用户名: 密码: 验证码:
无刷直流电动机高性能驱动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以无刷直流电动机驱动控制方法为研究对象,以改善工作性能和扩大应用范围为目的,以能够在产品中直接应用为目标,从高速实现、转矩脉动抑制、最佳换相控制和无位置传感器控制四个方向对无刷直流电动机驱动控制方法进行了研究。
     高速实现方面,通过定性分析和定量计算,研究了有限的工作频率对无刷直流电动机运行的影响。结论表明在传统三相PWM控制方法中采用的开关频率或在变母线电压六拍控制方法中采用的软件系统扫描频率,对电动机的运行会产生滞后换相的问题;并且随着电动机转速的提高,每一拍内所包含的工作周期个数越来越少,由滞后换相而产生的电流波动会使电动机的运行越来越差。为了给高速无刷直流电动机驱动器的设计提供参考,将滞后换相对绕组电流波动的影响制作到一个表中,开关频率或系统扫描频率的值可以根据性能指标通过查表比较选取。所提出结论的正确性在反作用飞轮调速系统和高速储能飞轮充放电系统中进行了验证。
     转矩脉动抑制方面,在详细分析换相转矩脉动产生原因的基础上,提出了一种理论上新型的“三区间调制法”。该方法通过三相绕组电压的配合调制,使换相过程中关断相电流的下降速度和导通相电流的上升速度在每个PWM周期内保持相等,从原理上消除了换相转矩脉动;该方法还可以通过采用不同的区间比例组合,使换相过程的持续时间根据实际应用要求进行调节。所提出方法简单并能够较大程度的改善电动机性能,非常适合在实际产品中广泛普及。针对如何具体实现三区间调制法的问题,提出了一种在全速段范围内以最短换相时间消减换相转矩脉动的方法和另外一种适用于低速应用的五段式实现三区间调制法的PWM调制方法。最终使用一台通用无刷直流电动机调速系统对所提出方法进行了实验验证,取得了良好的效果。
     最佳换相控制方面,在分析了最佳换相点选取原则的基础上,通过数学推导建立了超前换相角和PWM占空比、母线电压、负载电流的关系表达式;并提出一种在恒转矩负载下适用于变母线电压六拍控制结构的新型低转矩波动超前换相控制方法。该方法通过在每两拍之间插入一小段缓冲区来实现,该缓冲区使下一拍将要切入的电流提前切入,同时使当前拍将要切出的电流延迟切出。通过确定缓冲区的起始位置,即超前换相角的大小,保证每一拍所对应的相电流的中心和反电动势的中心重合,实现最佳换相;方法中转矩脉动的减小通过选取缓冲区内关断相PWM调制的占空比实现。所提出方法实现简单,只需根据额定负载大小将霍尔器件超前放置一个固定的角度即可在全速段实现最佳换相控制。最终通过风扇电机验证了超前换相的必要性;通过通用无刷直流电动机验证了所提出改进型变母线电压六拍控制方法的有效性。
     无位置传感器控制方面,为了解决传统Y型绕组连接无刷直流电动机的无位置传感器控制方法由于受到中性点电压的干扰,既不能在低转速段准确检测到反电动势过零点信息,又不容易在高转速段捕获反电动势真实值的问题,将三相H桥结构应用到高速无刷直流电动机的无位置传感器控制中,使三相绕组中参与导通的两相并联进行供电,同时使未导通相切出电路以进行反电动势过零点检测。由于是绕组并联,每一相利用全部母线电压产生电流;由于未导通相完全切出电路,位置信号检测精度提高。最终将所提出方法分别在小电感电动机和大电感电动机上进行了实现。理论分析和实验结果表明所采用方法不但可以在较高的转速段实现无位置传感器控制,而且可以较大程度的改善零速起动和低速控制精度的问题。所研制样机应用于新一代的高速风扇产品中。
Technology of brushless DC motor(BLDCM) drives was studied in this dissertation in order to improve the performance of BLDCM and enlarge its scope of application. The aim is to develop new methods that can be used directly on products. High-speed control, torque ripple suppression, optimal commutation angle control and sensorless control are the four aspects being studied in detail.
     As to high-speed control, the influence of limited work frequency on operation of BLDCM had been studied. The conclusions show that a phenomenon of commutation delaying will always exist because of the limited switch frequency in three-phase pulse width modulation(PWM) control method or the limited software scanning frequency in the variable bus-voltage six-step control method. As the speed of the motor rises, the number of unit work cycles in one single step becomes smaller, and the motor operation performance becomes worse. The negative influences on phase current fluctuation respect to switch frequency or software scanning frequency were made into a quantitative table to direct the design of high-speed BLDCM drives. The feasibility and accuracy of the conclusions were confirmed both by reaction flywheel and high-speed energy storage flywheel.
     As to torque ripple suppression, a new ‘Three-segement modulation method’ was first presented in this dissertation to eliminate commutation torque ripple base on a thorough analysis of the fundamental cause of commutation torque ripple. During commutation, each PWM period is divided into three functional segments by three-phase cooperative modulation. Each of the three phases is assigned with different duty cycle by calculation, so that the average current slope of on-going phase can be kept equal with the average current slope of off-going phase in each PWM period. The commutation duration can also be adjusted as needed by adopting different duty cycle combinations, by which this method can have more flexibility. This simple and effective method is very suitable for product updating. In order to realize the presented method, a general full speed range implementation technique with minimum commutation time was given, and another five-interval implementation technique was given for low speed applications. The experimental results from a common BLDCM prototype confirm the feasibility and effectiveness of presented three-segment modulation method.
     As to optimal commutation angle control, the mathematical expression of advance commutation angle with PWM duty cycle, bus-voltage and load current was established, and a new variable bus-voltage six-step control method which solves the current lag problem and improves the current ripple problem was presented. The new method is implemented by adding a small buffer zone in the connecting place of two steps. This buffer zone allows the next step phase switching in before the present step is over, and lets the present step phase continue working for a short time after entering next step. The centerline of the phase current can coincide with the centerline of the back electromotive force(EMF) by determining the buffer zone’s start position which can also be seen as an advance commutation angle. The decrease of the current ripple can be achieved by choosing a proper duty cycle in the buffer zone. It only requires the value of load current to determine the advance commutation angle in this method, and applies to any speed operation once the angle is determined. The experimental results from a D200high-power fan and a common BLDCM show the necessity of advance angle control and feasibility of presented variable bus-voltage six-step control method respectively.
     As to sensorless control, the three-phase H-bridge structure was adopted to BLDCM, in order to solve traditional Y-connection windings BLDCM sensorless control drive’s problems of inaccuracy of zero-cross point detecting during start stage and difficulty of capturing real back-EMF during high-speed range because of distraction from its neutral point. The new structure makes two conducting phases work in parallel; meanwhile the non-conducting phase is cut off from the circuit for back EMF zero-cross detecting. Parallel connection makes each phase excited with full potential of bus voltage and non-conducting phase’s totally switching out from circuit makes the rotor position signal accurate. The theoretical derivation and analysis of presented method were given. The experimental results from a small inductance prototype and big inductance prototypes show that the presented sensorless control method can be used in higher speed applications and can greatly improve the performance at low-speed range operation. The prototypes were developed to be the next generation products.
引文
[1] Wilson T G,Trickey P H.D-C Machine with Solid-State Commutation[J].Electrical Engineering,1962,81(11):879-884.
    [2] Bianchi N,Bolognani S,Luise F.Potentials and Limits of High-Speed PMMotors[J].IEEE Transactions on Industry Applications,2004,40(6):1570-1578.
    [3]徐衍亮,赵建辉,房建成.高速储能飞轮用无铁心永磁无刷直流电动机的分析与设计[J].电工技术学报,2004,19(12):24-28.
    [4] Bianchi N,Bolognani S,Luise F.Analysis and Design of a PM BrushlessMotor for High-Speed Operations[J].IEEE Transactions on EnergyConversion,2005,20(3):629-637.
    [5]王继强,王凤翔,孔晓光.高速永磁发电机的设计与电磁性能分析[J].中国电机工程学报,2008,28(20):105-110.
    [6] Jang S M,Lee U H,You D J,et al.Operating Torque Estimation ofHigh-Speed Slotless Brushless DC Machine Considering PowerLoss[J].IEEE Transactions on Magnetics,2009,45(10):4539-4542.
    [7] Wang K,Shen J X,Zhou F Z,et al.Design Aspects of a High-SpeedSensorless Brushless DC Motor Using Third Harmonic Back-EMF forSensorless Control[J].Journal of Applied Physics,2010,103(7):07F110-07F110-3.
    [8] Wang K,Jin M J,Shen J X,et al.Study on Rotor Structure with DifferentMagnet Assembly in High-speed Sensorless Brushless DC Motors[J].IETElectric Power Applications,2010,4(4):241-248.
    [9] Brackley M,Pollock C.Analysis and Reduction of Acoustic Noise from aBrushless DC Drive[J].IEEE Transactions on Industry Applications,2000,36(3):772-777.
    [10] Ede J D,Zhu Z Q,Howe D.Rotor Resonances of High-SpeedPermanent-Magnet Brushless Machines[J].IEEE Transactions on IndustryApplications,2002,38(6):1542-1548.
    [11] Zhou F,Shen J,Fei W,et al.Study of Retaining Sleeve and ConductiveShield and Their Influence on Rotor Loss in High-Speed PM BLDCMotors[J].IEEE Transactions on Magnetics,2006,42(10):3398-3400.
    [12]邢军强,王凤翔,张殿海,等.高速永磁电机转子空气摩擦损耗研究[J].中国电机工程学报,2010,30(27):14-19.
    [13]张晓晨,李伟力,邱洪波,等.超高速永磁同步发电机的多复合结构电磁场及温度场计算[J].中国电机工程学报,2011,31(30):85-92.
    [14]田拥胜,孙岩桦,虞烈,等.高速永磁电机电磁轴承转子系统的动力学及实验研究[J].中国电机工程学报,2012,32(9):116-123.
    [15] Zhu Z Q,Chen Y,Howe D.Influence of Control Strategy on Stator andRotor Losses in High-Speed Permanent Magnet BrushlessMotors[J].Journal of Applied Physics,2005,97(10):10N505-10N505-3.
    [16] Zhao L,Ham C,Zheng L,et al.A Highly Efficient200000RPM PermanentMagnet Motor System[J].IEEE Transactions on Magnetics,2007,43(6):2528-2530.
    [17] Jang S M,Cho H W,Choi S K.Design and Analysis of a High-SpeedBrushless DC Motor for Centrifugal Compressor[J].IEEE Transactions onMagnetics,2007,43(6):2573-2575.
    [18] Chen J,Guo Y,Zhu J.Development of a High-Speed Permanent-MagnetBrushless DC Motor for Driving Embroidery Machines[J].IEEETransactions on Magnetics,2007,43(11):4004-4009.
    [19] Jang K B,Won S H,Kim T H,et al.Starting and High-Speed Driving ofSingle-Phase Flux-Reversal Motor for Vacuum Cleaner[J].IEEETransactions on Magnetics,2005,41(10):3967-3969.
    [20] Zhao L,Ham C H,Han Q,et al.Design of Optimal Digital Controller forStable Super-High-Speed Permanent-Magnet Synchronous Motor[J].IEEProceedings-Electric Power Application,2006,153(2):213-218.
    [21] Morimoto M,Aiba K,Sakurai T, et al.Position Sensorless Starting ofSuper High-Speed PM Generator for Micro Gas Turbine[J].IEEETransactions on Industrial Electronics,2006,53(2):415-420.
    [22] Bianchi N,Bolognani S,Luise F.High Speed Drive Using a Slotless PMMotor[J].IEEE Transactions on Power Electronics,2006,21(4):1083-1090.
    [23] Shen J X,Iwasaki S.Sensorless Control of Ultrahigh-Speed PM BrushlessMotor Using PLL and Third Harmonic Back EMF[J].IEEE Transactions onIndustrial Electronics,2006,53(2):421-428.
    [24] Lee D H,Ahn J W.A Wide Range Speed Control Method of Compact HighSpeed BLDCM Using PLL Approach[C]//International Conference onElectrical Machines and Systems,17-20Oct.2008:2784-2788.
    [25] Gopalarathnam T,Toliyat H A.A New Topology for Unipolar Brushless DCMotor Drive with High Power Factor[J].IEEE Transactions on PowerElectronics,2003,18(6):1397–1404.
    [26] Jang G,Kim M G.A Bipolar-Starting and Unipolar-Running Method toDrive a Hard Disk Drive Spindle Motor at High Speed with Large StartingTorque[J].IEEE Transactions on Magnetics,2005,41(2):750-755.
    [27] Takahashi I,Koganezawa T,Su G,et al.A Super High Speed PM MotorDrive System by a Quasi-Current Source Inverter[J].IEEE Transactions onIndustry Applications,1994,30(3):683-690.
    [28] Kim K H,Youn M J.DSP-Based High-Speed Sensorless Control for aBrushless DC Motor Using a DC Link Voltage Control[J].Electric PowerComponents and Systems,2002,30(9):889-906.
    [29] Howlader A M,Urasaki N,Senjyu T,et al.Optimal PAM Control for a BuckBoost DC-DC Converter with a Wide-Speed-Range of Operation for aPMSM[J].Journal of Power Electronics,2010,10(5):477-484.
    [30] Tsao P I.An integrated flywheel energy storage system with a homopolarinductor motor/generator and high-frequency drive[D].USA:Ph.D.Dissertation,University of California, Berkeley,2003.
    [31] Senesky M K.Control of a Synchronous Homopolar Machine for FlywheelApplications[D].USA:M.Sc. Dissertation,University of California,Berkeley,2003.
    [32] Wang W.Design of high speed flywheel motor or generator for aerospaceapplications[D].USA:Ph.D. Dissertation,The Pennsylvania StateUniversity,2004.
    [33] Rafsanjan S T.Advanced high-speed flywheel energy storage systems forpulsed power application [D].USA:Ph.D. Dissertation,Texas A&MUniversity,2008.
    [34]徐飞鹏.储能飞轮完全被动磁悬浮技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [35]王爽.储能与姿态控制飞轮系统研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [36]汤平华.磁悬浮飞轮储能电机及其驱动系统控制研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010.
    [37] Rodriguez F,Emadi A.A Novel Digital Control Technique for Brushless DCMotor Drives[J].IEEE Transactions on Industrial Electronics,2007,54(5):2365-2373.
    [38] Pan C T,Fang E.A Phase-Locked-Loop-Assisted Internal ModelAdjustable-Speed Controller for BLDC Motors[J].IEEE Transactions onIndustrial Electronics,2008,55(9):3415-3425.
    [39] Xia C,Li Z,Shi T.A Control Strategy for Four-Switch Three-PhaseBrushless DC Motor Using Single Current Sensor[J].IEEE Transactions onIndustrial Electronics,2009,56(6):2058-2066.
    [40] Sathyan A,Milivojevic N,Lee Y J,et al.An FPGA-Based Novel DigitalPWM Control Scheme for BLDC Motor Drives[J].IEEE Transactions onIndustrial Electronics,2009,56(8):3040-3049.
    [41] Gao J,Hu Y.Direct Self-Control for BLDC Motor Drives Based onThree-Dimensional Coordinate System[J].IEEE Transactions on IndustrialElectronics,2010,57(8):2836-2844.
    [42] Carlson R,Lajoie-Mazenc M,Fagundes J C S.Analysis of Torque RippleDue to Phase Commutation in Brushless DC Machines[J].IEEETransactions on Industry Applications,1992,28(3):632-638.
    [43] Jahns T M,Soong W L.Pulsating Torque Minimization Techniques forPermanent Magnet AC Motor Drives–A Review[J].IEEE Transactions onIndustrial Electronics,1996,43(2):321-330.
    [44] Zeroug H,Boukais B,Sahraoui H.Analysis of Torque Ripple in aBDCM[J].IEEE Transactions on Magnetics,2002,38(2):1293-1296.
    [45] Hwang S M,Lieu D K.Reduction of Torque Ripple in Brushless DCMotors[J].IEEE Transactions on Magnetics,1995,31(6):3737-3739.
    [46] Parsa L,Hao L.Interior Permanent Magnet Motors with Reduced TorquePulsation[J].IEEE Transactions on Industrial Electronics,2008,55(2):602-609.
    [47] Boukais B,Zeroug H.Magnet Segmentation for Commutation TorqueRipple Reduction in a Brushless DC Motor Drive[J].IEEE Transactions onMagnetics,2010,46(11):3909-3919.
    [48] Park S J,Park H W,Lee M H,et al.A New Approach for Minimum-TorqueRipple Maximum-Efficiency Control of BLDC Motor[J].IEEE Transactionson Industrial Electronics,2000,47(1):109-114.
    [49]夏长亮,文德,王娟.基于自适应人工神经网络的无刷直流电机换相转矩脉动抑制新方法[J].中国电机工程学报,2002,22(1):54-58.
    [50]孙立志,冯琪,尚静,等.高磁负荷单相无刷直流电机的转矩波动抑制[J].中国电机工程学报.2006,26(13):146-150.
    [51]夏长亮,俞卫,李志强.永磁无刷直流电机转矩波动的自抗扰控制[J].中国电机工程学报.2006,26(24):137-142.
    [52] Jang G H,Kim M G.Optimal Commutation of a BLDC Motor by Utilizingthe Symmetric Terminal Voltage[J].IEEE Transactions on Magnetics,2006,42(10):3473-3475.
    [53]王淑红,熊光煜.无刷直流电机换相转矩脉动减小及动态仿真[J].电机与控制学报.2008,12(2):169-173.
    [54]曹建波,曹秉刚,许鹏,等.无位置传感器无刷直流电机转矩脉动抑制研究[J].电机与控制学报,2008,12(3):248-253.
    [55] Lee D H,Ahn J W.A Current Ripple Reduction of a High-Speed MiniatureBrushless Direct Current Motor Using Instantaneous VoltageControl[J].IET Electric Power Applications,2009,3(2):85-92.
    [56] Bharatkar S S,Yanamshetti R,Chatterjee D,et al.Dual-Mode SwitchingTechnique for Reduction of Commutation Torque Ripple of Brushless DCMotor[J].IET Electric Power Applications,2011,5(1):193-202.
    [57] Aghili F.Ripple Suppression of BLDC Motors With Finite Driver/AmpliferBandwidth at High Velocity[J].IEEE Transactions on Control SystemsTechnology,2011,19(2):391-397.
    [58] Sangsefidi Y,Ziaeinejad S,Shoulaie A.Torque Ripple Reduction of BLDCMotors by Modifying the Non-Commutating PhaseVoltage[C]//International Conference on Electrical, Control and ComputerEngineering(INECCE),2011:308-312.
    [59]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J].电机与控制学报,2003,7(2):87-91.
    [60]揭贵生,马伟明.考虑换相时无刷直流电机脉宽调制方法研究[J].电工技术学报,2005,20(9):66-71.
    [61]齐蓉,林辉,陈明.无刷直流电机换向转矩脉动分析与抑制[J].电机与控制学报,2006,10(3):287-290.
    [62] Lai Y S,Lin Y K.Assessment of Pulse-Width Modulation Techniques forBrushless DC Motor Drives[C]//Industry Applications Conference,41stIAS Annual Meeting,2006:1629-1636.
    [63]薛晓明,陈宏.无刷直流电机断开相电流的研究[J].电工技术学报,2011,26(4):64-70.
    [64] Murai Y,Kawase Y,Ohashi K,et al.Torque Ripple Improvement forBrushless DC Miniature Motors[J].IEEE Transactions on IndustryApplications,1989,25(3):441-450.
    [65]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通相续流的PWM调制方式[J].中国电机工程学报,2005,25(7):104-108.
    [66]林平,韦鲲,张仲超.新型无刷直流电机换相转矩脉动的抑制控制方法[J].中国电机工程学报,2006,26(3):153-158.
    [67]宋飞,周波,吴小婧.抑制无刷直流电机换相转矩脉动的新型补偿策略[J].电工技术学报,2008,24(11):28-33.
    [68] Meng G,Xiong H,Li H.Commutation Torque Ripple Reduction in BLDCMotor Using PWM_ON_PWM Mode[C]//International Conference onElectrical Machines and Systems(ICEMS),2009:1-6.
    [69] Fang J,Li H,Han B.Torque Ripple Reduction in BLDC Torque Motor WithNonideal Back EMF[J].IEEE Transactions on Power Electronics,2012,27(11):4630-4637.
    [70]顾伟光,章跃进,黄苏融.提高无刷直流电机PWM调制频率极限的方法[J].微特电机,2003,31(1):23-24.
    [71]贺虎成,刘卫国,郎宝华.开关频率对无刷直流电动机转矩脉动的影响分析[J].微电机,2008,41(7):1-4.
    [72]汤平华,廖志辉,李铁才.方波无刷电动机的倍频PWM控制方法[J].电机与控制学报,2009,13(3):389-397.
    [73]张晓峰,胡庆波,吕征宇.基于BUCK变换器的无刷直流电机转矩脉动抑制方法[J].电工技术学报,2005,20(9):72-76.
    [74] Nam K Y,Lee W T,Lee C M,et al.Reducing Torque Ripple of BrushlessDC Motor by Varying Input Voltage[J].IEEE Transactions on Magnetics,2006,42(4):1307-1310.
    [75]张晓峰,吕征宇.基于级联式拓扑的消除无刷直流电机传导区转矩脉动方法[J].电工技术学报,2007,22(1):29-33.
    [76]王爽,李铁才,王治国.无刷直流电机换相力矩波动抑制[J].电机与控制学报,2008,12(3):288-293.
    [77] Shi T,Guo Y,Song P,et al.A New Approach of Minimizing CommutationTorque Ripple for Brushless DC Motor Based on DC-DCConverter[J].IEEE Transactions on Industrial Electronics,2010,57(10):3483-3490.
    [78]陈基锋,张晓峰,王斯然,等.基于能量单元法的无刷直流电机导通区转矩脉动[J].电工技术学报,2010,25(11):36-41.
    [79] Song J H,Choy I.Commutation Torque Ripple Reduction in Brushless DCMotor Drives Using a Single DC Current Sensor[J].IEEE Transactions onPower Electronics,2004,19(2):312-319.
    [80] Lu H,Zhang L,Qu W.A New Torque Control Method for Torque RippleMinimization of BLDC Motor with Un-Ideal Back EMF[J].IEEETransactions on Power Electronics,2008,23(2):950-957.
    [81]高峰,张雪锋,季学武.考虑定子电阻的无刷电机换相转矩脉动抑制[J].电机与控制学报,2010,14(10):26-31.
    [82] Kim J H,Park J S,Youn M J,et al.Torque Ripple Reduction Technique withCommutation Time Control for Brushless DC Motor[C]//IEEE8thInternational Conference on Power Electronics and ECCE Asia (ICPE&ECCE),2011:1386-1391.
    [83]陈基锋,张晓峰,吴小康,等.基于统一式的无刷直流电动机换相转矩脉动抑制新策略[J].电工技术学报,2011,26(4):51-56.
    [84] Lin Y K,Lai Y S.Pulse-Width Modulation Technique for BLDCM Drives toReduce Commutation Torque Ripple Without Calculation of CommutationTime[J].IEEE Transactions on Industry Applications,2011,47(4):1786-1793.
    [85] Kim D K,Lee K W,Kwon B I.Commutation Torque Ripple Reduction ina Position Sensorless Brushless DC Motor Drive[J].IEEE Transactions onPower Electronics,2006,21(6):1762-1768.
    [86] Liu Y,Zhu Z Q,Howe D.Commutation-Torque-Ripple Minimization inDirect-Torque-Controlled PM Brushless DC Drives[J].IEEE Transactionson Industry Applications,2007,43(4):1012-1021.
    [87]陈冬,房建成.非理想梯形波反电势永磁无刷直流电机换相转矩脉动抑制方法[J].中国电机工程学报,2008,28(30):79-83.
    [88] Sudhoff S D,Krause P C.Operating Modes of The Brushless DC Motor withA120' Inverter[J].IEEE Transactions on Energy Conversion,1990,5(3):558-564.
    [89] Safi S K,Acarnley P P,Jack A G.Analysis and Simulation of theHigh-Speed Torque Performance of Brushless DC Motor Drives[J].IEEProceedings-Electric Power Application,1995,142(3):191-200.
    [90] Rabinovici R,Miller T J E.Eddy-Current Losses of Surface-MountedPermanent-Magnet Motors[J].IEE Proceedings-Electric PowerApplication,1997,144(1):61-64.
    [91]李榕,刘卫国,刘向阳,等.永磁无刷直流电机消除逆变环流的弱磁性能研究[J].电工技术学报,2007,22(9):62-67.
    [92] Lee D M,Lee W C.Analysis of Relationship Between Abnormal Currentand Position Detection Error in Sensorless Controller for InteriorPermanent-Magnet Brushless DC Motors[J].IEEE Transactions onMagnetics,2008,44(8):2074-2081.
    [93] Spee R,Wallace A K.Performance Characteristics of Brushless DCDrives[J].IEEE Transactions on Industry Applications,1988,24(4):568-573.
    [94] Chan C C,Xia W,Jiang J Z,et al.Permanent Magnet BrushlessDrives[J].IEEE Industry Applications Magazine,1998,4(6):16-22.
    [95]程伟,徐国卿,冯江华,等.基于BP网络的电动汽车用无刷直流电机转矩角控制技术研究[J].电工技术学报,2006,21(3):62-66.
    [96] Chau K T,Cui W,Jiang J Z.Design of Permanent Magnet Brushless Motorswith Asymmetric Air Gap for Electric Vehicles[J].Journal of AppliedPhysics,2006,99(8):08R322-08R322-3.
    [97]陈志辉,严仰光.同步电动机起动大负载时的优化控制分析[J].电机与控制学报,1999,3(3):169-171.
    [98]杨贵杰,孙力,孙立志,等.无刷直流电动机直接驱动系统动态特性分析[J].电机与控制学报,2000,4(1):1-5.
    [99]罗宏浩,吴峻,赵宏涛,等.永磁无刷直流电机换相控制研究[J].中国电机工程学报,2008,28(24):108-112.
    [100]赵宏涛,吴峻.定子磁链提前换相增加直线永磁无刷直流电机的推力[J].中国电机工程学报,2011,31(3):118-123.
    [101]Shin C,Choi C,Lee W.Advance Angle Calculation for Improvement of theTorque-to-Current Ratio of Brushless DC Motor Drives[C]//20112ndInternational Conference on Advances in Energy Engineering (ICAEE),2012:1410-1414.
    [102]沈建新,李鹏,郝鹤,等.高速永磁无刷电机电磁损耗的研究概况[J].中国电机工程学报,2013,33(3):62-74.
    [103]Cheng K Y,Tzou Y Y.Design of a Sensorless Commutation IC for BLDCMotors[J].IEEE Transactions on Power Electronics,2003,18(6):1365-1375.
    [104]Chiu C L,Chen Y T,Shen Y H,et al.An Accurate Automatic PhaseAdvance Adjustment of Brushless DC Motor[J].IEEE Transactions onMagnetics,2009,45(1):120-126.
    [105]Chen Y T,Chiu C L, Tang Z H,et al.Optimizing Efficiency DriverComprising Phase-Locked Loop for the Single-Phase Brushless DC FanMotor[J].IEEE Transactions on Magnetics,2012,48(5):1937-1942.
    [106]戴卫力,王慧贞,严仰光.电励磁双凸极电机的提前角度控制[J].中国电机工程学报,2007,27(27):88-93.
    [107]林明耀,周谷庆,刘文勇.基于直接反电动势法的无刷直流电机准确换相新方法[J].东南大学学报:自然科学版,2010,40(1):89-94.
    [108]邹继斌,李建军,徐永向,等.驱动方式对永磁无刷直流电机损耗的影响[J].电工技术学报,2011,26(9):43-47.
    [109]宋海龙,杨明,范宇,等.无刷直流电动机的无位置传感器控制[J].电机与控制学报,2002,6(3):208-212.
    [110]Kim T H,Lee H W,Ehsani M.State of the Art and Future Trends inPosition Sensorless Brushless DC Motor/Generator Drives[C]//31st AnnualConference of IEEE Industrial Electronics Society.Raleigh,NorthCarolina,USA:IEEE Industrial Electronics Society,2005:1718-1725.
    [111]夏长亮,方红伟.永磁无刷直流电机及其控制[J].电工技术学报,2012,27(3):25-34.
    [112]Matsui N.Sensorless PM brushless DC motor drives[J].IEEE Transactionson Industrial Electronics,1996,43(2):300-308.
    [113]Tomita M,Senjyu T,Doki S,et al.New Sensorless Control for BrushlessDC Motors Using Disturbance Observers and Adaptive VelocityEstimations[J].IEEE Transactions on Industrial Electronics,1998,45(2):274-282.
    [114]夏长亮,杨晓军,史婷娜,等.基于扰动观测器的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(6):25-28.
    [115]Kim T H,Ehsani M.Sensorless Control of the BLDC Motors FromNear-Zero to High Speeds[J].IEEE Transactions on Power Electronics,2004,19(6):1635-1644.
    [116]Park J W,Hwang S H,Kim J M.Sensorless Control of Brushless DCMotors With Torque Constant Estimation for Home Appliances[J].IEEETransactions on Industry Applications,2012,48(2):677-684.
    [117]Ertugrul N,Acarnley P.A New Algorithm for Sensorless Operation ofPermanent Magnet Motors[J].IEEE Transactions on Industry Applications,1994,30(1):126-133.
    [118]French C,Acarnley P.Control of permanent magnet motor drives using anew position estimation technique[J].IEEE Transactions on IndustryApplications,1996,32(5):1089-1097.
    [119]夏长亮,文德,范娟,等.基于RBF神经网络的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(3):26-29.
    [120]王迎发,夏长亮,陈炜.基于模糊规则的无刷直流电机起动策略[J].中国电机工程学报,2009,29(30):98-103.
    [121]Shao J.An Improved Microcontroller-Based Sensorless Brushless DC(BLDC) Motor Drive for Automotive Applications[J].IEEE Transactionson Industry Applications,2006,42(5):1216-1221.
    [122]张磊,瞿文龙,陆海峰,等.一种新颖的无刷直流电机无位置传感器控制系统[J].电工技术学报,2006,21(10):26-30.
    [123]Lai Y S,Lin Y K.Novel Back-EMF DetectionTechnique of Brushless DCMotor Drives for Wide Range Control Without Using Current and PositionSensors[J].IEEE Transactions on Power Electronics,2008,23(2):934-940.
    [124]吴小婧,周波,宋飞.基于端电压对称的无位置传感器无刷直流电机位置信号相位校正[J].电工技术学报,2009,24(4):54-59.
    [125]宋飞,周波,吴小婧.校正无位置传感器无刷直流电机位置信号相位的闭环控制策略[J].中国电机工程学报,2009,29(12):52-57.
    [126]薛晓明,杨翀.一种统一的无刷直流电机直接反电动势法[J].电工技术学报,2010,25(9):62-68.
    [127]涂小涛,辜承林.新型横向磁通永磁电机无位置传感器控制[J].电机与控制学报,2012,16(6):1-6.
    [128]王大方,祝雅琦,金毅,等.一种新颖的无刷直流电机位置检测方法[J].电工技术学报,2013,28(2):139-144.
    [129]李凤祥,朱伟进.无刷直流电机双模控制技术研究与应用[J].电机与控制学报,2013,17(3):70-75.
    [130]Jung D H,Ha I J.Low-Cost Sensorless Control of Brushless DC MotorsUsing a Frequency-Independent Phase Shifter[J].IEEE Transactions onPower Electronics,2000,15(4):744-752.
    [131]Shen J X,Zhu Z Q,Howe D.Sensorless Flux-Weakening Control ofPermanent-Magnet Brushless Machines Using Third Harmonic BackEMF[J].IEEE Transactions on Industry Applications,2004,40(6):1629-1636.
    [132]Wu Y,Deng Z,Wang X,et al.Position Sensorless Control Based onCoordinate Transformation for Brushless DC Motor Drives[J].IEEETransactions on Power Electronics,2010,25(9):2365-2371.
    [133]吴元元,邓智泉,王晓琳,等.基于正交坐标变换的永磁无刷直流电机转速估计方法[J].中国电机工程学报,2012,32(6):145-149.
    [134]邹继斌,江善林,张洪亮.一种新型的无位置传感器无刷直流电机转子位置检测方法[J].电工技术学报,2009,24(4):48-53.
    [135]李自成,程善美,蔡凯,等.反电动势过零检测无刷直流电机转子位置新方法[J].电工技术学报,2009,24(7):52-58.
    [136]李志强,夏长亮,陈炜,等.基于线反电动势的无刷直流电机无位置传感器控制[J].电工技术学报,2010,25(7):38-44.
    [137]Damodharan P,Vasudevan K.Sensorless Brushless DC Motor Drive Basedon the Zero-Crossing Detection of Back Electromotive Force (EMF) Fromthe Line Voltage Difference[J].IEEE Transactions on Energy Conversion,2010,25(3):661-668.
    [138]王华斌,刘和平,张毅,等.计及中性点电压的无刷直流电机无位置传感器控制[J].电工技术学报,2009,24(7):46-51.
    [139]杨影,阮毅,陶生桂.一种新型无刷直流电机转子位置检测方法[J].电机与控制学报,2010,14(2):60-64.
    [140]周波,魏佳,穆新华,等.反电势逻辑电平积分比较法实现的无刷直流电机无位置传感器控制[J].电工技术学报,2000,15(4):5-9.
    [141]王大方,刘智祺,金毅,等.基于反电动势积分法的无位置传感器直流无刷电机试探性起动研究[J].电工技术学报,2012,27(12):178-184.
    [142]许鹏,曹建波,曹秉刚.无位置传感器直流无刷电机软件起动[J].电机与控制学报,2009,13(5):734-738.
    [143]石坚,汤宁平,谭超.永磁同步电机无位置传感器控制系统[J].电机与控制学报,2007,11(1):50-54.
    [144]张智尧,林明耀,周谷庆.无位置传感器无刷直流电动机无反转起动及其平滑切换[J].电工技术学报,2009,24(11):26-32.
    [145]Zhu Z Q,Gong L M.Investigation of Effectiveness of Sensorless Operationin Carrier-Signal-Injection-Based Sensorless-Control Methods [J].IEEETransactions on Industrial Electronics,2011,58(8):3431-3439.
    [146]林明耀,刘文勇,周谷庆.无位置传感器无刷直流电机短时脉冲定位加速方法[J].电工技术学报,2011,26(9):80-86.
    [147]史婷娜,吴志勇,张茜,等.基于绕组电感变化特性的无刷直流电机无位置传感器控制[J].中国电机工程学报,2012,32(27):45-52.
    [148]王强,王友仁,孔德明,等.隐极式无刷直流电机转子初始位置估计[J].中国电机工程学报,2012,32(33):105-110.
    [149]Pyrhonen J,Jokinen T,Hrabovcov V.Design of Rotating ElectricalMachines[M].John Wiley&Sons,2008:405-408.
    [150]沈建新,费伟中,陈利根.气隙磁场波形及磁瓦充磁方式对无刷直流电动机性能的影响[J].微特电机,2006,34(6):7-9.
    [151]Chapman S J.Electric Machinery Fundamentals (4th edition)[M].USA:McGraw Hill Higher Education,2004:255-258.
    [152]谭建成.无刷直流电动机各种绕组工作方式特性的分析比较[J].微电机,1976,3(2):1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700