用户名: 密码: 验证码:
3,4-二氢嘧啶-2(1H)-酮的合成与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1893年,Biginelli首次报道了芳香醛、脲和乙酰乙酸乙酯在浓盐酸催化下发生缩合反应生成3,4-二氢嘧啶-2(1H)-酮衍生物(DHPMs)。自20世纪90年代以来,研究发现DHPMs具有广泛的药理活性,因此DHPMs的合成及分子性质研究成为生物活性有机杂环化合物研究的热点之一。
     本论文主要包括实验和理论计算两方面的内容:实验部分,系统探讨了三氯化锑(SbCl3)作为催化剂参与的Biginelli反应;理论计算部分,用量子化学方法研究了DHPMs的分子性质、Biginelli反应机理,并用从头算及变分过渡态理论研究了尿素和甲醛的反应。研究取得了以下几个方面的成果:
     1、使用SbCl3作为催化剂,无溶剂条件下合成一系列DHPMs。反应的最佳条件为:芳香醛、β-二羰基化合物和尿素的摩尔比为1:1:1.5,催化剂用量为芳香醛的10%,反应最佳温度为70℃。此改进方法具有反应时间短、收率高、操作简便等优点,为DHPMs的制备提供了一条方便、快捷、有效的合成方法。
     2、在6-31G(d)或6-311G基组水平上,用B3LYP、HF和MP2三种方法对四种DHPMs进行了几何全优化,并对其电荷分布、前线分子轨道、成键情况以及自然键轨道(NBO)进行了分析。DHPMs的氮原子和氧原子以及与氢原子相连的碳原子,带负电荷;而非氢原子中正电荷主要分布在与氮原子和氧原子相连的碳原子上;DHPMs中嘧啶环为船式构象;DHPMs的前线轨道能级差较小,表明它们的稳定性较差,可能具有很好的生物活性;在DHPMs中,嘧啶环上两个氮原子的孤对电子都与相邻键有较强的相互作用。
     3、用密度泛函理论在B3LYP/6-31G(d) , B3LYP/6-31+G(d,p)和B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p)水平,研究了Biginelli反应机理,计算了反应的平衡常数。经典Biginelli反应机理为:在酸的作用下醛和脲首先生成中间体酰基亚胺正离子,然后与乙酰乙酸乙酯发生缩合反应得到一个开链的酰脲,后者进一步环化、脱水得到相应的DHPMs,反应平衡常数为70.80。合成二氢嘧啶硫酮反应机理与经典Biginelli反应机理类似,反应平衡常数为947.73。
     4、作为Biginelli反应机理第一步反应的拓展,用MP2方法研究了尿素和甲醛反应的机理,用变分过渡态理论加小曲率隧道效应计算了200~3000K温度范围内尿素和甲醛反应的速率常数。脲与甲醛的反应是比较简单的加成反应,反应的基元过程主要是氮氢键的断裂和氧氢键的生成。在MP2/6-31+G(d)理论水平下,反应的势垒高度为32.83 kcal/mol。计算的速率常数展示出较强的非Arrhenius行为,速-温关系用三参数公式拟合为: k (T ) = (3.32×10~(-43) )T 8.32exp( -9027.8/ T) cm3·molecule-1·s-1。
In 1893, Biginelli reported the the synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) by one-pot condensation of benzaldehyde, urea and ethyl acetoacetate under strongly acidic conditions. Since 1990s, Biginelli reactions are ranked as one of the most powerful tools for the facile synthesis of complex heterocyclic scaffolds due to their wide range of therapeutical and pharmacological properties. So the synthesis and molecular properties of DHPMs have attracted considerable attentions.
     This dissertation includes experiment and theoretical studies. In the experimental part, Biginelli reaction was extensively investigated in the presence of antimony trichloride (SbCl3) as a Lewis acid. In the theoretical calculation part, the molecular properties of DHPMs and the mechanisms of Biginelli reaction were studied by quantum chemistry methods. Furthermore, mechanism and dynamics for the reaction of urea with formaldehyde were studied using the canonical variational transtition state theory with the small-curvature tunneling correction method. Major valuable results are listed as follows:
     1. An efficient synthesis of DHPMs using SbCl3 as the catalyst under solvent-free conditions is described. The optimum conditions are: the molar ratio of aldehyde,β-dicarbonyl compound and urea is 1:1:1.5, the amount of catalyst is 10 mol% of aldehydes and the best reaction temperature is 70℃. The advantages of this condensation reaction include the simple work-up procedure, high product yields, short reaction time and free solvent. Therefore, this is an important alternative to the synthesis of DHPMs.
     2. The structures of four DHPMs were fully optimized by B3LYP, HF and MP2 methods at 6-31G(d) or 6-311G level. The charge distribution, frontier molecular orbital, bond formations and natural bond orbital (NBO) were also analysed. The pyridine ring in DHPMs adopts boat conformation. In DHPMs, nitrogen atoms, oxygen atoms and carbon atoms which connected with hydrogen atoms carry negative electronics. The positive charges are mainly carried by the carbon atoms which linked to nitrogen atom or oxygen atom. The energy difference between frontier molecular orbitals is lower. DHPMs may have good biological activities because of hard stability. In DHPMs, the lone pair electrons of the two nitrogen atoms in the pyridine ring both have strong interactions with neighboring bonds.
     3. The mechanisms of Biginelli reaction were investigated at B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) levels. The equilibrium constants of the reactions were also computed. Mechanism of the classical Biginelli reaction is described as follows: The first step of the reaction is the acid-catalyzed formation of a N-acyliminium ion intermediate from aldehyde and urea. Interception of the iminium ion by ethyl acetoacetate through its enol tautomer, produces an open-chain ureide which subsequently cyclizes to dihydropyrimidine. The calculated equilibrium constant is 70.80 . The mechanism of synthesis of 3,4-dihydropyrimidin-2(1H)-thiones is similar with the classical Biginelli reaction’s. The calculated equilibrium constant is 947.73 .
     4. As expansion to the first step of the classical Biginelli reaction, the reaction mechanism of urea with formaldehyde was investigated by MP2 method. Reaction rate of urea and formaldehyde between 200~3000K has been studied using the canonical variational transtition state theory with the small-curvature tunneling correction method. The reaction of urea with formaldehyde is a simple addition reaction. The elementary processes of this reaction are the breaking of nitrogen-hydrogen bond and the formation of oxygen-hydrogen bond. The forward potential barrier at MP2/6-31+G(d) level is 32.83 kcal/mol. The reasult shows that the calculated CVT/SCT rate constants exhibit typical non-Arrhenius behavior. The relativity of rate-temperature can be described as follows: k (T ) = (3.32×10 ?43 )T 8.32exp( ? 9027.8/ T) cm3·molecule-1·s-1.
引文
[1] Biginelli P. The condensation reaction described by Biginelli [J]. Gazz.Chim. Ital., 1893, 23: 360-413
    [2] Folkers, K., Johnson, T. B. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction [J]. J. Am. Chem. Soc., 1933, 55: 3781-3791
    [3] Kappe C. O. 100 years of the Biginelli dihydropyrimidine synthesis [J]. Tetrahedron, 1993, 49: 6937-7168
    [4] Atwal K.S., Rovnyak G. C., Kimball S. D., et al. Dihydropyrimidine calciumchann- el blockers. 3-Substituted-4-aryl-dihydro-6-methyl-5-pyrimidine carb- oxylic acid esters as potent mimics of dihydropyridines [J]. Med. Chem., 1990, 33: 1510–1515
    [5] Hu E. H., Sidler D. R., Dolling U. H. Unprecedented catalystic three-component one-pot condensation reaction:An efficient synthesis of 5-alkoxycarbonyl-4-aryl- 3,4-dihydropyrimidin-2(1H)-ones [J]. J. Org. Chem., 1998, 63: 3454-3457
    [6] Kappe C. O., Falsone S. F. Polyphosphate Ester-Mediated Synthesis of Dihydropyr- imidines. Improved Conditions for the Biginelli Reaction [J]. Synlett, 1998, 31: 718-720
    [7] Ma Y., Qian C., Wang L., et al. Lanthanide triflate catalyzed biginelli reaction, one-pot synthesis of dihydropyrimidinones under solvent-free condition [J]. Org. Chem., 2000, 65: 3864-3866
    [8] Ranu B. C., Hajra A., Jana U. J. Indium (Ⅲ) chloride-catalyzed one - pot synthesis of dihydropyrimidinones by a three-component coup ling of 1,3-dicarbonyl compounds, aldehydes, and urea: An improved procedure for the biginelli reaction [J]. The Journal of Organic Chemistry, 2000, 65 (19): 6270-6272
    [9] 路军, 马怀让, 李万华. 三氯化铁催化的一锅法合成 3,4-二氢嘧啶-2-酮 [J]. 有机化学, 2000, 20: 815-819
    [10] 路军, 王飞利, 白银娟, 等. NiCl2·6H2O 催化的 Biginelli 反应一锅法合成 3,4-二氢嘧啶-2-酮 [J]. 有机化学, 2002, 10: 788-792
    [11] Lu J., Bai Y., Wang Z., et al. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)- ones using lanthanum chloride as a catalyst [J]. Tetrahedron Lett., 2000, 41: 9075-9078
    [12] Reddy C. V., Mahesh M., Raju P. V. K., et al. Zirconium (Ⅳ) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones [J]. Tetrahedron Lett., 2002, 43(14): 2657-2659
    [13] Ramalinga K., Vijayalaxmi P., Kaimal T. N. B. Bismuth(III)-Catalyzed Synthesis of Dihydropyrimidinones: Improved Protocol Conditions for the Biginelli Reaction [J]. Synlett, 2001, 10: 863-865
    [14] Kumar K. A., Kasthuraiah M., Reddy C. S., et al. Mn(OAc)3·2H2O-mediated three- component, one-pot, condensation reaction: An efficient synthesis of 4-aryl- substituted 3,4-dihydropyrimidin-2-ones [J]. Tetrahedron Letters, 2001, 42 (45): 7873-7875
    [15] Yadav J. S., Reddy B. V. S., Srinivas, R., et al. LiClO4-Catalyzed One-Pot Synthes- is of Dihydropyrimidinones: An Improved Protocol for Biginelli Reaction [J]. Synthesis, 2001, 1341-1345
    [16] 房芳, 蒋虹, 李团结, 等. 磷酸二氢钾催化下合成 3,4-二氢嘧啶-2(1H)-酮 [J]. 徐州师范大学学报: 自然科学版, 2003, 21(2): 75-78
    [17] Ahmad Shaabani, Ayoob Bazgir. Fatemeh Teimouri. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-freecond- itions [J]. Tetrahedron Letters, 2003, 44 (4) : 857 -859
    [18] Gourhari Maiti, Pradip Kundu, Chandrani Guin. One-pot synthesis of dihydropyr- imidinones catalysed by lithium bromide: an improved procedure for the Biginelli reaction [J]. Tetrahedron Lett., 2003, 44(13): 2757-2758
    [19] Peyman Salehi, Minoo Dabiri, Mohammad Ali Zolfigolc, et al. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyri- midin-2(1H)-ones [J]. Tetrahedron Letters, 2003, 44(14): 2889-2891
    [20] Paraskar S, Dewkar G. K, Sudalai A. Cu (OTf)2 : a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones [J]. Tetrahedron Letters, 2003, 44(16): 3305 - 3308
    [21] Li Ji-tai, Han Jun-fen, Yang Jin-hui, et al. An efficient synthesis of 3,4-dihydropyr- imidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation [J]. Ultrasonics Sonochemistry, 2003, 10(3): 119-122
    [22] Bose D. S., Fatimal L., MEREYALA H. B. Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones by a three- component coup ling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions [J]. J. Org. Chem., 2003, 68(2): 587- 590
    [23] Tu S. J., Fang F., Miao C. B., et al. One-pot synthesis of 3,4-dihydropyrimidin-2- (1H)-ones using boric acid as catalyst [J]. Tetrahedron Lett., 2003, 44(32): 6153- 6155
    [24] Rina Ghosh, Swarupananda Maiti, Arijit Chakraborty. In(OTf)3-catalysed one-potsynthesis of 3,4-dihydropyrimidin-2(lH)-ones [J]. Journal of Molecular Catalysis A: Chemical, 2004, 217: 47-50
    [25] Venkat Narsaiah A., Basak A. K., Nagiah K. Cadmium Chloride: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones [J]. Synthesis, 2004, 8: 1253-1256
    [26] Qi Sun, Yi-qing Wang, Ze-mei Ge, et al. A Highly Efficient Solvent-Free Synthesis of Dihydropyrimidinones Catalyzed by Zinc Chloride [J]. Synthesis, 2004, 7: 1047-1051
    [27] D. Subhas Bose, Racherla Kishore, Liyakat Fatima. A Remarkable Rate Accelera- tion of the One-Pot Three-Component Cyclo-condensation Reaction at Room Temperature: An Expedient Synthesis of -Mitotic Kinesin Eg5 Inhibitor Monastrol [J]. Synlett, 2004, 2: 279-282
    [28] Rina Ghosh, Swarupananda Maiti, Arijit Chakraborty. An efficient, high yield protocol for the one-pot synthesis of dihydropyrimidin-2(1H)-ones catalyzed by iodine [J]. Tetrahedron Letters, 2004, 45(49): 9111-9113
    [29] Chari M. A., Syamasundar K. Silicagel supported sodium hydrogensulfate as a heterogenous catalyst for high yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones [J]. Journal of Molecular Catalysis A: Chemical, 2004, 221:137-139
    [30] Reddy V. Y., Sambasivudu Kurva, Shekharam Tammishetti. Synthesis of 3,4-dihy- dropyrimidin-2(1H) ones using reusable poly(4-vinylpyridine-co-divinylbenzene)- Cu(Ⅱ) complex [J]. Catalysis Communications, 2004, 5(9): 511-513
    [31] John Mabry, Bruce Ganem. Studies on the Biginelli reaction: a mild and selective route to 3,4-dihydropyrimidin-2(1H)-ones via enamine intermediates [J]. Tetrahedron Letters, 2006, 47(7): 55-56
    [32] Mahmood Tajbakhsh, Bagher Mohajerani, Majid M. H., etal. Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) onederivatives [J]. Journal of Molecular Catalysis A: Chemical, 2005, 236: 216-219
    [33] Heravi M. M., Derikvand F., Bamoharram F. F. A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2(1H)-one using 12-tungstophosphoric acid [J]. Journal of Molecular Catalysis A: Chemical, 2005, 242: 173-175
    [34] Wipf P., Cunningham A. A Solid Phase Rrotocol of the Biginelli Dihydropyrimi- dine Synthesis Suitable for Combinatorial Chemistry [J]. Tetrahedron Lett., 1995, 36: 7819-7822
    [35] Studer A., Jeger P., Wipf P., et al. Fluorous synthesis, a fluorous-phase strategy forimpoving separation efficiency in organic synthesis [J]. J. Org. Chem., 1997, 62, 2917-2919
    [36] Robinett L. D., Yager K. M., Phelan J. C. Solid-Phase Synthesis of Dihydropyr- imidine Combinatorial Libraries by the Atwal Modification of the Biginelli Reaction [A]. 211th National Meeting of the American Chemical Society, New Orleans, LA, 1996 [C] American Chemical Society: Washington, DC, 1996; ORGN122
    [37] Sandra Martinez, Miriam Meseguer, Lluis Casas, et al. Silica aerogel-iron oxide nanocomposites: recoverable catalysts in conjugate additions and in the Biginelli reaction [J]. Tetrahedron, 2003, 59, 1553-1556
    [38] Alessandro Dondoni, Alessandro Massi. Parallel Synthesis of Dihydropyrimid- inones Using Yb(Ⅲ)-resin and Polymer-supported Scavengers under Solvent-free Conditions. A green Chemistry Approach to the Biginelli Reaction [J]. Tetrahedron Letters, 2001, 42(45): 7975-7978
    [39] Reddy K. R., Reddy C. V., Mahesh M., et al. New environmentally friendly solvent free synthesis of dihydropyrimidinones catalysed by N-butyl-N, N-dimethyl-α- phenylethylammonium bromide [J]. Tetrahedron Lett., 2003, 44(44): 8173-8175
    [40] Gedye R., Smith F., Westaway K., et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett. 1986, 27: 279-282
    [41] Gupta R., Gupta A. K., Paul S. Synthesis of some ethyl,4-aryl-6-methyl-1,2,3,4- tetrahydropyrimidin-2-one/thione-5-carboxylates by microwave irradiation [J]. Indian J. Chem., 1995, 34B: 151-152
    [42] Stefani H. A., Gatti P. M. 3,4-dihydropyrimidin-2(1H)-ones: Fast Synthesis Under Microwave Irradiation in Solvent Free Conditions [J]. Synth. Commum., 2000, 30: 2165-2173
    [43] Kappe C. O. Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4- dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol [J]. Synthesis, 1999, 10, 1799-1803
    [44] Xia M., Wang Y. G. Soluble polymer-supported synthesis of Biginelli compounds [J]. Tetrahedron Lett. 2002, 43: 7703-7705
    [45] 陆军, 陈维一. 微波催化固相法合成 3,4-二氢嘧啶-2-(1H)-酮 [J]. 合成化学2001, 9(5): 462-464
    [46] Choudhary V. R., Tillu V. H., Narkhede V. S., et al. Microwave assisted solvent- free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst [J] Catalysis Communications, 2003, 4, 449-453
    [47] Jean Jacques, Vanden Eynde, Nancy Hecq, et al. Microwave-mediated regioselec- tive synthesis of novel pyrimido[1,2-a]pyrimidines under solvent-free conditions [J]. Tetrahedron, 2001, 57(9):1785-1791
    [48] Stadler A., Kappe C. O. Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements [J]. J. Chem. Soc., Perkin. Trans. I, 2000, 1363-1368
    [49] Alexander Stadler, Kappe C. O. Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation [J]. J. Comb. Chem., 2003, 3(6): 624 -630
    [50] Ahmad Shaabani, Ayoob Bazgir. Microwave-assisted efficient synthesis of spiro- fused heterocycles under solvent-free conditions [J]. Tetrahedron Letters, 2004, 45(12), 2575-2577
    [51] Xue Song, Shen Yan-Cai, et al. Synthesis of 4-Aryl-3, 4-dihydropyrimidinones Using Microwaveassisted Solventless Biginelli Reaction [J]. Chinese Journal of Chemistry, 2002, 20(4): 385-389
    [52] 彭家建, 邓友全. 室温离子液体催经“一锅法”合成 3,4-二氢嘧啶-2-酮 [J]. 有机化学, 2002, 22(1):71-72
    [53] Jiajian Peng, Youquan Deng. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions [J]. Tetrahedron Letters, 2001, 42: 5917-5919
    [54] O’Reilly B. C., Atwal K. S. Synthesis of Substituted 1,2,3,4-Tetrahydro-6-methyl- 2-oxo-5-pyrimidinecarboxylic Acid Esters: The Biginelli Condensation Revisited. [J]. Heterocycles, 1987, 26,1185-1188
    [55] Atwal K. S., O’Reilly B. C., Gougoutas J. Z., et al. Synthesis of Substituted 1,2,3,4-Tetrahydro-6-methyl-2-thioxo-5-pyrimidinecarboxylic Acid Esters [J]. Heterocycles, 1987, 26, 1189-1192
    [56] Atwal K. S., Rovnyak G. C., O’Reilly, B. C., et al. Synthesis of Selectivity Func- tionalized 2-Hetero-1,4-dihydropyrimidines. [J]. J. Org. Chem. 1989, 54: 5898- 5907
    [57] Abelman M. M., Smithb S. C., Jamesa D. R. Cyclic ketones and substitutedα - keto acids as alternative substrates for novel Biginelli-like scaffold syntheses [J]. Tetrahedron Letters, 2003, 44 (24): 4559-4662
    [58] Wang Zong-ting, Xu Li-wen, Xia Chun-gu. Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4- dihydropy- rimidin-2(1H)-ones [J]. Tetrahedron Letters, 2004, 45(42): 7951-7953
    [59] Fu Nan-yan, Yuan Yao-feng, Pang Mei-li, et al. Indium (Ⅲ) halides-catalyzedpreparation of ferrocene-dihydropyrimidinones [J]. Journal of Organometallic Chemistry, 2003, 672: 52-57
    [60] Huang Yi-jun, Yang Feng-yue, Zhu Cheng-jian. Highly enantioseletive Biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydr- opyrimidines [J]. Journal of the American Chemical Society, 2005, 127(47): 16386-16387
    [61] Sweet F. S., Fissekis J. D. On the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones and the mechanism of the Biginelli reaction [J]. J. Am. Chem. Soc. 1973, 95: 8741-8749
    [62] Kappe C. O. A Reexamination of the Mechanism of the Biginelli Dihydropyrim- idine Synthesis. Support for an N-Acyliminium Ion [J]. Org. Chem. 1997, 62: 7201-7204
    [63] Kappe C. O., Falsone F., Fabian W. M. F., et al. Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl-Stabilized Hexahydropyrim- idines-An Intermediate in the Biginelli Reaction [J]. Heterocycles, 1999, 51:77-84
    [64] Franklin A. S., Ly S. K., Mackin G. H., et al. Application of the Tethered Biginelli Reaction for Enantioselective Synthesis of Batzelladine Alkaloids. Absolute Configuration of the Tricyclic Guandinie Portion of Batzelladine B [J]. J. Org. Chem., 1999, 64: 1512-1519
    [65] Heys L., Moore C. G., Murphy P. J. The Guanidine Metabolites of Ptilocaulis Spiculifer and Related Compounds; Isolation and Synthesis [J]. Chem. Soc. Rev., 2000, 29: 57-67
    [66] Overman L. E., Rabinowitz M. H., Renhowe P. A. Enantioselective Total Synthe- sis of (-)-Ptilomycalin A. [J]. J. Am. Chem. Soc., 1995, 117: 2657-2658
    [67] Cohen F., Overman L. E., Ly Sakata S. K. Asymmetric Total Synthesis of Batzell- adine D [J]. Org. Lett, 1999, 1: 2169-2172
    [68] Coffey D. S., McDonald A. I., Overman L. E., et al. Enantioselective Total Synthe- sis of 13,14,15-Isocrambescidin 800 [J]. J. Am. Chem. Soc., 1999, 121: 6944-6945
    [69] Coffey D. S., Overman L. E., Stappenbeck F. Enantioselective Total Syntheses of 13,14,15-Isocrambescidin 800 and 13,14,15-Isocrambescidin 657 [J]. J. Am. Chem. Soc., 2000, 122: 4904-4914
    [70] Coffey D. S., McDonald A. I., Overman L. E., et al. A Practical Entry to the Crambescidin Familiy of Guanidine Alkaloids. Enantioselective Total Syntheses of Ptilomycalin A, Crambescidin 657 and Its Methyl Ester (Neofolitispates2), and Crambescidin 800 [J]. J. Am. Chem. Soc., 2000, 122: 4893-4903
    [71] Michael J., Gary W. Gaussian 03 User’s Reference [M]. Second Edition, Wallingford, CT 06492 USA, 2005, 73-74, 314-315
    [72] Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effect [J]. Physical Review, 1956. 140(4A): A1133-A1138
    [73] Salahub D. R., Zerner M. C. The Challenge of d and f Electrons [M]. ACS, Washington D. C., 1989
    [74] Parr R. G., Yang W. Density-functional theory of atoms and molecules [M]. Oxford Univ. Press, Oxford, 1989
    [75] Ster M. J., Perskey A., Klein F. S. Force field and tunneling effects in the H—H—Cl reaction system: Determination from kinetiks-isotope-effect measurements [J]. Chem Phys., 1973, 58:5697-5706
    [76] Trunlar D. G., Isaacson A. D. Gernaralized transition state theory in theory of chemical reaction dynamics [M]. Edit by M. Baer, CRC press, 1985, 4(2): 67-138
    [77] Garret B. C., Truhlar D. G. Improved canonical varlatlonal theory for chemical reaction rates: Classical mechanical theory and applications collinear reactions [J]. J. Phys Chem., 1979, 83: 1052-1061
    [78] Garret B. C., Truhlar D. G. Variational transition state theory [J]. J. Phys Chem., 1983, 78: 5981-5987
    [79] Weike Sua, Jianjun Lia, Zhiguo Zheng, et al. One-pot synthesis of dihydropyri- midiones catalyzed by strontium(II) triflate under solvent-free conditions [J]. Tetrahedron Letters, 2005,46(36):6037–6040
    [80] Wang L., Qian C., Tian H., et al. Lanthanide triflate–catalyzed one-post synthesis of dihydropyrimidine-2 (1H)-thiones by a three-component reaction [J]. Synth. Commun., 2003, 33, 1459-1468
    [81] Fu N. Y., Pang M. L., Yuan Y. F., et al. Indium (III) Tribromide: An Excellent Catalyst for Biginelli Reaction [J]. Chinese Chemical Letters, 2002, 13: 921-922
    [82] Ma J. G., Zhang J. M., Jiang H. H., et al. DFT study on mechanism of the classical Biginelli reaction [J]. Chinese Chemical Letters, 2008, 19: 375-378
    [83] Frisch M J., Trucks G. W., Schlegel H. B., et al. Gaussian 03, Revision C.02 [CP]. Wallingford CT: Gaussian, Inc., 2004
    [84] Hua G. P., Tu S. J., Fang F., et al. Synthesis and Crystal Structure of 4-(4-Chloroph- enyl)-6-methyl-5-methoxycaronyl-3,4-dihydropyrimidin-2-one [J]. Chim. J. Struct. Chem., 2004, 23(11): 1295-129
    [85] 屠树江, 房芳, 高原, 等. 微波辐射 4-(2-氯苯基)-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮的合成和晶体结构 [J]. 结构化学, 2003, 22(5): 647-619
    [86] 杨频, 高孝恢. 性能-结构-化学键 [M].北京: 高等教育出版社, 1987
    [87] 肖鹤鸣, 居学海. 高能体系中的分子间相互作用 [M]. 北京:科学出版社,2004
    [88] Lin X. J., Xu W. R., Wu J., et al. Theoretical Study on the Dipole Cycloaddition Reaction of Benzaldoxime with Propinol [J]. Acta Chimica Sinica, 2007, 65(10): 930-936
    [89] 韩书广, 吴羽飞. 脲醛树脂化学结构及反应的 13C-NMR 研究 [J]. 南京林业大学学报(自然科学版), 2006, 30(5):15-20
    [90] de Jong J. I., de Jonge J. Kinetics of the reaction between monomethylolurea and methylenediurea [J]. Recueil des Travaux Chimiques des Pays-Baset de la Belgique, 1953, 72: 207-212
    [91] 崔波, 曹长青, 张青瑞, 等. 尿素和甲醛合成脲醛树脂粘合剂的动力学研究 [J]. 中国胶黏剂, 1996, 6(4): 4-7
    [92] Steckler R, Chuang Y. Y., Fast P. L., et al. POLYRATE Version 9.3 [CP]. Minneapolis: University of Minnesota, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700