用户名: 密码: 验证码:
克拉玛依油田老化油回收实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是国民经济重要的基础能源。近年来,国内石油需求强劲,消费大幅增长,而国内石油产量却徘徊不前,供需矛盾日益突出。目前我国各大油、气田已进入开发中后期,地层产能不断降低、含水上升和其它复杂情况导致石油和天然气的开采难度不断增高,生产效率不断降低。而开采到地面相当一部分原油因各种原因转化为老化油,不能应用,造成能源浪费。例如:油井管外漏及其它落地原油,修井废液,污水事故池、污水处理装置回收的加过各种化学药剂的乳化原油、原油处理装置排出的乳化液以及油井各种作业后排出的污油,清罐罐底污油等。因此老化油破乳回收二次使用将成为我国原油产量新的增长点,对于保障石油市场的供需平衡具有重要的现实意义。
     本文以克拉玛依油田典型老化油(稠油和稀油)为研究对象,以实验为研究手段,紧紧围绕老化油回收这一主题,主要开展以下工作:
     (1)深入调查克拉玛依油田老化油的来源,分类整理选取具有典型、代表性的红浅稠油处理站、稀油处理站和车排子联合站老化油作为研究对象,分别对浮渣、水珠直径及其界面膜厚度进行微观成像分析,进一步明确了本文研究对象。
     (2)从原油乳状液形成机理入手,深入分析了老化油乳化剂的来源和乳状液的形成过程,进而研究乳状液的稳定性机理,并以脱水率为目标,分别开展了搅拌强度、原油组成、液珠直径、油水界面膜、高分子化合物等参数对老化油稳定性的敏感性实验,为老化油破乳回收提供了重要的基础数据。
     (3)分别采用加热破乳、电破乳、离心脱水以及化学破乳等油田常用破乳脱水工艺对老化油进行破乳脱水实验,找到老化油的破乳对策——热化学—离心脱水技术;并提出了老化油破乳剂选择的原则,对初选的四种破乳剂分别开展了不同预测时间、脱水温度、加药浓度条件下的脱水实验,合理优选了添加剂,确定老化油破乳脱水的实验条件。
     (4)基于水滴沉降原理,对老化油离心脱水的影响因素进行评判,确定各影响因素的重要程度,进而对各类影响因素开展正交实验研究,确定合理工艺参数,为成功进行现场模拟实验提供重要的技术依据。
     (5)对比分析原油掺蒸汽和热水以及加热过程原油乳化试验结果,确定合理地加热方式;并引人碟式分离技术分离固体颗粒渣,分类给出了残渣处理方法。进而合理确定了老化油回收现场试验参数,应用采油一厂红浅大坝收油和车排子收油、重油公司蒸发场拉油、采油二厂81#站收油开展了现场试验。
Oil is the important foundational energy to the national economy. In recent years, the domestic petroleum demand is strong, the consumption has a large growth, but the domestic petroleum output increases a little, the contradiction of supply and demand is prominent. Now many big oil/gas fields have entered the development mid and late part. The reduction of the stratum productive capacity, the increase of water cut and other complex situations cause the unceasing advances of exploitation difficulty and the unceasing reduction of production efficiency. On the other hand, one part of crude oil has become aged oil which can not apply and brings about the energy waste. For example, the besides leaking of oil well pipe and other ground crude oil, the well conditioning used liquid, the sewage accident pool, the emulsified crude oil containing different kinds of chemical agent which is reclaimed by sewage-treatment plant, the emulsion which is exhausted by crude oil processing device and the dirty oil which is expelled by different kinds of oil well task, the dirty oil of tank bottom, ect.. So the aged oil recovery and quadric use will become a new growth pole to our national crude production rate and have an important realistic significance to insure the balance of the oil markets supply and demand.
     This article take representative aged product (heavy oil and thin oil) in the Kelamayi Oil Field as the object of study, and take the experiment as the research method, closely revolves the aged product to recycle this subject below, mainly develops works:
     (1) Thoroughly Investigated the origin from the Kelamayi Oil Field aged product, has selected the aged product from the representative red shallow heavy oil processing station, thin oil processing stands with the Che Pai Zi united station, as the object of study, separately to the dross, the water drop diameter and contact surface film thickness carries on the microscopic image formation analysis, further has been clear about this article object of study.
     (2) From crude oil cream formation mechanism obtaining, has thoroughly analyzed the aged product emulsifier origin and the emulsion forming process, then the research emulsion stable mechanism, and take the dehydration rate as a goal, has developed the agitation intensity, the crude oil composition, fluid parameters separately and so on bead diameter, water-oil interface membrane, high-molecular compound to the old carburetion stable sensitivity experiment, have provided the important foundation data for the old carburetion emulsion breaking recycling.
     (3) Normal demulsification dehydration technology such as Heating demulsification、electrical demulsification、centrifugal dehydration and chemical demulsification etc, are adopted separately in demulsification dehydration experiment of aged oil . Thermochemistry-centrifugal dehydration technology are found to solve the demulsifucation of aged oil, and the choose principle of deemulsifier is proposed. Dehydration experiments are carried on separately to the four primary election deemulsifier in different prediction time, dehydration temperature, chemical feeding concentration, and choosed the rightful additive, ascertained the experiment condition of demulsifucation dehydration of aged oil.
     (4) Based on the water-drop subside theory, the affecting factors of centrifugal dehydration of aged oil are evaluated, the importance of each affecting factor is ascertained. Then the orthogonal experiment research of each affecting factor are carried on , rightful technology parameters are ascertained. Those are important technical foundation of successful on-site simulated test.
     (5) Based on the comparative analysis of the experiment results in crude oil mixed steam or hydrothermal water and crude oil emulsification in the cause of heating, the rightful heating approach is ascertained. The butterfly separation technology is drawn in the separation of solid particles, and the processing method of sludge is given classifiably. Then the on-site experiments parameters of aged oil recycle are ascertained reasonably. The respective aged oil from Hong Qian Da Ba and Che Pai Zi of No. 1 Oil Plant, Zheng Fa Chang of Heavy Oil Plant, 81# station of No 2 Oil Plant are recycled by the new system.
引文
[1]韩平.2006年我国主要石油石化产品进出口特点分析.当代石油石化.2007.15(3)
    [2]李建国,田泽.我国石油安全与石油战略储备问题探讨.经济体制改革.2003.(4).
    [3]刘庆成.中国石油安全现状及未来对策分析.宏观经济管理.2004.(7).
    [4]查道炯.相互依赖与中国的石油供应安全.世界经济与政治.2005.(6).
    [5]李震.中国石油供需趋势预测及供需矛盾分析.哈尔滨商业大学学报(社会科学版).2006.(2)
    [6]Hunter B.J Foundations of Colloid Science,Vol.2,Oxford science publications,1989,912
    [7]Paul.B.Encyclopedia of Emulsion Technology,Vol.1,Marcel Dekker,1985,57
    [8]冯若,李化茂.声化学及其应用.安徽科技出版社,1992
    [9]E.C.唐纳森等著,提高石油采收率,第一分册基础理论及分析,石油工业出版社,1989
    [10]郑忠,胶体科学导论,高等教育出版社,1989年,462-474
    [11]赵国玺,表面活性剂物理化学,北京大学出版社,1984年,382-400
    [12]沈平平,俞稼铺等,大幅度提高石油采收率的基础研究,石油工业出版社,2001
    [13]洪世铎,油藏物理基础,石油工业出版社,1985
    [14JAcevedo S.,et al.,Fuel,1992
    [15]Moschopedis S.E.,et al.,Fuel,1976
    [16]Ignasink T.M.,Straurz O.T.,Fuel,1977
    [17]Sjoblom J,Urdahf O et al.Progr Coll Polymer Sci,1990,82
    [18]陈汝熙等.油田化学.1988
    [19]Johan Sjoblom.Colloids and Surfaces.1990
    [20]J.E.Strasser et al.Journal of Petroleum Technology,1968,(3):303-312
    [21]T.J.Jones et al.The Journal of Canadian Petrojeum Technology 1978,17:100-108
    [22]R.A.Mohammed et al.Colloids and Surfaces A:Physicochem.Eng.Aspects;1993,80:237-242
    [23]B.P.Singh.Energy Sources,1994;16:377-385
    [24]Boniface Obah.Eadol and Kohle-Erdgas-PetrochemLe Vereinigt mlt,brennstff-Chemie
    [25]J.A.Ajienka et al.Journal of Petroleum Science and Engineering,1993(9):331-339
    [26]梁文杰,石油化学,石油大学出版社,1995
    [27]郑忠,胶体科学导论,高等教育出版社,1989.444
    [28]James A.Svefgoff.Petroleum Engineer International;1989,(8):30-35
    [29]David E.Tambe et al.Journal of Colloid and Interface Science,1993
    [30]李明远,石油学报(石油加工),1995.11(3):1-5
    [31]Jeffrevs G.et al,"Coalescences of Liquid Droplets and Liquid Dispersion",in Recent Advances in Liquid-Liquid Extraction:1023-1028
    [32]Winser.P.Solvent Properties of Amphiphilic Compounds,Butterworths.London
    [33]W.P.Solvent.Properties of Amphihilic
    [34]Anil Bhardwaj et al.Ind.Eng.Chem.Res.1994,33:1271-1279
    [35]S.Mukherjee et al.Oil-Field Chemistry:Enhanced Recovery and Production Siimitetion
    [36]赵福麟.采油用剂.山东东营:石油大学出版社,1997
    [37]赵福麟.乳化原油破乳剂.石油大学学报(自然科学版),1994;18(增刊)
    [38]刘宝库.牛一联合站高含水混合原油的化学脱水.油田化学,1996;13(4)
    [39]周永慧,梁梦兰.原油采出液化学破乳的研究进展.精细化工,1999,16(增刊)
    [40]贝歇尔著.乳状液理论与实践.傅鹰译.北京:科学出版社,1985
    [41]胡玉国.原油破乳剂的研究应用现状和发展.化工技术经济,2001,18(3)
    [42]韦良霞,任丽等,HRB-4型生物破乳剂在纯梁采油厂的应用.油田化学,2004;21(1)
    [43]Bhardwaj,A.and Hartland,S..Dynamics of Emulsification and Demusifieation of water in crude oil Emulsions.Ind.Eng.Chem.Res.,1994,33
    [44]Marquez,M.L.,Rogel,E.Reif,I.Molecular dynamics simulation of isotropy I naphthalene sulfonate at the water/heptane interface.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,106
    [45]高惟宝.破乳剂概述.油田化学,1984,(2)
    [46]Aveyard,R.Binks,B.P.Fletecher,P.D.I.et al.The Resolution of Water-in Crude oil Emusions by the Addtion of Low Molar Mass Demulsifiers.Journal of Colloid and Interface Science,1990,139(1)
    [47]Miller,D.J.Coalescence in crude oil emulsions investigated by a light transmission method.Colloid & Pdymer Sceience,1987,265
    [48]侯坐金,党孟杰,魏玉庆.原油破乳剂HD—4的研究与应用;华北石油设计,1991,(3)
    [49]王东升,李胜华,李巍.破乳剂与净水剂复配用于破乳脱水.油田化学,1991,8(1)
    [50]朱伟华,李广成,付继彤.用于高含水原油的油溶性破乳剂BIG—14研制与应用.油田化学,1993,10(2)
    [51]孙广垠译.改性破乳剂的化学性能—原油脱水的新途径.国外油田工程,1991,7(2)
    [52]Talor,S.E.Resolving Crude oil Emulsions.Chemistry & Industry,1992,19
    [53]王彪.原油破乳剂研究进展.油田化学,1994,11(3)
    [54]Lissant,K.J.Emulsification Industrial Applications.Surfactant science series,13
    [55]梁梦兰.表面活性剂和洗涤剂制备、性质、应用.1990,北京:科学技文献出版社.
    [54]刘德荣,表面活性剂的合成与应用.1987,成都:四川科学技术出版社.
    [55]康万利,董喜贵编著.三次采油化学原理.石油工业出版社,1997
    [56]吴军正,陈惠琴,徐艳妹.中当量石油磺酸盐形成低界面张力的条件研究.沈阳化工.997(3)
    [57]康万利,胡靖邦,宋文玲.二元复合体系/大庆原油间的界面张力.大庆石油学院学报, 1995(1)
    [58]张路,罗谰.碱/表面活性剂复合驱油体系与胜利孤岛原油间协同效应的研究.油田化学,1998(4)
    [59]康万利,胡靖邦,宋文玲.二元复合体系/大庆原油间的动态低界面张力研究.化学与粘合,1997(4)
    [60]林梅钦,高树棠,刘璞.大庆原油中性的活性组分的分离与分析.油田化学,1998(1)
    [61]廖广志.大庆油田化学复合驱综合研究.石油勘探开发研究院博士后流动站.博士后研究报告,1998
    [62]康万利,李俊刚,单希林.大庆原油馏分与复合体系界面活性及乳化性研究.油田化学,1999(4)
    [63]M.J.Rosen.Surfactants and Interfacial Phenomena.John Wiley & Sons,Inc.Newyork
    [64]K.5.Chan著,杨普华,杨承志译.在油—盐水界面上产生超低界面张力必须的物化条件.化学驱提高石油采收率.北京:石油工业出版社,1988
    [65]Wanli Kang,Guangzhi Liao,Yi Liu.Surface Film Properties of the Surfactant Used for Alkaline-Surfactant-Polymer Combination Flooding.2~(nd) Asian symposiumon organized Molecular Films for Eletronies and Photonies,Novemberl~4,1998,Beijing,China
    [66]陈咏梅,焦丽梅,李之平.石油磺酸盐中极性组分的协同效应.石油学报,1999(2)
    [67]赵国玺.分子有序组合体.物理化学学报,1992(8)
    [68]John F.Scamehorn.Phenomena inMixed Surfactant Systems.AmeficanChemical Society.1986
    [69]Bernard P.Bink,Surfactant Monolayer at oil—water Interfaces.Chemistry & Industry.1993(19)
    [70]曹亚,李惠,林徐信.羧甲基纤维素系列高分子表面活性剂在溶液中胶束行为的研究.油田化学,1997(4)
    [71]卜家泰,陈文海,陈炜.石油磺酸盐在水溶液中的聚集形态研究.油田化学,1994(2)
    [72]操绪龙.碱—助表面活性剂—聚合物体系性质研究.油田化学,1991(4)
    [73]倪文学,王建华,冯桂华等.玉门石油磺酸盐与聚合物配伍性研究.油田化学,1988(4)
    [74]李外郎,戴乐荣.破乳剂的油水界面性质与破乳效果的关系.油田化学,1986(3)
    [75]徐心茹,张一安.炼油厂水包油型乳状液破乳研究.石油学报(石油加工),1997,13(1)
    [76]康万利,董喜贵编著.三次采油化学原理.石油工业出版社,1997
    [77]康万利.电破乳机理研究.大庆石油学院学报,1992,12(4)
    [78]胡英,陈学让,吴树森.物理化学.1979,北京:高等教育出版社
    [79]吴树森,章燕豪.界面化学—原理与应用.1989,伤害:华东化工学院出版社
    [80]宁廷伟.原油破乳剂在胜利油田的应用与发展.油田化学,1994,11(1)
    [81]苏秀娟,赵庆峰.PO—EO—PO嵌段聚醚的合成与破乳作用.沈阳化工学院学报,1994,8(3)
    [82]张丽莉.联合站原油脱水困难的原因及对策分析.青海石油,2006(02)
    [83]周铁金.辽河稠油破乳脱水综合技术实验研究.渤海大学学报(自然科学版),2007(02)
    [84]叶国祥.超卢波强化原油脱盐脱水的实验研究.石油学报(石油加工).2007(03)
    [85]朱金栋.正交表法测定微波脱水最佳功率和加热时间值.内蒙古石油化工.2007(05)
    [86]赵杉林.海水稀释-微波辐射协同作用高稠油脱水研究.石油学报(石油加工).2007(02)
    [87]刘宏魏.新型原油脱水方法.油气田地面工程.2007(03)
    [88]张志庆.新型稠油破乳剂分子结构对孤东稠油脱水的影响.油田化学.2006(4)
    [89]卢磊.利用絮凝剂提高聚合物驱采出液脱水效果.山东大学学报(理学版).2006(6)
    [90]张卫东.油田化学剂对原油破乳剂YT-100脱水效果的影响.油田化学.2006(2)
    [91]吴瑞坤.苏丹1/2/4油田原油脱水影响因素和破乳剂筛选.油田化学.2006(2)
    [92]叶国祥.超声破乳脱水及浮渣脱水资源化利用.化工进展.2006(12)
    [93]毛燎原.无机盐存在下微波辐射超稠原油脱水研究.无机盐工业.2006(11)
    [94]韩萍芳.炼油厂含油浮渣絮凝脱水的研究.环境科学与技术.2006(11)
    [95]毛燎原.无机盐及海水作用下高稠油微波辐射法脱水研究.炼油技术与工程.2006(10)
    [96]谢动.态超声原油脱盐脱水的实验研究伟.石油学报(石油加工).2006(2)
    [97]白志山.油脱水型水力旋流器压力特性和分离性能.华东理工大学学报(自然科学版).2006(4)
    [98]应用均匀设计法研究原油的微波破乳脱水规律 蒋华义 西安石油大学学报(自然科学版)2006/01
    [98]蒋华义.应用均匀设计法研究原油的微波破乳脱水规律.西安石油大学学报(自然科学版).2006(1)
    [99]娄世松.胜利原油脱水技术研究.石油化工腐蚀与防护.2006(1)
    [100]张付生 驱油剂对三元复合驱采出液破乳脱水的影响.精细石油化工进展.2005(10)
    [101]蔡永伟.驻波场原油破乳脱水的研究.石油炼制与化工.2005(5)
    [102]范振中.残酸对原油脱水的影响及处理.浙江大学学报(理学版).2005(5)
    [103]黄莉.微波作用下原油脱水规律的实验研究.吉林化工学院学报.2005(3)
    [104]钱钦.桩西油田聚合物驱采出液破乳、脱水影响因素及破乳对策研究.石油天然气学报.2005(1)
    [105]李宗强.超稠油预脱水剂的研究与应用.特种油气藏.2005(3)
    [106]宋华.原油静态脱水参数的考察及破乳剂的影响.石油炼制与化工.2005(2)
    [107]白长琦.河南油田稠油产出液低温脱水技术研究与应用.河南石油.2005(3)
    [108]迟健飞.联合站脱水系统存在的问题及处理方法.油气田地面工程.2005(1)
    [109]田玉新.正交设计在微波辐射原油脱水中的应用研究.化工科技.2005(1)
    [110]何锋.洗毛废水蒸馏处理塔中污泥的改性及其对污泥脱水效果的影响.工业水处理.2005(1)
    [111]陈树军.原油回掺底水预脱水工艺实验.石油化工高等学校学报.2004(4)
    [112]韩晶.气相导出法焦油破乳脱水的试验研究.辽宁化工.2004(11)
    [113]李时宣.西峰原油化学破乳脱水特性研究.油气田地面工程.2004(10)
    [114]袁智君.管道破乳热化学脱水工艺应用研究.石油规划设计.2004(5)
    [115]张玉梅.超声破乳脱水处理污油.南京工业大学学报(自然科学版).2004(4)
    [116]戴文智.2种原油预脱水工艺方案分析与比较.管道技术与设备.2004(4)
    [117]张志庆.新型酚胺聚醚破乳剂的原油脱水研究.山东大学学报(理学版).2004(3)
    [118]张玉梅.超声波处理炼油厂污油破乳脱水的研究.石油炼制与化工.2004(2)
    [119]李淑贤.用于稠油脱水的油水两亲破乳剂BC-068的研制与应用.油田化学.2004(1)
    [120]孙晓霞.乳化原油声-化学法脱水研究进展.当代石油石化.2003(10)
    [121]韩萍芳.超声波污油破乳脱水的研究.南京工业大学学报(自然科学版).2003(5)
    [122]胡同亮.原油脱盐脱水研究进展.抚顺石油学院学报.2003(3)
    [123]张杰.掺蒸汽加热对陆梁原油破乳脱水的影响.油气田地面工程.2003(10)
    [124]蔡星.油田开发后期的原油脱水技术.油气田地面工程.2003(4)
    [125]邓兵.降低萨南油田原油脱水温度.油气田地面工程.2003(4)
    [126]陈永红.利用声化方法对复杂乳化原油的破乳脱水研究.石油大学学报(自然科学版).2003(5)
    [127]胡同亮.微波辐射法原油脱水的研究.炼油技术与工程.2003(2)
    [128]张谋真.陕北原油热化学脱水技术初探.延安大学学报(自然科学版).2002(4)
    [129]王诗中.污水回收超稠油破乳脱水技术研究.特种油气藏.2002(6)
    [130]#12
    [131]孙旭东.浅谈稠油脱水中破乳剂利用率的提高.高师理科学刊.2002(1)
    [132]张跃琴.大庆油田聚合物驱采出液热化学脱水室内实验.油气田地面工程.2002(6)
    [133]孙东方.三元复合驱采出液脱水技术研究.油气田地面工程.2002(6)
    [134]杨守国.濮城油田高效三相分离器沉降脱水技术的应用.油气田地面工程.2002(2)
    [135]王立新.KCH型磁化器在原油脱水中的应用.油气田地面工程.2002(1)
    [136]虞建业.超声辐照法原油破乳脱水的室内研究.油田化学.2002(2)
    [137]张韶辉.大庆油田高含水后期采出液的热化学脱水实验.精细化工.2002/S1
    [138]孙晓娟.炼油厂“三泥”中浮渣脱水工艺研究.江苏石油化工学院学报.2001(4)
    [139]虞建业.超声波原油破乳脱水的声场参数实验研究.应用声学.2001(3)
    [140]张红.磁处理原油脱水试验研究.油气田地面工程.2000(1)
    [141]陈海燕.高压原油脉冲电脱水试验.油气田地面工程.2000(1)
    [142]冉高举.污油脱水剂的研制.石油化工腐蚀与防护.1999(4)
    [143]陈德恩.塔北油田AK_2井稠油高架罐脱水工艺.油气田地面工程.1999(1)
    [144]付亚荣.高含硫重质原油脱水用破乳剂SHD.油田化学.1999(3)
    [145]孙宝江.乳化原油的超声波脱水研究.声学学报(中文版).1999(3)
    [146]胡建斌.蒙一联脱水技术研究.石油钻采工艺.1999(4)
    [147]巩春伟.奥里乳化原油的破乳脱水研究.石油炼制与化工.1999(7)
    [148]卜淑君.石油化学工业固体废物治理.中国环境科学出版社.1992.12
    [149]李丹梅、王艳霞、余庆中等.含油污泥调剖技术的研究与应用.石油钻采工艺.2003.3(25)
    [150]徐如良、王乐勤、孟庆鹏.工业油罐底泥处理现状与试验探索.石油化工安全技术. 2003.19(3)
    [151]赵玉鹏、李性伟、吴大军等.油田采出液中含油污泥的无害化处理研究.石油规划设计.1999.10(2)
    [152]吴丽华、王志强.胜利油田的油泥沙现状及处理工艺探讨.油气田环境保护.1998.12
    [153]郝以专、孟相民、李晓祥.油田含油污泥处理工艺技术研究与应用.油气田环境保护.2001.9
    [154]杨慧芬.固体废物处理技术及工程应用.机械工业出版社.2003年
    [155]李凡修.CI~-含量对含油污泥絮凝效果的影响.油气田环境保护.1999.3
    [156]罗士平、周国平等.油田含油污泥处理工艺条件的研究.江苏工业学院学报.2003.3(15)
    [157]Aldo Cortil.Method and Apparatus for Treatment of Oil Contaminated.USA,US 4812225.198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700