用户名: 密码: 验证码:
电气化铁道牵引负荷谐波检测与补偿方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力机车以其节能、环保、高效的优势已取代传统的内燃机车,成为我国铁路运输事业的主力军。电力机车的变流电路中含有大量的非线性电力电子器件以及电力机车复杂的运行状况使得电力机车运行时会产生大量的谐波。这些谐波注入到公共电网之后会产生极大的危害,因此必须做好电气化铁路谐波治理的工作。谐波治理研究主要集中在谐波分析和谐波补偿两个方面。
     在谐波分析领域,目前采用的分析方法主要有快速傅里叶变换法、基于扩展Prony算法、人工神经网络以及小波变换等。近年来,小波变换以其独特的优势逐渐成为信号分析领域研究的热点,本文研究的重点之一就是将小波变换理论应用到电气化铁路谐波分析中。通过理论分析验证了选取合适小波函数的重要性,根据最小长度描述准选择将db10小波选为处理谐波信号的最佳小波函数,并进一步选取了合理的分解层数。文中分别利用傅里叶分析以及小波分析两种方法对电力机车谐波电流进行仿真分析,通过对两组仿真结果进行比较分析可知,小波分析可以将电力机车谐波电流的基波分量和谐波分量有效地分离开来,进而获得谐波的有效值等相关参数,与傅里叶分析方法相比具有更高的精确度和实时性。
     在谐波补偿方面,本文提出一种新型直挂式大容量的链式有源电力滤波器的谐波补偿方案。对链式有源电力滤波器的主电路拓扑结构及其工作原理进行了介绍,选择了适合本系统的主电路开关器件,对作为级联结构的链式有源电力滤波器核心的H桥阀组单元进行了总体设计,给出了启动方式及冗余安全保护设计。同时设计了级联H桥结构数目、开关频率、直流侧电容值等参数,并针对链式有源电力滤波器输出补偿电流中含有开关谐波的问题设计了LRC型输出滤波器。
     在控制方法上,对于单相供电的电气化铁路牵引供电系统,本文采用了基于瞬时无功功率理论的单相电路谐波检测方法。针对链式有源电力滤波器直流侧电压不稳定以及各阀组单元直流侧电压不平衡现象,本文提出了一种直流侧电压均衡控制方法,很有效地解决了这一问题。为了实现对链式有源电力滤波器的有效控制以达到预期的滤波效果,本文设计了由主控机箱和扩展机箱所构成的控制器。在该控制器中,主控机箱主要完成数据处理和命令下发的任务,各扩展机箱主要完成数据的采集和命令执行的任务,它们之间通过光纤交换各种信息。仿真分析表明采用本文控制系统的链式有源电力滤波器有很好的谐波补偿能力。
     通过对厂内试验以及神朔牵引变电所的挂网运行试验的结果分析表明,本文研究的链式有源电力滤波器能够有效地补偿电气化铁路谐波,与补偿前相比,系统中谐波含量大大降低,满足谐波方面的国家标准。由此可见,该方案具有良好的滤波性能,完全能满足电气化铁路谐波补偿的要求,具有良好的应用前景。
Electric locomotive with its energy-saving, environmental protection, efficient advantage has replaced traditional diesel locomotive, to become the main force of China's railway transportation industry. At the same time, due to the electric locomotives converter circuit contains a large number of non-linear power electronic devices, as well as the operational status of the complex electric locomotive makes the running electric locomotive will generate a lot of harmonics. When these harmonics injected into the public grid, it will produce great harm, so we must do the work of electric railway harmonic control. The harmonic control study mainly focused on two aspects, harmonic analysis and harmonic compensation.
     In the field of harmonic analysis, the following analysis methods are being adopted.fast Fourier transform method, based on expansion Prony algorithm, artificial neural power line and wavelet transform. In recent years, wavelet transform has gradually become the hot spot of research in the field of signal analysis with its unique advantages, one of the focus of this study is the wavelet transform theory applied to the electric railway harmonic analysis. First, through the theoretical analysis verify the importance of selecting the appropriate wavelet function, and then based on the guidelines for the minimum length description of wavelet db10wavelet function select harmonic signal treatment and further select a reasonable decomposition level. Finally, simulate the analysis of harmonic current electric locomotive through using two methods of Fourier analysis and wavelet analysis respectively. By a comparative analysis of the two sets of simulation results we can know that wavelet analysis not only make the fundamental component of the harmonic currents and harmonic components of the electric locomotive effectively separated, and then get the relevant parameters such as the effective value of the harmonic, and have higher accuracy and real-time compared with Fourier analysis method.
     To solve the problem of active power filter application in the high power applications of electrified railways harmonic compensation, In this paper, a cascade active power filter based on a new hanging capacity of harmonic compensation package is being proposed. First, the main circuit topology works of the cascade active power filter were introduced. Then, the main circuit switching devices for the system overall are designed, the valve block unit as the cascade cascade APF core H-bridge and illustrate the start-up mode and redundant safety protection are designed. Finally, the number of cascaded H-bridge structure, switching frequency, the DC side capacitance values and other parameters and with the switching harmonics for cascade APF output compensation current I design the LCR output filter are designed.
     In order to achieve effective control of the cascade APF filter to achieve the desired effect, this paper designed a controller assisted of the master chassis and expansion chassis. In the controller, the main chassis mainly completes the function of the data processing and the commendation of task, the expansion chassis mainly completes the function of the data acquisition and the commendation of performing the task and exchange various kinds of information through the optical. The control method for single-phase power supply of electric railway traction power supply system, this paper based on the instantaneous reactive power theory of single-phase circuit harmonic detection method. Against the cascade APF DC side voltage instability as well as the various manifolds unit DC voltage imbalance, this paper presents a DC voltage balance control method, a very effective way to solve this problem. Finally, the simulation results show that the control system cascade APF has good harmonic compensation.
     The test Shenshuo traction substations linked power line running test results analysis shows that the cascade Active Power Filter can effectively compensate the electrified railway harmonics, harmonic content in the system is greatly reduced compared with with compensation, meet harmonic regard national standards. This shows that the program has a good filtering performance, fully able to meet the the harmonic compensation requirements of electric railway, and has good application prospects.
引文
[1]武中,干志刚,宋述勇等.电气化铁道牵引变电所对电力系统影响及治理的仿真研究[J].中国电机工程学报,2011,31(增刊):77-82.
    [2]Read J C. The calculation of rectifier and converter performance characteristics [J]. Journal IEE,1945, 92, pt.11:495-590
    [3]Kimbark E W. Direct current transmission[J]. Vol. I, Ch.8 New York:John Wiley & Sons,1971.
    [4]李群湛.关于IEC标准与电气化铁路谐波的思考[C].电能质量技术发展国际研讨会文集.上海.2001:146-15
    [5]吴竞吕.供电系统谐波[M].北京:中国电力出版社,1998.
    [6]阿里拉加J,布莱德勒DA,伯德格尔PS.电力系统谐波.唐统一等泽[M].徐州:中国矿业大学出版社,1991.
    [7]阿里拉加J,布莱德勒DA,伯德格尔PS.电力系统谐波.容健纲等译[M].武汉:华中理工大学出版社,1994.
    [8]何正友,胡海涛,方雷等.高速铁路牵引供电系统谐波及其传输特性研究[J].中国电机工程学报,2011,31(16):55-62.
    [9]李西岐.高通滤波器在牵引变电所中的应用[J].继电器,2002.30(5):59-61.
    [10]王跃,杨君,王兆安等.电气化铁路用混合电力滤波器的研究[J].中国电机工程学报,2003,23(7):24-25.
    [11]周方圆,唐朝辉.有源电力滤波器的研究现状与发展[J].电测与仪表,2005,8:1-4.
    [12]赵成勇.基于电铁牵引变电站的单相混合型谐波补偿系统的研究(博十学位论文)[D].华北电力大学,2001.
    [13]Tan-Pee Chin; Poh Chiang Loh; Holmes D G. A robust multilevel hybrid compensation system for 25-kV electrified railway applications[J].IEEE Transactions on Power Electronics,2004,19(4):1043-1052.
    [14]朱红萍,罗隆福.新型电气化铁道电能质量综合治理装置[J].电力自动化设备,2011,31(07):72-76.
    [15]Zeliang Shu,Shaofeng Xie, Qunzhan Li.Single-Phase Back-To-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System[J].IEEE Transactions on Power Electronics,2011,26(2):334-343.
    [16]谢玉成.基于TCR+FC型电铁电能质量治理装置研究及应用[J].电测与仪表,2010,47(530):45-47,51.
    [17]任震,余得伟,唐卓尧.基于模糊优化设计的混合滤波器——治理电气化铁道谐波的一种新方法[J].中国电机工程学报,2001,21(2):66-79.
    [18]高明振,任震,唐卓尧等.单相并联型无源-有源混合滤波器的仿真研究[J].铁道学报,2000.22(1):44-48.
    [19]殷雄,罗隆福.电气化铁道电能质量优化控制仿真分析[J].电力系统及其自动化学报.2001,23(04):40-44,50.
    [20]孙卓,朱东起,姜新建.牵引变电所新型电能质量调节器的研究[J].电力系统自动化,2002,26(19):41-44,51.
    [21]孟庆波,王奔,王志国等.电铁供电系统的有源电力滤波器[J].电气开关,2006,02:49-52
    [22]陈鹏,李建兵.牵引供电系统混合有源电力滤波器的仿真研究[J].电气化铁道,2008,06:5-8
    [23]冯金柱.世界电气化铁路的发展[J].电气化铁道.2001,19(4):30-33.
    [24]杨少兵,吴命利.基于实测数据的高速动车组谐波分布特性与概率模型研究[J].铁道学报,2010,32(3):33-38.
    [25]陆阳.我国交直交型电力机车型谱的讨论[J].铁道机车车辆.2005,25(增刊1):24-28.
    [26]解绍锋,李群湛,赵丽平.电气化铁道牵引负载谐波分布特征与概率模型研究[J].中国电机工程学报,2002,25(16):79-83.
    [27]刘玉洁,盛彩匕,林飞等.高速动车组网侧电流谐波特性的研究[J].电气传动.2010,40(1):33-37
    [28]赵四洪,基于电力机车不同工况的负荷谐波分析与仿真(硕十学位论文)[D].西南交通大学,2003:30-40.
    [29]杨建国.小波分析及工程应用[M].北京:机械工业出版社,2005.
    [30]唐晓初.小波分析及应用[M].重庆:重庆大学出版社,2006.
    [31]Gaouda A M, El-Saadany E F, Salama M M A,et al.Monitoring HVDC systems using wavelet multi-resolution analysis[J].IEEE Transactions on Power Systems,2001,16(4):662-670.
    [32]Chia-Hung Lin, Chia-Hao Wang.Adaptive wavelet power lines for power-quality detection and discrimination in a power system[J].IEEE Transactions on Power Delivery,2006,21(3):1106-1113.
    [33]匕思科技产品研发中心.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003:30-40
    [34]赵闻蕾,邹积岩,赵红丽,张明.小波变换在牵引供电系统谐波检测中的应用[J].铁道学报,2010,32(3):131-135.
    [35]赵闻蕾,邹积岩,孔莉等.基于小波变换的电气化铁道牵引负荷谐波分析[J].铁道学报,2011,33(6):27-30.
    [36]孔莉.基于小波变换的电气化铁路牵引负荷谐波分析方法研究(硕十学位论文)[D].大连交通大学,2011.
    [37]李红雨,吴隆辉,卓放等.多重化大容量有源电力滤波器的主电路结构研究[J].电网技术,2004,28(23):12-16.
    [38]王兆安,杨君,刘进军,王跃.谐波抑制和无功补偿[M].北京:机械工业出版社,2005.
    [39]张长征,陈乔夫,李达义等.一种高压大容量有源电力滤波器研究[J].电力自动化设备,2006,26(1):17-20.
    [40]饶建业,李永东.一种混合级联型多电平变换器拓扑结构[J].电工技术学报,2009,24(3):104-109.
    [41]Varschavsky A, Dixon J, Rotella M,et al.Cascaded Nine-Level Inverter for Hybrid-Series Active Power Filter, Using Industrial Controller[J].IEEE Transactions on Industrial Electronics,2010,57(8):2761-2767.
    [42]郭秀洪,朱凌,王毅.级联多电平逆变器在有源电力滤波器中的应用研究[J].华北电力大学学报,2005,32(增刊1):34-37.
    [43]刘瑞.基于级联H桥的有源电力滤波器的研究[D].哈尔滨工业大学,2007.
    [44]张国荣,陈鹏.有源电力滤波器直流侧电容的选择方法[J].电测与仪表,2010,47(540):1-3.
    [45]许湘莲.基于级联多电平逆变器的STATCOM及其控制策略研究(博士学位论文)[D].华中科技大学,2006.
    [46]周柯,罗安,夏向阳,赵伟.大功率有源滤波器直流侧电容设计与电压控制[J].电力电子技术,2007,41(4):12-15.
    [47]Lao K W, Dai N,Liu W G,Wong M C.Hybrid Power Quality Compensator With Minimum DC Operation Voltage Design for High-Speed Traction Power Systems[J].IEEE Transactions on Power Electronics,2010,28(4):2024-2036.
    [48]魏文辉,刘文华,倪镭等.链式STATCOM直流侧电容稳态分析及参数设计[J].电力系统自动化,2004,28(4):28-31.
    [59]国家技术监督局.电能质量公用电网谐波(GB/T14549-93).北京:标准出版社,1993:36-41.
    [50]姜旭,肖湘宁,尹忠东等.H桥级联式SSSC直流侧电容值选择及自励启动充能策略[J].电力系统自动化,2007,31(3):41-46.
    [51]王毅,李和明,石新春等.多电平PWM逆变电路谐波分析与输出滤波器设计[J].中国电机工程学报,2003,23(10):78-82.
    [52]张缨,李耀华,胜小松.级联型多电平D类功率放大器输出滤波器设计[J].电力电子技术,2006,40(1):26-28.
    [53]陆秀令,张松华,周腊吾等.APF输出滤波器的改进与优化设计[J].电力电子技术,2009,43(5):12-14.
    [54]陆秀令,周腊吾,张松华.并联混合型APF输出滤波器的研究[J].华东电力,2008,36(6):43-46.
    [55]武健,何娜,徐殿国.三相并联有源滤波器输出滤波器设计方法研究[J].电力电子技术,2004,38(6):16-19.
    [56]唐敏,李群湛.并联混合电力滤波器中逆变器输出滤波器的设计[J].机车电传动,2004,(1):21-23.
    [57]干银乐,刘振东,李波等.并联有源滤波器中输出滤波器的设计研究[J].继电器,2008,36(11):46-49.
    [58]鞠建永,陈敏,徐君等.并联有源电力滤波器交流侧输出滤波器设计[J].电机与控制学报,2010,14(10):15-20.
    [59]王果,田铭兴,任恩恩等.LC输出滤波器的改进及在电气化铁路综合有源补偿装置中的模糊优化设计[J].电力自动化设备,2011,31(10):38-41.
    [60]王跃,王兆安.复合控制的并联HAPF的稳态特性研究[J].电力电子技术,2004,38(6):13-15.
    [61]Xiaoming Yuan,Merk W,Stemmler H,et al.Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J].IEEE Transactions on Industry Applications,2002,38(2):523-532.
    [62]江智军,林娜,黄太阳.单相混合有源电力滤波器控制策略的研究[J].电测与仪表,2007,7.(44):15-19
    [63]Djaffar Ould Abdeslam,Patrice Wira,Jean Merckle,et al.A Unified Artificial Neural Power line Architecture for Active Power Filters[J].IEEE Transactions on Industrial Electronics,2007,54(1):61-76.
    [64]张乐强,李明,雷万钧等.有源电力滤波器电流无差控制方法的研究[J].电力电子技术,2010,44(10):35-36,118.
    [65]王跃,杨君,王兆安等.电气化铁路用有源电力滤波器的控制系统[J].电力电子技术,2003,37(1):1-3.
    [66]张志文,李晓海,张洪浩等.基于FBD法的基波正负序电流实时检测方法[J].电力系统自动化,2012,36(6):96—105.
    [67]贺建闽,黄治清,李群湛.电网背景谐波电压测量与研究[J].铁道学报,2005,27(6):28-33.
    [68]解绍锋,李群湛.电气化铁道谐波叠加指数研究[J].铁道学报,2003,25(3):118-121.
    [69]张伏生,程学报,耿中行等.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66.
    [70]杨少兵,吴命利.基于模拟退火算法的牵引变电站谐波发射水平估算[J].电力系统自动化,2011,35(11):60-64.
    [71]苏玉香,刘志刚,李科亮等.基于HHT方法的电气化铁道谐波检测与分析[J].铁道学报,2009,31(6):33-38.
    [72]王刚,杨洪耕.基于Laguerre多项式的电力机车谐波电流估计[J].电力自动化设备,2006,26(60):44-47.
    [73]张巍,马文营,杨洪耕.电气化铁道谐波抑制与无功补偿的最优计算[J].继电器,2003,31(8):33-39.
    [74]刘扬,叶英植.基于小波变换的电力系统谐波分析[J].国外电子测量技术,2008,27(7):21-24.
    [75]Hui Wang, Qingmin Li,Minglei Wu.Investigation on a New Algorithm for Instantaneous Reactive and Harmonic Currents Detection Applied to Intensive Nonlinear Loads[J].IEEE Transactions on Power Delivery,2007,22(4):2312-2318.
    [76]王广柱,洪春梅.多电平逆变器直流侧电容电压的平衡与控制[J].电力系统自动化,2002,26(11):23-27.
    [77]周凯,朱俊杰.混合型有源滤波器直流侧电压的稳定控制[J].自动化仪表,2007,5(5)57-61
    [78]孙华,张晓,孔令军等.三电平APF直流侧电容电压控制研究[J].电力电子技术,2011,45(5):49-51
    [79]Huibin Zhang,Jon Finney S, Massoud A,et al. An SVM Algorithm to Balance the Capacitor Voltages of the Three-Level NPC Active Power Filter[J].2008,23(6):2694-2702.
    [80]陈俊岭,王平,李耀华等.H桥级联型有源滤波器直流侧电容电压均衡控制方法[P].中华人民共和国200610113547.8,,2007,3.
    [81]刘文华,宋强,藤天乐等.基于链式逆变器的50MVA静止同步补偿器的直流电压平衡控制[J].中国电机工程学报,2004,24(4):145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700