用户名: 密码: 验证码:
长江口中国花鲈的食性及分子生物学在食性分析上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国花鲈(Lateolabrax maculatus)为长江口的重要经济鱼类,其和鮻、鲻、鮰(长吻鮠)合称为长江口常年作业的四台柱,是常年捕捞的四个主要对象之一。花鲈因个体大,肉味美,生长快,在国内外市场颇受欢迎。长江口为我国鱼类生物多样性最丰富、渔业潜力最大、环境最为复杂的的河口,长江口的中国花鲈对其生态系统结构和功能都有着重要的影响。长江口的生态环境直接影响中国花鲈的捕食效率,而中国花鲈的捕食作用,也影响着长江口整个生态系统食物链、食物网的能量流动。对中国花鲈食性的分析有利于阐述两者的关系。迄今为止,国内外学者在中国花鲈的食性方面虽然开展了一些有益的工作,但自20世纪80年代有研究外,二十多年来没有开展相关的研究,并且从未有过分子生物学在中国花鲈食性分析上面的应用。
     根据2010年7月至10月在长江口崇明东滩团结沙和东旺沙水域采集到的胃含物样品,对中国花鲈的摄食习性进行了研究。结果表明,从中国花鲈胃含物中共鉴定出6类29种饵料生物,其多样性指数H'值为2.461,均匀度指数J'为0.731,优势指数D为0.1324。采用百分比相对重要性指数(IRI%)和综合指标优势指数(Ip)分析的结果较一致,鱼类是长江口中国花鲈夏季主要食物,其百分比相对重要性指数(IRI%)和综合指标优势指数(Ip)分别为80.39%和91.89,鮻(Liza haematocheila)为优势饵料生物(IRI%=50.14,Ip=65.91。与其他生态环境中中国花鲈食性相比,长江口中国花鲈食性产生了很大的不同,有很明显的长江口生物群落的特色。与往年的食性相比,饵料生物也发生了较大的变化,这种变化与长江口鱼类群落的变化相适应。
     长江口中国花鲈为广食性鱼类具有摄食选择性,个体发育、环境差异、饵料生物自身都会影响中国花鲈的摄食选择。随着中国花鲈的个体增长,其选择摄食的饵料生物个体也会增长,捕食者捕食尽可能大的饵料生物,获得较多的能量,符合最佳摄食理论。两个采样点中国花鲈饵料种类、数量差别显著,均与其所处的环境中群落相适应。随着体长的增加,鱼类总是尽可能的去捕食个体大的饵料生物,这从饵料生物体长与中国花鲈体长为正相关中得到体现。但是在具体对鮻体长和中国花鲈体长关系分析中发现,在中国花鲈体长范围达到300mm-350mm时,其捕食的鮻体长常出现减小的反常现象。这种现象的产生反应了长江口环境的复杂和外界扰动作用的严重,生态环境中食物链、食物网组成变化大,这些情况致使饵料生物大小与中国花鲈大小关系很不稳定。
     DNA为基础的分析方法用于研究中国花鲈的食性,方法可行。使用DNA方法,共鉴定出7种鱼类,两种虾类。其中鮻为主要饵料生物,占了45%,其次为安氏白虾。DNA方法鉴定出了形态学方法中的不可辨鱼和不可辨虾,包括中国花鲈、四指马鲅、棘头梅童鱼、斑尾刺虾虎鱼、脊尾白虾和安氏白虾。此方法没有鉴定出蟹类。在此方法与形态学方法进行比较发现,分析方法的独立使用均不如两种方法共同使用。在未来的研究中可以两种方法兼用,以形态学方法为主,DNA为基础的分析方法为辅,来进行更加准确细致的食性分析。
Lateolabrax maculatus, an estuary migratory species with high commercial value, is widely distributed in waters of the west Pacific Coast and in the Yangtze Estuary. However, collapse has been occurring of L. maculatus stocks after overfishing and habitat destruction for the extra activity of the human beings. Furthermore, the collapse stocks are impacting on the ecological function of broad water area near Yangtze Estuary. L. maculates, being on the trophic levels of food chain, importantly affects regulation of animals at lower trophic level of Yangtze Estuary. Similarly, the remove of L. maculates from the estuary will certainly cause a trophic cascading effect on the community, and possibly alter the abundance of species which maintain the whole food chain.
     In order to investigate the composition of prey species,265 samples of L. maculatus were collected from July to October,2010, of Yangtze Estuary. Stomach contents of each fish were examined. The result showed that stomachs of 16.40% fish were empty. Cumulative prey curves for the entire sets from Yangtze estuary, sample sets from points of Tuanjiesha and Dongwangsha, are all fitting better with logistic curve than with a linear relation. Therefore the sample size was considered sufficient to describe the diet of L. maculates. The results also showed that, the diet of L. maculatus consisted of 29 prey items from a widely array of biological groups which belongs to 6 kinds of Fishes, Shrimps, Crabs, Stomatopoda, Isopoda and Veneroida. Results of the resource indices indicate a diverse diet:prey diversity, H'=2.461; prey evenness, J'=0.7310; prey dominance, D=0.1324.
     The importance of the different prey items were evaluated by the frequency of occurrence, abundance and mass followed with using these dates to calculate the Index of Relative Important (IRT) for each taxonomic category, and the Index of Preponderance (Ip) which did not incorporate N into the formula. Percent Index of Relative Important values indicated that the three most important kinds in 217 stomachs of L. maculatus were Fishes (80.39 IRI%), Shrimps (15.54 IRPI%) and Isopoda(2.19 IRI%). Index of Preponderance values indicated that Fishes (91.89 Ip) is the most important kind, Shrimps (7.03 Ip) is the second kind, Crabs (1.02 Ip) is the third one. Combining the values of two indices, Liza haematocheila was the dominant species in both terms of IRI%(50.14) and ip(65.91). Exopalaemon annandalei and Gnorimosphaeroma rayi were dominant food items in terms of IRI% but showed a very low Ip. Saurogobio dumerili and Lateolabrax maculatus were dominant food items in terms of Ip but shows a smaller data. Combining with other indices, it is found that the main contribution for fishes to the feeding habit of L. maculatus was their large weight, and the main contribution for other species was their abundance. In the present study, the importance of different prey items could not be evaluated by any single index. Based on above facts, five species mentioned above were all dominant food items of L. maculatus.
     The value of prey diversity measured for L. maculatus was 2.461 which are considered moderate level, thus making fairly easy to find anyone of the 29 prey items from samples of L. maculatus's. The result of feeding habits for L. maculatus is unlike previous studies, and there were obvious changes among the dominant species. According to analysis of the dates of PCA, differences of food items for two sampling points and the entire sets of Yangtze Estuary were being emerged. There were significant dietary shifts among samples from points of Tuanjiesha, Dongwangsha and the entire sets of Yangtze River estuary. According to principal components analysis, it is speculated that the difference is mainly caused by Coilia spp., Glossogobius giuris, Exopalaemon carinicauda and Gnorimosphaeroma rayi.
     Seven unique fishes and two unique shrimp were identified by DNA-based analysis. DNA-based analysis can identify Lateolabrax maculatus, Eleutheronema rhadinum, Acanthogobius ommaturus, Exopalaemon carinicauda, Exopalaemon annandalei, which cannot be identified by morphological. Compared the effectiveness of morphological and DNA-based analysis for determining the diet of, we found the combined approach was more effective than using either of the methods in isolation.This study highlights the benefits of using a combination of techniques to detect and identify prey of generalistmarine consumers.
引文
[1]楼东,高天翔,张秀梅,等.花鲈种质资源的研究进展.浙江海洋学院学报.2000,19(2):162-167.
    [2]庄平,王幼槐,李圣法等.长江口鱼类.上海:上海科学技术出版社.2006.
    [3]刘明月,蒋琦辰,杨家新.不同海域中国花鲈的细胞色素b序列的遗传分析.南京师大学报.2010,33(1):102-106.
    [4]. Nieuwe nalezingen op de ichthyologie van Japan. Verh Batav Genootsch Kunst Wet. 1854-1857,26:1-132.
    [5]Yokogawa K, Seki S. Morphological and genetic differences between Japanese and Chinese sea bass of the genus Lateolabrax. Japanese Journal of Ichthyology.1995,41(4): 437-445.
    [6]Jung Y P. Genetic characterization of two types of sea bass, Lateolabrax japonicas in Korea by isozyme analysis. Journal of Aquaculture.1996,9(4):437-444.
    [7]王远红,吕志华,高天翔,等.中国花鲈与日本花鲈营养成分的研究.海洋水产研究.2003,24(2):35-39.
    [8]楼东,高天翔,张秀梅,等.中日花鲈生化遗传变异的初步研究.青岛海洋大学学报.2003,33(1):22-28.
    [9]李明云,赵明忠,钟爱华,等.山东日照和福建厦门沿海花鲈(Lateolabrax japonicus)遗传多样性的RAPD研究.海洋与湖沼.2003,34(6):618-623.
    [10]王远红,吕志华,高天翔,等.不同海域中国花鲈营养成分的比较研究.青岛海洋大学学报.2003,33(4):531-536.
    [11]李明云,赵明忠,钟爱华,等.山东日照和福建厦门沿海花鲈遗传差异的的同工酶和RAPD分析.海洋学报.2005,27(3):119-123.
    [12]李明云,赵明忠,钟爱华,等.山东日照和福建厦门沿海花鲈同工酶的遗传变异分析.浙江海洋学院学报.2003,22(2):121-124.
    [13]王可玲,张培军,刘兰英,等.中国近海带鱼种群生化遗传结构及其鉴别的研究.海洋学报.1994,16(1):93-104.
    [14]叶振江,孟晓梦,高天翔,等.两种花鲈(Lateolabrax sp)耳石形态的地理变异.海洋与湖沼.2007,38(4):356-360.
    [15]Liu J X, Gao T X, Yokogawa K, et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass(Lateolabrax japonicus) and spotted sea bass(Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution.2006,39:799-811.
    [16]钟俊生,郁蔚文,刘必林,等.长江口沿岸碎波带仔、稚鱼种类组成和季节性变化.上海水产大学学报.2005,14(4):428-435.
    [17]张涛,庄平,刘健,等.长江口崇明东滩鱼类群落组成和生物多样性.生态学杂志. 2009,28(10):2056-2062.
    [18]王金辉,黄秀清,刘阿成,等.长江口及邻近水域的生物多样性变化趋势分析.海洋通报.2004,23(1):32-39.
    [19]李宝泉,李新正,王洪法,等.长江口附近海域大型底栖动物群落特征.动物学报.2007,53(1):76-82.
    [20]孙帼英,朱云云,周忠良,等.长江口及浙江沿海花鲈的繁殖生物学.水产学报.1994,18(1):18-23.
    [21]薛莹,徐宾铎,高天翔,等.北黄海细纹狮子鱼摄食生态的初步研究.中国水产科学.2010,17(5):1066-1074.
    [22]Jennings S, Kaiser M J. The effects of fishing on marine ecosystems. Advances in Marine Biology.1998,34:201-212.
    [23]杨瑞斌,谢从新.鱼类摄食生态研究内容与方法综述.水利渔业.2000,20(3):1-3.
    [24]殷名称.鱼类生态学.北京:中国农业出版社.1995.
    [25]孙儒泳.动物生态学原理.北京:北京师范大学出版社.2001.
    [26]Gramer S, Daan N. Consumption of Bebthos by North Sea sod and haddock in 1981. ICES CM 1986/G:56.
    [27]Pinkas L, Oliphant M S, Iverson L K. Food habits of albacore, bluefin tuna and bonito in California waters. California Department of Fish and Game Fish Bulletin.1971,152:1-105.
    [28]Natarajan A V, Jhingran A G. Index of Preponderance-a method of grading the food elements in the stomach analysis of fishes. Indian Journal of Fisheries.1961,8:54-59.
    [29]Assis C A. A generalized index for stomach contents analysis in fish. Scientia Marina. 1996,60:385-389.
    [30]孙帼英,朱云云,陈建国,等.长江口花鲈的生长和食性.水产学报.1994,18(3):183-189.
    [31]庄平,罗刚,张涛,等.长江口水域中华鲟幼鱼与6种主要经济鱼类的食性及食物竞争.生态学报.2010,30(20):5544-5554.
    [32]郭瑞听,顾曙余,刘小维,等.灌河河口花鲈消化系统的解剖与食性分析.水利渔业.2008,28(3):19-21.
    [33]Elsdon T S. Unraveling diet and feeding histories of fish using fatty acids as natural tracers. Journal of Experimental Marine Biology and Ecology.2010,386:61-68.
    [34]Recks M A. An investigation into the use of blubber fatty acid profiles as a means to determine dietary history of bottlenose dolphins (Tursiops truncatus) in estuarine and nearshore coastal waters around Charleston, South Carolina. M.S. thesis. The Graduate School of the College of Charleton:141.
    [35]Sweeting C J, Barry J T, Polunin N V C, et al. Effects of body size and environment on diet-tissueδ13C fractionation in fishes. Journal of Experimental Marine Biology and Ecology. 2007,352:165-176.
    [36]彭士明,施兆鸿,尹飞,等.利用碳氮稳定同位素技术分析东海银鲳食性.生态学 杂志.2011,30(7):1565-1569.
    [37]全为民.长江口盐沼湿地食物网的初步研究:稳定同位素分析.上海:复旦大学.2007.
    [38]许强,杨红生.脂肪酸标志物在海洋生态系统营养关系研究中的应用.海洋学报.2011,33(1):1-6.
    [39]李军.渤海鲈鱼食物组成与摄食习性的研究.海洋科学.1994,3:39-44.
    [40]Jobling M, Breiby A. The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia.1986,71:265-274.
    [41]Berumen M L, Pratchett M S, McCormick, et al. Within-reef differences in diet and body condition of coral-feeding butterflyfishes(Chaetodontidae). Marine Ecology Progress series. 2005,287:217-227.
    [42]Robert J M, Batzli G O. Influence of chemical factors on palatability of forage to voles. Journal of Mammalian Evolution.1989,70:503-511.
    [43]蒋志刚,夏武平.高原鼠兔食物资源利用的研究.兽类学报.1985,5(4):251-262.
    [44]Bryant J P, Reichardt P B, Clansen F P. Chemically mediated interactions between woody plants and browsing mammals. Journal of Range Management.1992,45:18-24.
    [45]Belvosky G E, Ritchie M E, Moorchead J. Foraging in complex environments:When prey availability varies over time and space. Theoretical Population Biology.1989,36: 144-160.
    [46]Batzli G O. Responses of arctic rodent populations to nutritional factors. Oikos.1983,40: 396-406.
    [47]Pyke G H. Optimal foraging theory:a critical review. Animal Review of Ecology and Systematics.1984,15:573-578.
    [48]Gerking S D. Feeding ecology of fish. San Diego:Academic Press.1994.
    [49]代田昭彦,著,刘世英,雍文岳,译.水产饵料生物学.北京:农业出版社.1985.
    [50]Wootton R J. Ecology of teleost fishes. London:Chapman & Hall.1990.
    [51]Labropoulou M. Machias A, Tsimenides N, et al. Feeding habits and ontogenetic diet shift of the striped red mullet Mullus surmuletus Linnaeus. Fish Resoures.1997,31:257-267.
    [52]Morato L, Serrao S R, Pedro A J. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber Serranus atricauda(Pisces:Serranidae), from the Azores, north-eastern Atlantic. Fish Resoures.2000,49:51-59.
    [53]Schafer L N, Platell M E, Valesini F J, et al. Comparisons between the influence of habitat type, season and body size on the dietary compositions of fish species in nearshore marine waters. Journal of Experimental Marine Biology and Ecology.2002,278:67-92.
    [54]张波.东、黄海带鱼的摄食习性及随发育的变化.海洋水产研究.2004,25:6-12.
    [55]Braley M, Goldsworthy S D, Page B, et al. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Molecular Ecology Resources.2010,10:466-474.
    [56]Robinson H J, Cailliet G M, Ebert D A. Food habits of the longnose skate, Raja rhina (Jordan and Gilbert,1880), in central California waters. Environmental biology of fishes. 2007,80:165-179.
    [57]Barbini S A, Scenna L B, Figueroa D E, et al. Feeding habits of the Magellan skate: effects of sex, maturity stage, and body size on diet. Hydrobiologia.2010,641:275-286.
    [58]Navarro J C, Villanueva R. Lipid and fatty acid composition of early stages of cephalopods:an approach to their lipid requirements. Aquaculture.2000,183:161-177.
    [59]Phillips K, Jackson G D, Nichols P D. Temporal variations in the diet of the squid Moroteuthis ingens at Macquarie Island:stomach contents and fatty acid analysis. Marine Ecology Progress Series.2003,256:135-149.
    [60]Cherel Y, Hobson KA. Stable isotopes, beaks and predators:a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proceedings of the Royal Society,2005,272:1601-1607.
    [61]Kear A J. The diet of Antarctic Squid-comparison of conventional and serological gut contents analyses. Journal of Experimental Marine Biology and Ecology.1992,156:161-178.
    [62]Ivanovic M L, Brunetti N E. Food and Feeding of Illex-Argentinus. Antarctic Science.1994,6:185-193.
    [63]Stowasser G, Pierce G J, Moffat C F, et al. Experimental study on the effect of diet on fatty acid and stable isotope profiles of the squid Lolliguncula brevis. Journal of Experimental Marine Biology and Ecology.2006,333:97-114.
    [64]Chen Y, Giles K L, Payton M E, et al. Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology.2000,9:1887-1898.
    [65]柳淑芳,陈亮亮,戴芳群,等.基于线粒体CO1基因的DNA条形码在石首鱼科(Sciaenidae)鱼类系统分类中的应用.海洋与湖沼.2010,41(2):223-232.
    [66]Sheppard S K, Harwood J D. Advances in molecular ecology:tracking trophic links through predator-prey food -webs. Functional Ecology.2005,19:751-762.
    [67]Hoss M, Kohn M, Paabo S, et al. Excrement analysis by PCR. Nature.1992,359:199.
    [68]Deagle BE, Kirkwood R, Jarman SN. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Molecular Ecology,2009,18:2022-2038.
    [69]Reed J, Tollit D. Microsattelite markers allow species discrimination from faecal and recognizable manatees on the Atlantic coast of Florida. In:T. J. O shea, (eds). Population Biology of the Florida Manatee. National Biological Service Information and Technology Report 1. U. S. Department of the Interior, Washington, D C.1995,289.
    [70]Deagle B E, Tollit D J, Jarman S N, et al. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Molecular Ecology.2005,14: 1831-1842.
    [71]Casper R M, Jarman S N, Deagle B E, et al.Detecting prey from DNA in predator scats:a comparison with morphological analysis, using Arctocephalus seals fed a known diet. Journal of Experimental Marine Biology and Ecology.2007,347:144-154.
    [72]Casper R M, Jarman S N, Gales N J, et al. Combining DNA and morphological analyses of faecal samples improves insight into trophic interactions:a case study using a generalist predator. Marine Biology.2007,152:815-825.
    [73]King R A, Read D S, Traugott M, et al. Molecular analysis of predation:a review of best practice for DNA-based approaches. Molecular Ecology.2008,17:947-963.
    [74]Agusti N, Shayler S P, Harwood J D, et al. Collembola as alternative prey sustaining spiders in arable ecosystems:prey detection within predators using molecular markers. Molecular Ecology.2003,12:3467-3475.
    [75]Harwood J D, Desneux N, Yoo HJS, et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus:a molecular approach. Molecular Ecology.2007, 16:4390-4400.
    [76]Kasper M L, Reeson A F, Cooper SJB, et al. Assessment of prey overlap between a native(Polistes humilis) and an introduced (Vespula germanica) social wasp using morphology and phylogenetic analyses of 16s rDNA. Molecular Ecology.2004,13: 2037-2048.
    [77]Greenstone M H, Rowley D L, Weber D C, et al. Feeding mode and prey detectability half-lives in molecular gut-content analysis:an example with two predators of the Colorado potato beetle. Bulletin of Entomological Research.2007,97:201-209.
    [78]鲍毅新,孙波,张龙龙,等.对动物组织DNA提取方法的改进及PCR检测.浙江师范大学学报.2009,32(3):2-6.
    [79]Sutherland R M. Molecular analysis of avian diet. PhD Thesis, University of Oxford, Oxford, UK.2000.
    [80]Passmore A J, Jarman S N, Swadling K M, et al. DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Marine Biotechnology.2006,8:686-696.
    [81]蔡振媛,张同作,连新明,等.一种提取动物基因组总DNA的野外样品保存方法.四川动物.2006,25(3):473-477.
    [82]Nsubuga A M, Robbins M M, Roeder A D, et al. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology.2004,13:2089-2094.
    [83]Roeder A D, Archer F I, Poiner H N, et al. A novel method for collection and preservation of faeces for genetic studies. Molecular Ecology.2004,4:761-764.
    [84]Hajkova P, Zemanova B, Bryja J, et al. Factors affecting success of PCR amplification of microsatellite loci from otter faeces. Molecular Ecology Notes.2006,6:559-562.
    [85]Agusti N, De Vicente M C, Gabarra R. Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera:a new polymerase chain reaction-based technique for predator gut analysis. Molecular Ecology.1999,8:1467-1474.
    [86]Hoogendoom M, Heimpel G E. PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology.2001,10:2059-2067.
    [87]Zaidi R H, Jaal Z, Hawkes N J, et al. Can multiple-copy sequence of prey DNA be detected amongst the gut contents of invertebrate predators? Molecular Ecology.1999,8: 2081-2087.
    [88]马英,鲁亮.DNA条形码技术研究新进展.中国媒介生物学及控制杂志.2010,21(3):275-280.
    [89]Ballard JWO. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. Journal of Molecular Evolution.2000,51:48-63.
    [90]Mueller R L. Evolutionary rates, divergence dates and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology.2006,55:289-300.
    [91]刘恩生.鱼类与水环境相互关系的研究回顾和设想.水产学报.2007,31(3):391-398.
    [92]陈吉余,陈沈良.长江口生态环境变化及对河口治理的意见.水利水电技术.2003,34(1):19-25.
    [93]黄玉瑶.内陆水域污染生物学原理与应用.北京:科学出版社.2001.
    [94]McQueen D J. Manipulating lake community structure:where do we go from here? Freshwater Biology.1990,23:613-620.
    [95]张波,金显仕,戴芳群.长江口两种重要石首鱼类的摄食习性.动物学报.2008,54(2):209-217.
    [96]Main C E, Collins M A. Diet of the Antarctic starry skate Amblyraja Georgiana (Rajidae, Chondrichthyes) at South Georgia (Southern Ocean). Polar Biology.2011,34:389-396.
    [97]Castriota L, Scarabello M P, Finoia M G, et al. Food and feeding habits of pearly razorfish, Xyrichtys novacula (Linnaeus,1758), in the southern Tyrrhenian Sea:variation by sex and size. Environmental Biology of Fishes.2005,72(2):123-133.
    [98]Hyslop E J. Stomach content analysis-a review of methods and their application. Journal of Fish Biology.1980,17:411-429.
    [99]Cortes E. A critical review of methods of studying fish feeding based on analysis of stomach contents:application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences.1997,54(3):726-738.
    [100]Mohan M V, Sankaran T M. Two new indices for stomach content analysis of fishes. Journal of Fish Biology.1988,33(2):289-292.
    [101]Krebs C J. Ecological Methodology,2nd ed. Petaluma:Addison Wesley Longman. 1999.
    [102]Cailliet G M, Love M S, Ebeling A W. Fishes:a field and laboratory manual on their structure, identification, and natural history. Waveland Press Inc., Prospect Heights.1986.
    [103]Washington H G. Diversity, biotic and similarity indices:a review with special relevance to aquatic ecosystems. Water Research.1984,18(6):653-694.
    [104]郑颖,戴小杰,朱江峰.长江河口定置张网渔获物组成及其多样性分析.安徽农业科学.2009,37(20):9510-9513.
    [105]张学健,程家骅,沈伟,等.黄海南部黄鮟鱇摄食生态.生态学报.2010,30(12):3117-3125.
    [106]Costanza R, d'Arge R, de Groot R, et al. The value of the world's ecosystem services and natural capital. Nature.1997,387(6630):253-260.
    [107]张衡.长江河口湿地鱼类群落的生态学特征.上海:华东师范大学.2007.
    [108]Zhang T, Zhuang P, Liu J, Zhang L Z, Feng G P, Hou J L, Zhao F, Liu J Y. Species composition and biodiversity of fish community in Chongming Dongtan of Yangtze River estuary. Chinese Journal of Ecology,2009,28(10):2056-2062.
    [109]Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs. Science. 1998,279:860-863.
    [110]Rochet M J, Trenkel V M. Which community indicators can measure the impact of fishing? A review and proposals. Canadian Journal of Fisheries and Aquatic Sciences.2003, 60(1):86-99.
    [111]林龙山.长江口近海小黄鱼食性及营养级分析.海洋渔业.2007,29(1):44-48.
    [112]Ferry L A, Cailliet G M. Sample size and data analysis:are we characterizing and comparing diet properly//MacKinley D, Shearer K, eds. Feeding, Ecology and Nutrition in Fish. San Francisco:American Fisheries Society,1996:71-80.
    [113]Bizzarro J J, Robinson H J, Rinewalt C S, et al. Comparative feeding ecology of four sympatric skate species off central California, USA. Environmental Biology of Fishes,2007, 80(2-3):197-220.
    [114]Scenna L B, Garcia de la Rosa S B, Diaz de Astarloa J M. Trophic ecology of the Patagonian skate, Bathyraja macloviana, on the Argentine continental shelf. ICES Journal of Marine Science,2006,63(5):867-874.
    [115]Braccini J M, Gillanders B M, Walker T I. Sources of variation in the feeding ecology of the piked spurdog (Squalus megalops):implications for inferring predator-prey interactions from overall dietary composition. ICES Journal of Marine Science.2005,62(6):1076-1094.
    [116]谢从新,熊传喜.不同光照强度下乌鳢幼鱼的摄食强度及动力学.水生生物学报.1997,21(3):213-218
    [117]Moura T, Figueiredo I, Farias I, et al. Ontogenetic dietary shift and feeding strategy of Raja undulate Lacepede,1802 (Chondrichthyes:Rajidae) on the Portuguese continental shelf. Scientia Marina.2008,72(2):311-318.
    [118]Scrimgeour G J, Winterboum M J. Diet, food resource partitioning and feeding periodicity of two riffle-dwelling fish species in a New Zealand river. Journal of Fish Biology. 1987,31(3):309-324.
    [119]McGarigal K, Cushman S, Stafford S. Multivariate Statistics for Wildlife and Ecology Research,3rd ed. Heidelberg:Springer Verlag.2000.
    [120]刘振生,曹丽荣,王小明,等.贺兰山岩冬季对卧息地的选择.兽类学报.2005, 25(1):1-8.
    [121]Bailey B J R. Large sample simultaneous confidence intervals for the multinomial probabilities based on transformation of the cell frequencies. Technometrics.1980,22: 583-589.
    [122]Cherry S. A comparison of confidence interval methods for habitat use-availability studies. The Journal of Wildlife Management.1996,60(3):653-658.
    [123]Conover W J. Practical nonparametric statistics. New York:John Wiley & Sons.1999.
    [124]Stephens D W, Krebs J R. Foraging theory. New Jersey:Princeton University Press. 1986.
    [125]Alonso K M, Crespo E A, Garcia N A, et al. Food habits of Dipturus chilensis (Pisces: Rajidae) off Patagonia, Argentina. ICES Journal of Marine Science.2001,58:288-297.
    [126]Pederson S A. Feeding habits of the starry ray (Rajia radiata) in West Greenland waters. ICES Journal of Marine Science.1995,52:43-53.
    [127]刘文亮,何文珊.长江河口大型底栖无脊椎动物.上海:上海科学技术出版社.2007.
    [128]金忠贤,刘锡明.开发崇明岛滩涂对长江南支的影响及其意义.上海水利.1997,4:23-29.
    [129]Selleslagh J, Amara R, Laffargue P, et al.2009. Fish composition and assemblage structure in three Eastern English Channel macrotidal estuaries:A comparison with other French estuaries. Estuarine, Coastal and Shelf Science.2009,81:149-159.
    [130]姜勇,陈小麟.石龙子的猎物选择研究.厦门大学学报.2002,41(5):659-663.
    [131]霍海峰.若干微分与差分系统解的渐近性质.陕西:陕西师范大学.2000.
    [132]刘毅婧,雒志学.一类3阶段结构自食系统的最优收获策略.重庆工学院学报.2007,21(6):43-45.
    [133]Palumbi S R. Nucleic acids Ⅱ:the polymerase chain reaction. In:Molecular Systematics (eds Hillis D M, Moritz C & Mable B K). Sunderland:Sinauer Associates.1996.
    [134]Deagle B E, Jarman S N, Pemberton D, et al. Genetic screening for prey in the gut contents from a giant squid (Architeuthis sp.). Journal of Heredity.2005,96:417-423.
    [135]Altschul S F, Madden T L, Schaeffer A A, et al. Gapped BLAST and PSI-BLAST:a new generation of pretein database search programs. Nucleic Acids Research.1997,25: 3389-3402.
    [136]Deagle B E, Chiaradia A, McInnes J, et al. Pyrosequencing faecal DNA to determine diet of little penguins:in what goes in what comes out? Conservation Genetics.2010,11: 2039-2048.
    [137]李由明.稳定同位素在凡纳滨对虾(Litopenaeus vannamei)幼虾食性分析中的应用研究.广东:广东海洋大学.2006.
    [138]Rosel P E, Kocher T D. DNA-based identification of larval cod in stomach contents of predatory fishes. Journal of Experimental Marine Biology and Ecology.2002,267:75-88.
    [139]Deagle B E, Tollit D J. Quantitative analysis of prey DNA in pinniped faeces:potential to estimate diet composition? Conservation Genetics.2007,8(3):743-747.
    [140]Jarman S N, Deagle B E, Gales N J. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary sample. Molecular Ecology. 2004,13:1313-1322.
    [141]Troedsson C, Simonelli P, Nagele V, et al. Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Marine Biology.2008,156(3): 253-259.
    [142]Deagle B E, Eveson J P, Jarman S N. Quantification of damage in DNA recoverd from highly degraded samples-a case study on DNA in faeces. Frontiers in Zoology.2006,3:11.
    [143]Blankenship L E, Yayanos A A. Universal primers and PCR of gut contents to study marine invertebrate diets. Molecular Ecology.2005,14:891-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700