用户名: 密码: 验证码:
陶瓷窑控制系统的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着物质生活水平的提高,人们对生活品质的追求也日益提高,作为物质生活中不可缺少的日用陶瓷产品也逐步为人们所关注,人们对日用陶瓷产品的要求逐步向美观、舒适、豪华等方向发展,这对于我国陶瓷工业的发展既是一个机遇也是一个挑战。
     陶瓷生产设备隧道窑普遍具有纯滞后、大惯性、非线性、时变复杂等特点,其精确数学模型往往很难获取。因此针对这类系统,本文采用泛布尔代数作为分析工具,建立基于泛布尔代数的逻辑控制模型。该方法根据实践经验和逻辑控制规则,不依赖于被控对象的精确数学模型,避免了常规控制算法建立对象精确数学模型的困难。
     首先简要介绍了目前陶瓷窑烧成过程自动控制的热点研究问题和研究现状。从现状分析来看,国内外对陶瓷窑烧成过程的自动控制一直都没有很理想的解决方法,且国内的自动化水平与国外相比还有很大的差距,导致我国的陶瓷产品质量的落后的原因之一。
     对陶瓷窑烧成过程参数进行在线监测及数据采集是对整个烧成过程进行监控和研究的必备条件。本文对目前陶瓷隧道窑烧成过程各参数的检测状况进行了全面的介绍,主要包括烧成过程中温度、压力、气氛等参数进行测量的常用方法和仪表,以及烧成过程对这些方法和仪表的特殊要求。
     围绕陶瓷窑烧成过程控制系统的设计与实现展开。根据陶瓷窑炉的结构特点和生产工艺要求,本文采用上下位机相结合,设计了陶瓷窑烧成过程控制系统,实现温度、压力和气氛的在线测量和监控。对系统的硬件和软件构成及工作原理以及烧成过程中参数的检测和控制方法作了详细说明。
     在分析了大量经验数据的基础上,针对陶瓷窑烧成过程的特点,建立了基于泛布尔代数的逻辑控制模型,然后以MATLAB为仿真工具,对该逻辑算法进行仿真,验证了该算法的可行性。结果表明,与传统的控制算法相比,该算法还在稳定性方面具有突出的优点。
Along with the improving of people's life, the pursuing of people to the quality of the life is high more and more. As the necessity of life, the ceramic ware for daily use is increasingly paid attention to by people. The demand of people to it gradually tends to rich-looking, comfortable, luxury and etc. This is not only an opportunity but also a challenge for the development of the ceramic industry of our country.
    In general, the ceramic equipments tunnel kiln has features of purely hysteretic, big inertness, nonlinear and complexity. Its accurate mathematics model is usually very difficult to be obtained. So for this sort system, this paper constructs the logical control model based on Pal-bool algebra by Pal-bool algebra. This method depends on experience and logical control laws and needs no accurate mathematics model of the controlled object, so avoid the difficulties in traditional control algorithm encountering building accurate model of the object.
    Firstly, this paper outlines noticeable researches on automatic control of firing process of ceramic kiln and its researches at present. From the present condition, there is no perfect method for automatic control of firing process of ceramic kiln in either home country or foreign country. What's more, the level of automation in home country is far behind the foreign country. This is one of all result of vulgarity of the ceramic ware in our country.
    To firing process of ceramic kiln to on-line measure and collect the data of all parameters is the premise of the control over them. The present status of parameter measurement are argued in firing process of ceramic kiln, including the methods and appliance of temperature and pressure and medium and so on, and the restriction of firing process of ceramic kiln applies to them.
    Then primarily informs the firing process of ceramic kiln control system devising and the structure of the system. According to the structural characteristics and process requirement of ceramic kiln, we design the control system based on personal computer and single micro controller, realizing the control system and control over temperature and pressure and medium. The paper details the hardware and software structure, and the working principle of the system, as well as the method to measure and control the parameters.
    The logical control model is built based on Pal-bool algebra based on a good deal of empirical data and characteristics of firing process of ceramic kiln. Then simulation on this algorithm by MATLAB and shows the feasibility of the algorithm, and the result shows that this algorithm is much advantageous over traditional algorithms in stability.
引文
[1] 颜汉军.浅谈我国陶瓷工业的现状和面临的问题及加入WTO后的应对对策.陶瓷研究,2002.17(1):43~46
    [2] 陈景雨.陶瓷工业热工过程及设备.中国轻工业出版社.1992.4
    [3] 庄顺南,王景福.陶瓷生产机械化与自动化.轻工业出版社.1986.11
    [4] 轻工业部第一轻工业局.日用陶瓷工业手册.轻工业出版社.1984.8
    [5] 刘振群.陶瓷工业热工设备.武汉工业大学出版社.1989.10
    [6] 潘新民、王燕芳.单片微型计算机实用系统设计.电子工业出版社.1992
    [7] 宋耑,蒋欣之.陶瓷窑炉热工分析与模拟.中国轻工业出版社.1993.10
    [8] 宋耑,陈理君等.现代陶瓷窑炉.武汉工业大学出版社.1996
    [9] 张长海.陶瓷工业热工设备及热工测量.武汉工业大学出版社.1988
    [10] 曹云枫.浅谈陶瓷工业窑炉.山东陶瓷,2002.25(2):34~35
    [11] 蒋方乐,唐奇,胡国林.基于MATLAB的陶瓷窑炉模糊控制系统计算机仿真.中国陶瓷工业,2002.9(2):37~39
    [12] 刘美俊.基于PID模糊控制的陶瓷窑炉温度控制系统的设计.中国陶瓷工业,2002.9(4):30~32
    [13] 方千山,王永初.陶瓷窑温度控制系统的模糊控制策略.福州大学学报,2002.(5):52~55
    [14] 刘贵山,胡国林,马铁成,马春气.气烧陶瓷窑炉气氛动态特性及Fuzzy控制的研究,2001.37(4):17~21
    [15] 曾令可,张明,李明,王慧,尹虹.陶瓷窑炉动态温度场的测试及操作的优化.华南理工大学学报,1999.20(3):158~163
    [16] 陈立骏,张儒岭,金文和.陶瓷窑炉的十年发展.中国陶瓷工业,2002.7(1):37~42
    [17] 姚玲英.智能F.C算法及其在隧道窑控制系统中的应用.武汉理工大学,2003.5
    [18] 陈作炳,乔红伟,刘军陶.陶瓷窑变结构温度控制系统的设计.自动化学报,1998.24(5):686~689
    [19] 张南纶等.一类复杂系统的逻辑分析.系统工程,1995.3(4)
    
    
    [20] 张南纶,肖溪安,朱梧槚.泛布尔代数公理体系.中国人民解放军空军气象学院学报,1985.1:80~89
    [21] 孙晓明,张南纶.基本型逻辑控制器.北京邮电大学出版社.中国人工智能学会第九届年会,2001:188~189
    [22] 张南纶.泛布尔代数在工程中的应用.武汉大学学报,1997.9
    [23] 孙晓明,张南纶.九点控制器.第四届全球智能控制与自动化大会.华东理工大学出版社,2002:115~116
    [24] 陈作炳,乔红伟,刘军.陶瓷窑温度模糊控制系统的总体设计.武汉工业大学学报,1998.20(2):63~66
    [25] 范影乐,杨胜天,李轶.MATLAB仿真应用祥解.北京人民邮电出版社,2001:1~8
    [26] 陈进,杨惟高.基于经验规则的水泥磨控制.武汉工业大学学报.1997.19(2):17~20
    [27] 陈进.基于经验规则的立窑偏火控制.武汉工业大学学报,1998.20(1):99~101
    [28] 陈进.基于经验规则的水泥磨负荷控制.中国控制会议论文集.中国科学技术出版社,1995,16~28
    [29] 蒋方乐,唐奇,胡国林.浅析几种智能控制策略在陶瓷工业窑炉控制中的应用,2002.9(1):40~42
    [30] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社,2002.4
    [31] 陈平,董国才.陶瓷隧道窑微机控制系统(上).广东自动化与信息工程,1997.1,16~19
    [32] 陈平,董国才.陶瓷隧道窑微机控制系统(下).广东自动化与信息工程,1997.2,4~7
    [33] 施阳,严卫生,李俊.MATLAB语言精要及动态仿真工具SIMULINK.西北工业大学出版社,1997:37~65
    [34] 王慧,曾令可,张明,贺海洋,孙宇彤,童晓濂.陶瓷窑炉控制与人工神经网络,中国陶瓷,2002.36(1):33~36
    [35] 韩九强.MATLAB高级语言及其在控制系统中的应用.西安交通大学出版社,1997:154~165
    [36] Shaoyuan Li Yugeng Xi. Self-learning Neural Network Control Applied to the Synthetic Ammonia Production. Proceedings of the 2000 IEEE international Conference on
    
    Control Applications Anchorage, Alaska, USA. September 25~27,2000
    [37]Computer Simulation of Heat Technology Solutions in Ceramic Kiln Construction. CFI ceramic forum international-berichte der deutschen keramischen gesellschaft. 2001.78(5),11~16
    [38]Zuo Bing Chen and Li D Xu. An object-oriented intelligent CAD system for ceramic kiln. Knowledge-Based Systems. 2001.14(5-6),263~270
    [39]Cathy L. Edwards and Kevin E. Keyzer. Failure Modes in Ceramic Kiln Furniture. Industrial Heating. 2000.000(10)
    [40]Friedherz H.Becker. Progress in calculation of firing processes for ceramics. Gaswarme International. 2001.50(8),360~365
    [41]Bolech, Mark; Reymer, Arthur P.S., Bauer, Robert A.. Un outil de simulation des emissions de fiuorures durant la cuisson des ceramiques Simulation of fluoride emissions in ceramic firing processes. Industrie Ceramique & Verriere. 1997(925),267~269
    [42]Falk, G.; Frisch, B.; Thiele, W.-R.. Qualitative und quantitative Simulation der Pyrolyse organischer Additive der Keramiktechnologie Qualitative and quantitative simulations of the pyrolysis of organic additives in ceramics technology. CFI Ceramic Forum Int. 1997.74(11-12),726~730
    [43]MATLAB Help document. The Mathworks. Inc.,1999,34~50
    [44]MATLAB Functions Reference-Volume 1. The MathWorks,Inc., 1998
    [45]MATLAB Functions Reference-Volume2. The MathWorks, Inc., 1998
    [46]White D A. Sofge D A ed. Handbook of Intelligent Control. Van Nostrand Reinhold. 1992
    [47]Wang F Y. Saridis G N. A Coordination Theory for Intelligent Machines. Automatics. 1990,26(5)
    [48]Dojong, K. Integrating AI and Control Theory, Proc. IEEE Trends and Applications. 1983
    [49]Saridis,G.N.. Foundations of Intelligent Controls,Proc.IEEE Workshop on Intelligent Controls. 1985
    [50]David A. Pongrance. Pulse Firing: A Modern Combustion Control Technology. Hack Manufacturing Company
    [51]ATMEL.AT89C51 8-bit Microcontroiler with 4K Bytes Flash
    [52]Step Firing Systems. North American Manufacturing Company. 1994 Printed in U.S.A

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700