    10. Mentzel HJ, Kentouche K, Sauner D, et, al. Comarison of whole body STIR-MRI and 99mTc-methylene-diphospho-nate scintigraphy in children with with suspected bone lesions. Eur Radiol.2004,14:2297-2302.
    11. Li S, Sun F, Jin ZY, et al. Whole Body diffusion-weighted imaging:technical improvement and prelimimary results. JMRI.2007,26:1139-1144.
    1. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motion:application to diffusion and perfusion in neurologic disorders. Radiology,1986,161:401-407.
    2. Hahn El.Spin echoes. Phys Rev,1950,80:580-594.
    3. Stejskal E, Tanner J. Spin diffusion measurements:spin echos in the presence of a time-dependent field gradient. J Chem Phys,1965; 42:288-292.
    4. Moseley ME,Cohen Y,Mintorovith J, et al. Early detection of regional cerebral ischemia in cats:comparison of diffusion-and T2-weighted MRI and spectroscopy.MagnetReson Med,1990,14:330-346.
    5. Takahara T,Imai Y,Yamashita T,et al. Diffusion weighted whole body imaging with background body signal suppression(DWIBS):technical improvement using free breathing, STIR and high resolution 3D display.Radiat Med,2004,22: 275-282.
    6. Nakanishi K,Kobayashi M,Takahashi S,et al. Whole body MRI for detecting metastatic bone tumor:comparison with bone scintigrams.Magn Reson Med Sci,2005,4:11.
    7. Lauenstein TC,Goehde SC,Herborn CU,et al.Whole-body MR imaging:evaluation of patients for metastases.Radiology 2004;233:139-148
    8. Li S, Sun F, Jin ZY, et al. Whole Body diffusion-weighted imaging:technical improvement and prelimimary results. JMRI,2007,26:1139-1144.
    9. Yang TH,Lin JZ,Wang X,et al.Preliminary study of feasibility of whole body diffusion weighted imaging in diagnosis of metastasis of tumor. Chin J Med Sci, 2008,23:187-192.
    10. Hori M, Ichikawa T, Sou H,et al.Improving diffusion-weighted imaging of liver with SENSE technique:a preliminary study. Nippon Igaku Hoshasen Gakkai Zassh,2003,63(4):177-179.
    11. Arvidas B. Cheryaukaa,James N,et al. MRI diffusion tensor reconstruction with PROPELLER data acquisition. Magn Reson Imaging,2004,22:139-148.
    12. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. Am J Neuroradiol 1992,13:1097-1102.
    13. Jonathan HB, Allen DE, Peter ER et al. Acute cerebral infarction:quantification of spin-density and T2 shine-through phenomena on diffusion weighted MR images. Radiology,1999,212:333-339.
    14. Bruning R, Wu RH, Deimling M, et al. Diffusion measurements in the ischemic human brain with a steady state sequence. Inves Radiol 1996,31:709-715.
    15. RobertsTL, RowleyHA. Diffusionweightedmagnetic resonance imaging in stoke.Eur J Radio,2003,45:185-194.
    16. Chang SC,Lai PH,Chen WL,et al.Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors:comparison with conventional MRI.Clin Imaging,2002,26:227-236.
    17. Kono K, inoue y, Nakayama K, et al.The Role of Diffusion-weighted Imaging in Patients with BrainTumors.AJNR,2001,22:1081-1088.
    18. Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours. Neuroradiology,1997;,39:483-489.
    19. Sugallara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI With echo-Planar technique in th eevaluation of cellularity in gliomas.J Magn ResonImaging,1999,9:53-60.
    20.Woodhams R, Matsunaga K, Iwabuchi K, et al. Diffusion-weighted imaging of malignant breast tumors:the usefulness of apparent diffusion coefficient(ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr,2005,29:644-649.
    21.Sinha S,Lucas-Quesada FA,Sinha U,et al.In vivo diffusion-weighted MRI of the breast:Potential for lesion characterization.Journal of Magnetic Resonance Imaging,2002,15:693-704.
    22. Guo Y, Cai YQ, Cai ZL, et al. Differentiation of clinically benign and malignant breast lesions using diffusion—weighted imaging. J MRI,2002,16:172-178.
    23. Kim T, MurakamiT, Takahashi S, et a.l Diffusion-weighted single-shot echo planar MR imaging for liver disease.AJR,1999,173:393-398.
    24. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion Isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 Patients.Radiology,2003,226:71-78.
    25. Koh DM,Scurr E,Collins DJ,et al. Colorectal hepatic metastases quantitative measurements using single shot echo planar diffusion weighted MR imaging. Eur Radiol,2006,16:1898-1905.
    26. Amano Y, Kumazaki T, Ishihara M, et al. Single-shot diffusion-weighted echo-planar imaging of normal and cirrhotic livers using a phased-array multicol.Acta Radio,1998,39:440-442.
    27. Aube C,Racineux P,Lebigot J,et al.Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging.preliminary results. Radiology,2004,85:301-306.
    28.孙月浪,孙兴旺,强永乾.正常腹部实质脏器磁共振弥散加权成像ADC值和b值研究.中国医学影像学杂志,2006,14:265-268·
    29. Yamada I, Aung W, Himeno Y, et al. Difusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology,1999,210:617-623.
    30. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC Measurement of Abdominal organs and Lesions Using Parallel Imaging Technique. Am J Roentgenol, 2006,187:1521-1530.
    31. Jones RA, Grattan-Smith JD. Age dependence of the renal apparent diffusion coefficient in children. Pediatr Radiol,2003,33:850-854.
    32. SquillaciE, Manenti G, Di Stefano F, et a.l Diffusion-weighted MR imaging in the evaluation of renal tumors. J Exp Clin Cancer Res,2004,23:39-45.
    33. Cova M,Squillaci E, Stacul F,et al. Diffusion-weighted MRI in the evaluation of renal lesions:preliminary results.Br J Radiol,2004:77:851-857.
    34. Namimoto T, Yamashita Y, Mitsuzaki, et al. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planarMR imaging. J Magn Reson Imagimg,1999,9:823-827.
    35. Rosch J, Schusdziarra V,Born P,et al.Modern imaging methods versus clinical assessment in the elevation of hospital in-patients with suspected pancreatic disease. Am J Gastroenterol,2000,95:2260-2262.
    36. Adamek HE, Albert J, Breer H, et al. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangio pancreatography:a prospective controlled study.Lancet,2000,356:190-193.
    37. MotekiT, IshizakaH. Diffusion-weighted EPI of cystic ovarian lesions:evaluation of cystic contents using apparent diffusion coefficients. J Magn Reson Imaging, 2000,12:1014-1019.
    38. Moteki T, Ishizaka H,et al. Diffusion—weighted EPI of cystic ovarian lesions: evaluation of cystic contents using apparent diffusion coefficients.Magn Reson Imaging,2000,12:1014-1019.
    39. Katayama M, Masui T, Kobayashi S, et al. Diffusion-weighted echo Planar imaging of ovarian tumors:Is it useful to measure apparent diffusion coefficients?.J Comput Assist Tomogr,2002,26:250-256.
    40. Shimada K, Ohashi I, Kasahara I, et al. Differentiation between completely hyalinized uterine leiomyomas and ordinary leiomyomas:three-Phasedynamic magnetic resonance imaging(MRI)vs.diffusion-weighted MRI with very small b-factors.J Magn Reson Imaging,2004,20:97-104.
    41. Jacobs MA, Herskovits EH, Kim HS.Uterine Fibroids:Diffusion-weighted MR Imaging for Monitoring Therapy with Focused Ultrasound Surgery-Preliminary Study.Radiology,2005,236:196-203.
    42. Issa B. In vivo measurement of the apparent diffusion coeficient in normal and malignant postatic tissue using echo-planar imaging, J Magn Reson Imaging, 2002,16:196-200.
    43.王霄英,孙非,丁建平,等.精囊的磁共振扩散成像初步研究.中国医学影像技术,2004,20:268-271.
    44.王娟,周义成,夏黎明,等.使用ADC值评估正常及退变腰椎间盘的初步研究.医学影像学杂志,2006,16:1093-1096.
    45. Steinborn MM, Heuck AF, Tiling R,et al. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr, 1999,23:123-129.
    46. Schmidt GP, Schoenberg SO, Reiser MF,et al.Whole-body MR imaging of bone marrow.Eur J Radiol 2005,55:33-40.
    47. Wu ZH,Yang BQ,Pan SN,et al.MRI evaluation of bone marrow of normal lumber vertebra in the Chinaese:normal patterns and preliminary quantitative study.Chin J Radiol,1999,112:646-648.
    48. Jin ZY, Xue HD, Tao H. Whole body diffusion weighted imaging:A new era of oncological radiology. Chin Med Sci,2008,23:129-132.
    49. Russell N,Low MD. Diffusion-Weighted MR Imaging for Whole Body Metastatic Disease and Lymphadenopathy.Magn Reson Imaging Clin N Am,2009,17: 245-261.
    50. Kellenberger CJ,Miller SF, Khan M,et al.Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children.Eur Radiol,2004; 14: 1829-1841
    51. Sternert HC, PET/CT in lymphoma patients.Radiologe,2004,44:1060-1067.
    52. Sumi M, Sakiham N, Sumi T, et al. Discrimination of metastatic Lymph nodes with diffusion MR imaging in patients with head and neck cancer. Am J Neuroradiol,2003,24:1627-1634.
    53. Mentzel HJ, Kentouche K, Sauner D, et, al. Comarison of whole body STIR-MRI and 99mTc-methylene-diphospho-nate scintigraphy in children with with suspected bone lesions. Eur Radiol,2004,14:2297-2302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700