用户名: 密码: 验证码:
车用天然气吸附储存及热效应模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车数量的增多,汽车排放物对环境造成越来越严重的污染。与汽油相比,天然气作为汽车燃料是一种相对清洁的燃料,它不仅能够降低运输成本,而且可以提高发动机的热效率和延长发动机的使用寿命。目前使用天然气做汽车燃料的关键是发展一种合适的储气方式,压缩天然气(CNG)储存技术比较成熟,已广泛应用于天然气汽车,但CNG高压设备存在安全隐患。液化天然气(LNG)储气方式,低温冷却技术复杂,建设投资巨大,且液化气瓶维护困难。
     吸附天然气(ANG)储存量大,储存状态是常温、中低压(3MPa~4MPa),尤其适用于车用燃料。但目前吸附储存天然气应用于汽车的主要瓶颈问题,是没有很好的解决吸脱附过程热效应的不利影响:一方面在加气站完成的充气吸附过程,是放热过程,必须对系统降温;另一方面汽车行驶中完成的放气脱附过程,需要吸热,必须给系统补充热量。
     本文针对车用天然气储罐吸脱附过程产生的热效应问题,进行了理论研究,模拟计算了吸脱附过程中储罐内温度、压力和吸附量的变化,分析了影响吸脱附量的因素,并提出了解决热效应的措施,具体工作如下:
     首先,从吸附的原理和本质出发,通过对实验数据的分析,选取了吸附等温线模型,并利用克劳修斯-克拉贝龙方程计算得到等量吸附热。通过研究吸脱附过程的热力学路径,分析了热效应对吸脱附过程的影响。同时分析了吸附天然气用于汽车的可行性及存在的问题。
     其次,以车用吸附储罐为研究对象,建立了储罐吸附过程的数学模型,用SIMPLER算法求解了压力速度和温度耦合问题,得到储罐内部压力场、温度场和速度场。通过对计算结果的分析得出:快速充气时,储罐内部温度迅速升高,严重影响充气量,长时间的充气和外壁面采用强迫对流的方式散热能缓解热效应,增加充气量。
     再次,根据车用储罐脱附过程中天然气流动和换热的特点,建立了车用储罐脱附过程的动态模型,通过分析脱附过程中储罐壁温、罐内压力、吸附剂温度以及罐外自然对流等参数的变化,得到影响脱附量和脱附效率的主要因素。通过分析计算结果得出:脱附过程中,储罐中心附近温度最低;罐壁外侧的自然对流换热对脱附性能的影响很小。
     本文进一步提出利用发动机余热作为加热热源,补充脱附过程所需热量的可行方案,通过模拟计算,得出应用发动机冷却水和烟气进行脱附,可使脱附效率提高12.34%和14.17%。
     最后,本文针对活性碳纤维(ACF)具有高吸附存储性和良好导电发热性的特点,通过实测碳纤维的电阻,研究了发动机余热加热储罐外壁面和通电加热碳纤维吸附剂两种工况下的脱附性能。通过分析得到:电加热碳纤维能从根本上改善储罐内部温度场的不均匀性。
     我国吸附天然气汽车的研究仍处于起步阶段,随着吸附储存天然气热效应的合理解决,吸附天然气汽车必将得到大规模的推广应用,本课题的研究成果能为吸附天然气汽车的推广应用提供理论依据和技术支持。
Emissions from vehicles have become increasingly serious pollution on the environment along with the increasing number of cars. Compared with gasoline, natural gas as fuel for vehicles is a relatively clean fuel, it can not only reduce transport costs, but can also improve the thermal efficiency of the engine and extend engine life. At present, the key to using natural gas as motor fuel is to develop a suitable gas storage method. Compressed natural gas (CNG) is widely used as vehicles fuel because of its mature technologies. However, CNG requires huge capital investment, there are also potential safety problems with high-pressure equipment.The economy of Liquefied natural gas (LNG) is poor because of huge investment of LNG plants, while the maintenance of liquefied petroleum gas bottles is difficult.
     Because the storage conditions of adsorbed natural gas (ANG) technology are at room temperature and low pressure (3MPa~4MPa), at the same time the storage capacity is considerable, so ANG is particularly suitable as fuel of cars. However, the development of ANG technology is constrained by a major factor, the factor is the influence of thermal effects on the performance of storage systems. The charge process is exothermic process while charging at storage station, so storage systems must be colded. The discharge process is endothermic process while discharging at drive process, so storage systems must be hoted.
     The theory research is done considering the influence of adsorption heat on charge and discharge process. The values of pressure, temperature and adsorbed amounts are calculated during charge and discharge process and the influence factors are analyzed. Moreover, some measures alleviating the adverse effects caused by thermal effects are taken. In this paper, the following research on thermal effects of vehicle tank during charge and discharge process is done:
     Firstly, the Phenomenon absorption of natural gas by porous medium absorbent is analyzed according to the principle and essence of absorption. Adsorption isotherm model is being drawn through the analysis of experimental data, and the isosteric heat of adsorption is calculated by Calusius-Clapeyron equation. The influence of adsorption heat on charge and discharge process is analyzed by studying the thermodynamic path of charge and discharge process. The feasibility of using adsorptive natural gas for cars is analyzed and the existing problems are given.
     Secondly, to study the adverse effects of absorption heat to absorption system, the dynamic model of tank during adsorption process is established, this governing equation are solved using the algorithms of SIMPLER in order to get the values of pressure, temperature and speed during charge process. The following conclusions are drawn by analyzing the results, internal temperature of tank increase rapidly when charge rapidly, as a result, the follow-up process of charge is seriously affected. The adverse effects caused by thermal effects can be alleviated through a long period of charge.
     Thirdly, according to the characteristics of the gas flow and heat transfer of vehicle storage tank, dynamic model of vehicle tank during discharge process is established based on fluid mechanics, thermodynamics and heat transfer theory, the model are solved by Newton-Raphson root-finding technique. The aim is to find out the main factors of influencing discharge amounts and efficiency by analyzing some parameters, such as wall temperature of storage tank, the tank pressure, absorbent temperature, natural convection. The simulations reveal that discharge process is endothermic process, the reduction of adsorbent temperature has great impact on discharge performance. The central zone of tank has highest temperature drop. Natural convection has little influence on discharge properties even under conditions of slow discharge. Wall of tank has big influence on discharge properties. Significant temperature gradient exists between the wall and absorbent and internal adsorbent.
     In addition, as high temperature of the engine cooling water and engine exhaust gas, engine cooling water and gas flow by wall of tank in the form of heat exchanger in order to promote discharge, the two discharge efficiency using engine cooling water and engine exhaust gas for discharge are 87.85 percent and 89.68 percent, respectively, by solving the discharge model of using waste heat of engine, the above results demonstrate the feasibility of using the engine waste heat for discharge.
     Finally, considering to the activated carbon fiber (ACF) has a high adsorption storage performance and good conductivity and heat capacity, the discharge performance of two conditions, both heating wall of tank by engine waste heat and heating adsorbent by electricity, is studied by measuring the resistance of carbon fiber. The following conclusions are obtained by analyzing the simulation results: discharge performance is greatly improved by heating carbon fiber, and the imbalance of internal temperature has a fundamental improvement.
     The study on absorption natural gas vehicles is still in its infancy stage, along with the solution of problem of thermal effects, absorption natural gas vehicles will certainly be a large-scale application, the results of this subject provide theoretic support for the application of natural gas vehicles.
引文
1黄维和.西气东输管道工程与我国天然气工业发展.油气储运. 2003,22 (9):4~7
    2 R. J. Beck. Oil and Natural Gas Demand to Increase in 1999. Oil & Gas Journal. 1998,96(47): 36~39
    3李宏勋.世界天然气工业的发展趋势.中国能源.1999,(2):15~19
    4吴音,杨建红,余洋.浅谈我国天然气工业的协调发展.石油规划设计.2006,17 (2):1~5
    5何文渊,刘晖,杨灵雨.加快我国天然气工业发展的建议.天然气工业.2004,24(6):4~7
    6杨志毅.天然气将成为我国城市燃气的主要气源.石油与天然气化工.2003,32(3):126~133
    7谭志宣.国内常规能源的发展趋势.能源工程.2000,(5):1~3
    8丁国生,谢萍.中国地下储气库现状与发展展望.天然气工业.2006,26 (6):111~113
    9郑书耀.中国能源危机问题的实证分析.能源与环境.2006,(5):21~23
    10吴双.一些国家能源政策动向及其特点.天然气经济.2006,(3):24~26
    11於莉.新能源安全观与中国的战略.哈尔滨学院学报.2007,28(1):34~37
    12郑玉华,罗东坤,杨慧梅.我国天然气市场发展思路.中国国土资源经济.2007,(7):10~12
    13史晓飞.我国天然气开发与利用的问题探讨.内蒙古石油化工.2006,(8):19~20
    14宋杰鲲,李宏勋,张在旭.我国天然气工业发展现状与对策.未来与发展.2006,(8):9~11
    15沈师孔.天然气转化利用技术的研究进展.石油化工.2006,35(9):799~809
    16辛海升,赵斌,夏春雷.天然气发动机在汽车上的应用.农机化研究.2006,(12):215~217
    17雍艳.世界主要国家天然气政策比较及其启示.天然气经济.2006,(4):24~27
    18钱伯章,朱建芳.世界非常规天然气资源及其利用概况.天然气经济.2006,(4):20~23
    19宏小龙.浅析我国天然气综合利用.科技成果纵横.2006,(5):38~41
    20白少成.浅谈世界能源危机及中国的战略抉择.实验科学与技术.2006,(12):168~170
    21王凤维.潜在国际石油危机及我国的对策.北京石油管理干部学院学报.2006,(6):16~20
    22徐燕萍,宫敬,范华军.民用天然气的利用现状及其发展趋势.2006,25(11):8~12
    23董全庚,王西.论中国的能源战略决策.科技情报开发与经济.2007,17(3):118~120
    24陈茂濠,苏碧霞.广东省天然气利用的发展现状、环境与设想.能源技术.2006,27(6):257~260
    25张秋明.国外解析中国能源安全理念.国土资源情报.2006,6:32~36
    26范岩,马立平.化石燃料能否为明天提供动力—解读能源危机.新疆石油科技.2006,16(4):70~73
    27龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖通空调. 2000,30(5):27~32
    28 Margartet Carson. Location, Project Economics and Reserves Drive Gas Development. Pipeline & Gas Industry Journal. 1997,87(5):60~62.
    29 Amosa, Avidan. Resurgent LNG Rides Wave of New Projects. Oil & Gas Journal. 1999,13(12):82~90.
    30张祥振,王永强.实施I/M制度,有效治理汽车排放.职业圈.2006,(2):108~109
    31华爱红,李丽,丁国良.浅谈汽车尾气污染的危害及防治措施.科技资讯.2007,(4):152
    32崔虹.汽车尾气污染及防治.山西煤炭管理干部学院学报.2007,(1):149~150
    33吴新潮,饶如麟,方达淳.加严的排放标准需要更高品质的燃油.汽车工程.2006,28(12):1117~1120
    34苏志明.关注欧盟汽车尾气排放标准、扩大我国汽车产品出口.技术壁垒.2006,(12):50~51
    35杨玉林,程雨梅.城市汽车排放污染的影响因素及防治污染研究.长春大学学报.2006,12(6):111~115
    36刘后毅,吕泽亮.车辆排放污染及净化对策.交通与运输.2006,(12):85~87
    37王俊尉,谷晋川,杨萍.天然气汽车与环境资源保护.甘肃石油和化工.2006,(2):35~39
    38刘允辉,赵春明,河清云等.汽车排放污染控制技术现状及前景.世界汽车.1999,9 (7):13~15
    39王瑞刚.天然气汽车和电动汽车发展的几个问题.汽车技术.1998,(5):44~45
    40杨晓东.超临界温度甲烷吸附储存研究.上海交通大学博士论文.2001:20~90
    41杜灵通.中国天然气资源的分布特征及勘探前景.油气地质与采收率. 2005,12(2):30~32
    42何文渊,刘晖,杨灵雨.加快我国天然气工业发展的建议.天然气工业. 2004,24(6):4~7
    43邱中建.我国西部天然气东输的可行性.中国工程科学.1999,1(1):94~98
    44王秉刚.对我国燃气汽车问题的认识和建议.世界汽车.1999,(8):1~5
    45邹祖烨.国外代用燃料汽车发展概览[M].中国铁道出版社,1998:123~124
    46 Christopher, S. Natural Gas Vehicles: A Review of the State of Art [R]. SAE892133,1989
    47杨晓东,顾安忠.液化天然气汽车的研究和发展[J].新能源.2000,22(9):26~32
    48刘保华,李家俊,赵乃勤.天然气用做汽车替代性燃料的储气方式研究.炭素.2002,(4):39~42
    49程宗明.以气代油,节能环保大有好处[J].中国能源.1995,(10):41~42,30
    50 Vasiliev,L.L, Kanonchik,D.A. Adsorbed Natural Gas Storage and Transportation Vessels. lnt.Sci.J.2000,(39):1047~055
    51杨晓东,顾安忠.天然气汽车储气方式的技术经济性分析[J].油气储运.2000,19(11):29~33.
    52辛中仁.压缩天然气钢瓶爆炸事故分析[J].天然气工业.1998,18(2):75~78.
    53 Parkyns ND, Quinn DF. Natural Gas Adsorbed on Carbon. In: Patrick JW, editor, Porosity in carbons, Great Bretain Edward Arnold.1995,(11):291~325
    54 Bose TK, Chahine R, St-Arnaud JM. High-density Adsorbent and Method of Producing Same. US patent 4999330,1991
    55 Baker FS, wando SC, Beckler RB, Miller JR, Yan ZQ. Highly Microporous Carbon and Process of Manufacture. US Patent 5965483,1999
    56 S.Biloe, V.Goetz, S.Mauran. Characterization of Adsorbent Composite Blocks for Methane Storage. Carbon. 2001,(39):1653
    57 D.L.Castello, J.A.Monge, M.A.Lillo, D.C.Amoros. Advances in the Study of Methane Storage in Porous Carbonaceous Materials. A.L.Solano. Fuel. 2002,(81):1777
    58 X.S.Chen, B.McEnaney, T.J.Mays, J.Alcaniz-Monge. Theoretical and Experimental Studies of Methane Adsorption on Microporous Carbons. Carbon. 1997,(35):1251
    59袁爱军,查庆芳,李兆丰.天然气储存用多孔炭的研究.炭素技术.2004,23(2):1~4
    60孙乃有.车用燃料—天然气及其吸附剂的研究[J].中国能源.1995,(6):17~19,39
    61 Kasyh T, Okava K, Maeda T. International Gas Research Conference. Orando,US[C].1992
    62 Menon V C, Konarneni S. Porous Adsorbents for Vehicular Natural Gas Storage: A Review. Journal of Porous Materials. 1998,5(1):43~58
    63 L.J.Engel, J.W.Turko. Gaseous Hydrocarbon Fuel Storage and Powder Plant for Vehicles, U.S. Patent4,523,548
    64 L.J.Engel, J.W.Turko. Gaseous Hydrocarbon Fuel Storage and Powder Plant for Vehicles and Associated Refueling Apparatus, U.S. Patent4,522,159
    65 L.J.Engel, J.W.Turko. Gaseous Fuel Refueling Apparatus,U.S. Patent4, 531, 558
    66 Wegrzyn J, Gurevich M. Adsorbent Storage of Natural Gas. Applied Energy. 1996,55(2):71~83
    67颜肖慈,罗明道.界面化学.北京:化学工业出版社,2005:59~71
    68许金泉.界面力学.北京:科学出版社,2006:41~50
    69林智信.物理化学.武汉:武汉大学出版社,2003:40~55
    70徐恒鈞.材料科学基础.北京:北京工业大学出版社,2001:15~20
    71 Drew Myers.表面、界面和胶体:原理及应用.张大诚.北京:化学工业出版社材料科学与工程出版中心,2005:24~30
    72张小平.胶体、界面与吸附教程.广州:华南理工大学出版社,2008:85~90
    73近藤精一,石川达雄.吸附科学.李国希.北京:化学工业出版社,2006:23~50
    74赵振国.吸附作用应用原理.北京:化学工业出版社,2005:75~79
    75周理,吕昌忠,王怡林等.评述超临界温度气体在多孔固体上的物理吸附.化学进展.1999,11(3): 221~226
    76北川浩,铃木谦一郎.吸附的基础与设计.鹿政理.北京:化学工业出版社,1983: 281
    77 R T杨.吸附法气体分离.王树森,曾美云,胡竞民.北京:化学工业出版社,1991:349
    78 Paul A W and Clyde O. Analytical Methods in Fine Particle Technology. Norcross, Micromeritics Instrument Corporation. 1997:71~73
    79 Agarwal R K, Schwarz J A. Analysis of High Pressure Adsorption of Gases on Activated Carbon by Potential Theory. Carbon. 1988,(26):873~887
    80 Ozawa S, Kusumi S, Ogino Y. Physical Adsorption of Gases at High Pressure IV. An Improvement of the Dubinin-Astakhov Adsorption Equation. Journal of colloid and interface Science. 1976,56(1):83~91
    81 Amankwah K G, Schwarz J A. A Modified Approach for Estimating Pseudo-vapor Pressures in the Application of the Dubinin-Astakhov Equation. Carbon. 1995,(33):1313~1319
    82 Kaneko K, Murata K. Analytical Method of Micropore Filling of a Supercritical Gas. Adsorption Journal of the international adsorption society. 1997,3(3):197~208
    83周理,周亚平.关于氢在活性炭上高压吸附特性的实验研究.中国科学(B辑).1996,26(5):473~479
    84周亚平,周理.超临界氢在活性炭上的吸附等温线研究.物理化学学报.1997,13(2):119~127
    85 Zhou L, Zhou Y. Linearization of Adsorption Isotherms for High-pressure Application. Chemical Engineering Science. 1998,53(14):2531~2536
    86 Zhou L, Zhou Y. Utility Study of Conventional Adsorption Equations for Modeling Isotherms in a Wide Range of Temperature and Pressure. Separation Science and Technology. 1998,33(12):1787~1801
    87 Zhou L, Zhou Y. Comprehensive Model for the Adsorption of Supercritical Hydrogen on Activated Carbon. Industrial & Engineering Chemistry Research. 1996,35(11):4166~4168
    88周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及理论分析.中国科学.2000,30(1):49~56
    89 Salem M M K, Braeuer P, Von Szombathely M. Thermodynamics of High-pressure Adsorption of Argon, Nitrogen, and Methane on Microporous Adsorptions. Langmuir. 1998,14(12):3376~3389
    90谢自立.第六届国际吸附基础会议.化工进展.1999,(2):56~57
    91张超,顾安忠.碳质吸附剂吸附储氢的研究现状.太阳能学报. 2003,24(1):121~127
    92程锦荣,戴磊,赵敏等.碳纳米管阵列储氢的物理吸附特性.安徽大学学报(自然科学版).2004,28(6):32~36
    93张超,鲁雪生,顾安忠.氢在单壁碳纳米管中吸附的计算机模拟.太阳能学报.2004,25(6):764~768
    94张超,鲁雪生,顾安忠.氢气在不同结构单壁碳纳米管束中的吸附.化工学报.2004,55(6):974~979
    95侯艳君,高金胜,张洪全.巨正则系综蒙特卡罗法研究异丙醇在活性炭上的吸附特性.黑龙江大学自然科学学报.2005,22(4):463~467
    96杨晓东,顾安忠.活性炭吸附的理论研究进展.炭素.2000,(4):11~15
    97张超,高才,鲁雪生.多孔活性炭孔径分布的表征.离子交换与吸附.2006,22(2):187~192
    98赵力,程锦荣,黄德财.多壁碳纳米管储氢的物理吸附特性.化学物理学报.2004,17(5):572~576
    99顾冲,高光华,于养信.单壁碳纳米管吸附氢气的计算机模拟.高等学校化学学报.2001,(22):958~961
    100刘祖黎,黄运米,张雪锋.薄膜生长过程中孔洞填充的蒙特卡罗模拟.真空科学与技术学报.2005,25(5):339~343
    101陈小明,黄世萍,汪文川.苯-乙烯超临界烷基化反应体系在ZSM25中吸附行为的分子模拟.化学学报. 2004,62(17):1653~1657
    102陈丽蓉,侯廷军,李有勇.Y型分子筛中苯分子吸附特性的蒙特卡罗模拟研究.计算机与应用化学.2000,17(1):45~46
    103刘蓓,张现仁.MCM-41中混合势模型及简单流体吸附的巨正则Monte Carlo模拟.计算机与应用化学.2004,21(5):685~689
    104刘洁翔,董梅,秦张峰.A1P04-5分子筛中二氯苯吸附的分子模拟.物理化学学报.2004,20(7):696~700
    105印友法,朱卫华.巨正则系统蒙特卡罗研究活性炭吸附.炭素技术. 1998,(2):1~5
    106 Sing K W, Everett D H, Haul R W. Reporting Physi-sorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry. 1985:603~619
    107 Parkyn N D, Quinn D F. Natural Gas Adsorbed on Carbon, Porosity in Carbons, Patrick J W ed. London: Edward Arnold. 1995:292~325
    108 Quinn D F, MacDonald J A. Natural Gas Storage. Carbon.1992, (30):1097~1103
    109 Chahine R, Bose T K. Solidification of Carbon Powder Adsorption for NGV Storage. 20th Bienniall Conference on Carbon, USA,1991:Electrochemical Soc Inc. 1991:638~639
    110 Brady T A, Rostam A M, Rood M J. Applications for Activated Carbons from Waste Tires: Natural Gas Storage and Air Pollution Control. Gas Separation & Purification. 1996,10(2):97~102
    111 Sun J, Rood M J, Rostam A M. Natural Gas Storage with Activated Carbon from a Bituminous Coal. Gas Separation & Purification. 1996,10(10):91~96
    112 Alcanizmonge J, delacasalillo M A, Cazorlaamoros D. Methane Storage in Activated Carbon Fibers. Carbon. 1997,(35):291~297
    113 Quinn D F, Macdonald J A. Natural Gas Storage. Carbon. 1992,(30):1097~1103
    114陈进富,陆绍信.吸附法储存天然气汽车燃料技术的研究.天然气工业.1999,19(4):81~84
    115陈进富,陆绍信.吸附天然气汽车燃料技术.现代化工.1999,19(5):10~12
    116陆绍信.存储天然气吸附剂及其制造方法. CN1070846A
    117袁爱军,查庆芳,李兆丰等.天然气储存用多孔炭的研究-高比表面积多孔炭的制备.炭素技术.2003,(6):1~7
    118袁爱军,查庆芳,李兆丰.天然气储存用多孔炭的研究-成型多孔炭储存天然气的研究.炭素技术.2004,(2):1~4
    119刘海燕,乔文明,凌立成.炭质吸附剂吸附储存天然气浅谈.炭素技术.1999,(1):17~21
    120宋燕,凌立成,李开喜.粘结剂添加量及后处理条件对成型活性炭甲烷吸附性能的影响.新型碳材料.2000,15(2):6 ~9
    121宋燕,凌立成,李开喜.成型活性炭对甲烷吸附性能研究.新型碳材料. 2000,15(4):13 ~16
    122 Cardenas A R, Pilehvari A A, Heenan W A. Is There a Hope for Adsorbed Natural Gas(ANG)Vehicles. In: SPE Proceedings-Gas Technology Symposium Proceedings of the 1996 GasTechnology Symposium, Cagary,1996:151~158
    123 Blazek C F, Jasionowski W J, Tiller A J. Charge Discharge Characteristics of High-capacity Methane Adsorption Storage System. Proceedings of the 25# IECEC,1990:IEEE,1990:306~314
    124 Chang K J, Talu O. Behavior and Performance of Adsorption Natural Gas Storage Cylinders during Discharge. Applied thermal Engineering. 1996,16(5):359~374
    125邹鲁,陆绍信,朱亚杰.吸附贮存天然气吸附热的研究.石油与天然气化工.1997,26(3):141~142
    126傅国旗.天然气吸附存储的研究进展.化工进展.1999,(5):28~30
    127 Zhou Li, Li Ming, Zhou Ya Ping. Measurement and Theoretical Analysis of the Adsorption of Supercritical Methane on Super Activated Carbon [J]. SCIENCE IN CHINA Series B. 2000,30(1):49~56
    128周理,周亚平.关于氢在活性碳上高压吸附特性的实验研究[J].中国科学(B辑).1996,39(6):598
    129肖锦堂.用作汽车燃料的天然气低压吸附储存系统的开发和研究[J].天然气工业.1996,16(1):65~69
    130 Remick R J, Tiller A J. Heat Generation in Natural Gas Adsorption Storage System [A].Conference Proceedings of Gaseous Fuel forTransportation[C].Vancouver,1986,477~488
    131 Sejnoha M, Chahine R, Yaici W,et al. Adsorption Storage of Natural Gas on Activated Carbon[A]. Proceedings of AIChE Annual Meeting [C].SanFrancisco,CA,1994,109~120
    132 Jasionowski W J, Tiller A J, Fata J A, et al. Charge/Discharge Characteristics of High-capacity Methane Adsorption Systems [A]. Proceedings of International GAS Research Conference [C].Tkyo,Japan,1989,226~234
    133傅国旗.天然气吸附存储的研究.天津大学博士学位论文.2000:25~95
    134 Lamari Malek, Aoufi Asdin, Malbrunot Pierre. Thermal Effects in Dynamic Storage of Hydrogen by Adsorption[J].AichE,2000,46(3):632~646
    135 Firas N. Ridha. Dynamic Delivery Analysis of Adsorptive Natural Gas Storages at Room Temperature. Fuel Processing Technology. 2007,(88):349~357
    136 Firas N. Ridha. Thermal Transient Behavior of an ANG Storage during Dynamic Discharge Phase at Room Temperature. Applied Thermal Engineering. 2007,(27):55~62
    137 L.L. Vasiliev, L.E. Kanonchik, D.A. Mishkinis, M.I. Rabetsky. Adsorbed natural gas storage and transportation vessels. International Journal of Thermal Science . 2000,(39):1047~1055
    138 X.D. Yang, Q.R. Zheng, A.Z. Gu, X.S. Lu. Experimental Studies of the Performance of Adsorbed Natural Gas Storage System during Discharge. Applied Thermal Engineering. 2005,(25):591~601
    139 C.F. Blazek, W.J. Jasionowski, A.J. Tiller. In the Proceeding of the 25th Intersociety Energy Conversion Engineering Conference, Nevada,1990
    140 W.J. Jasionowski, K.J. Kountz, C.F. Blazek, A.J. Tiller. In the Proceeding of The international Gas Research Conference,1992
    141 J.P.B. Mota, I.A.A.C.Esteves. Dynamic modelling of an Adsorption Storage tank using a hybrid approach combining computational fluid dynamics and process simulation. Computers & Chemical Engineering. 2004,(28):2421-2434
    142 Mota J P B, Rodrinues A R. Dynamic of Natural Gas Adsorption Storage Systems Employing Activated Carbon [J]. Carbon. 1997, (9):1259~1270.
    143 Mota J P B, Rodrinues A R, Tondeur D. A Simulation Model of a High-capacity Methane Adsorptive Storage System [J]. Adsorption. 1995,1(1):17~27
    144 Mota J P B, Rodrinues A R, Saatdjian E, et al. Charge Dynamics of a Methane Adsorption Storage System: Intraparticle Diffusion Effects [J]. Adsorption.1997,3(3):117~125.
    145 R.Basumatary. Thermal Modeling of Activated Carbon Based Adsorptive Natural Gas Storage System. Carbon.2005,(43):541~549
    146陈进富,李兴存,李术元.天然气吸附剂的开发及其储气性能的研究IV-相变储热材料对吸附热效应的影响.太阳能学报.2004,25(1):41~44
    147周理.气体燃料与天然气储存技术的最新进展.资源环境.2003,(3):58~60
    148 Li Zhou, Yan Sun, Yaping Zhou. Enhancement of the Methane Storage on Activated Carbon by Pre-adsorbed Water. AICHEJ, 2002,48(10):2412~2416
    149李明.甲烷在AX-21活性炭上吸附特性研究.天津大学硕士学位论文,1998:20~31
    150林智信.物理化学.武汉:武汉大学出版社,2003:40~55
    151 S.Biloe, V.Goetz. Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon. 2002,40:1295-1308
    152彭红涛.天然气汽车发展中存在的问题及对策研究.煤气与热力.2006,26(3):26~28
    153罗东晓.天然气汽车的安全性分析.上海煤气.2007,2:26~29
    154欧成华,李朝纯.吸附天然气汽车技术研究与对策.天然气工业.2002,22(2):90~92
    155林在犁.车用天然气燃料在我国的应用与发展.内燃机.2007,(2):1~4
    156刘永峰.天然气发动机汽车的优势和发展现状.现代化工.2006,26增刊(2):395~397
    157林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995:50~75
    158张鸿雁,张志政,王元.流体力学.北京:科学出版社,2004:28~32
    159张国强,吴家鸣.流体力学.北京:机械工业出版社,2006:19~23
    160杨世铭,陶文铨.传热学.第二版.北京:高等教育出版社,2006:15~25
    161 Li Chi-Hsiung, Finlayson B A. Heat transfer in packed bed-A reevalution.Chemical Engineering Science. 1972,(32):1055-1066
    162 De Wash A P, Froment G F. Heat transfer in packed bed. Chemical Engineering Science. 1972,(27):567-576
    163 Perry R H. Perry’s Chemical Engineer’s Handbook. 5th edn. New York:McGraw Hill,1984
    164李人宪.有限体积法基础.北京:国防工业出版社,2005:1~100
    165王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004:30~85
    166 M.R. Smith, M.N. Macrossan. Effects of direction decoupling in flux calculation in finite volume solvers. Journal of Computational Physics. 2008,(227):4142-4161
    167 Zi-Niu Wu, Hui Zou. Grid overlapping for implicit parallel computation of compressible flows. Journal of Computational Physics. 2000,(157):2-43
    168 F. Bramkamp, Ph. Lamby. An adaptive multiscale finite volume solver for unsteady and steady state flow computations. Journal of Computational Physics. 2004,(197):460-490
    169宋道云,刘洪来.动量插值与完全压力校正算法及交错网格SIMPLE算法的比较.华东理工大学学报.2003,29(2):13~17
    170 V. Moureau, G, Lartigue. Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. Journal of Computational Physics. 2005,(202):710-736
    171 Y.M. Chung, K.H. Luo. Numerical study of momentum and heat transfer in unsteady impinging jets. Heat and Fluid Flow. 2002,(23):592-600
    172 Isabelle Raspo, Bernard Zappoli. Unsteady two-dimensional convection in a bottom heated supercritical fluid. Mecanique. 2004,(332):353-360
    173过增元,李志信.热可压缩流体的流动和传热.工程热物理学报.1995,16(4):25~28
    174 S.H. Karinian, G..E. Schneider. Pressure-based computational method for compressible and incompressible flows. Journal of Thermophysics and heat transfer. 1994,8(2):25~29
    175 G..B. Deng, J. Piquet. A new fully coupled method for computing turbulent flows. Computers&fluids. 2000,(30):445~472
    176 Heimo Walter. Dynamic simulation of natural circulation steam generators - 146 -with the use of finite-volume-algorithms–a comparison of four algorithms. Simulation modeling practice and theory. 2007,(15):565~588
    177 Helmar Carl, Heiko Pietruske. Gas-liquid flow around an obstacle in a vertical pipe. Nuclear engineering and design,2007
    178 M. Darbandi. Solving compressible flow using SIMPLE incompressible procedure. 35th AIAA thermophysics conference, 2001
    179 K.B. Kuan, C.A. Lin. Adaptive QUICK-based scheme to approximate convective transport. AIAA. 2000
    180 M. Darbandi, G.E. Schneider. Solving compressible and incompressible flows using a momentum variable calculation procedure. 34th AIAA Aerospace Sciences Meeting,1996
    181 Wei Shyy, Ming-Hsiung Chen. Pressure-based multigrid algorithm for flow at all speeds.AIAA. 1992
    182 C.C. Rossow. A blended pressure/density based method for the computation of incompressible and compressible flows. 15th AIAA computational fluid dynamics conference ,2001
    183 V. Przulj, B. Basara. A SIMPLE-based control volume method for compressible flows on arbitrary grids. 32 th AIAA fluid dynamics conference ,2002
    184焦其伟,张锡朝.WD615发动机可用冷却水热量分析.内燃机与动力装置.2007,(6):5~9
    185成晓北,潘立,鞠洪玲.现代车用发动机冷却系统研究进展.车用发动机.2008,12(1):1~6
    186曾科,高可,何茂刚.提高车用发动机能量利用率研究进展.车用发动机.2006,12(6):25~28
    187钟绍俊,黄镇海,黄艳岩.汽车发动机冷却水泵性能测试系统设计.中国计量学报.2006,17(3):29~32
    188夏兴兰,王胜利,陈大陆.计算流体力学在发动机冷却水套设计中的应用.现代车用动力.2006,(4):13~17
    189刘洪阳,刘万钊,贺强.发动机排气管余热发电研究.长春理工大学学报(自然科学版).2007 ,3(30):15~18
    190 Rajesh Chellappan Iyer. Development of a Vapor Compression Air Conditioning System Utilizing the Waste Heat Potential of Exhaust Gases inAutomobiles [C].SAE Paper 2005 -01-3475
    191 Diego A A, Timothy A S, Ryan Jeste. Theoretical Analysis of Waste Heat Recovery from an Internal Combustion Engine in a Hybrid Vehicle[C].SAE Paper 2006-01-1605
    192黄建设.在青藏高原利用汽车发动机余热的探讨.机电产品开发与创新. 2006,19(1):24~28
    193张征,曾美琴,司广树.温差发电技术及其在汽车发动机排气余热利用中的应用.能源技术.2004,25(3):14~17
    194刘焘,丁国良.套管换热器近分相流动态分布参数模型的改进算法.上海交通大学学报.2008,42(1):122~127
    195章熙民,任泽霈,梅飞鸣.传热学.第四版.北京:中国建筑工业出版社,2001:148~150
    196孙斌斌.活性碳纤维的制备及吸附有机污染物的研究.南京理工大学硕士学位论文.2007:20~35
    197陈耀庭,乔辉.活性碳纤维的结构性能与应用.化工进展,1994,(9):19~23
    198 Shen ZM. New carbon materials. Chinese Chemical Industry Press,2003:289~297
    199 EI-Merraoui M, Aoshima M, Kaneko K. Micropore size distribution of activated fiber using the density functional theory and other methods. Langmuir. 2000,(16):13~19
    200 Zhang XJ, Shen ZM. Preparation of pitch-based activated carbon fiber. Chinese Syn Fiber. 2000,29(3):29~31
    201 Zhang XJ, Shen ZM. Pitch-based activated carbon fiber activation structure surface morphology. New Carbon Mater. 1999,(2):59~66
    202 Xiaohong Shao, Wenchuan Wang. Experimental measurements and computer simulation of methane adsorption on activated carbon fibers. Carbon. 2007,(45):188~195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700