用户名: 密码: 验证码:
铝合金和钛合金在雨水/海水环境下的腐蚀与磨损交互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质高强合金广泛用于航空、航海等领域,在雨水和海水等腐蚀介质中,材料的摩擦磨损和疲劳行为对结构的力学性能、寿命和可靠性有很大影响。钛合金和铝合金是常用的轻质合金,其耐磨性较差,故本文同时研究了这两种合金表面改性前后的腐蚀磨损特性。
     首先研究了TC11和LY12微弧氧化膜的相组成、表面形貌、厚度和硬度梯度。然后以440C不锈钢为对磨球,采用球-面接触方式、300μm的振幅,分别研究了TC11和LY12及其微弧氧化膜在空气、纯水、雨水和海水中的微动腐蚀磨损行为。用动电位扫描法研究了材料腐蚀磨损前后的电化学行为,用扫描电子显微镜(SEM)观察了磨屑和磨痕形貌,用能量色散谱(EDS)测试微区元素分布,用X射线光电子谱(XPS)检测了磨痕区的元素价态,用非接触式表面形貌仪观察了磨痕的三维形貌、测定了穿过磨痕中心处的截面轮廓和磨损体积损失,研究了载荷、频率以及介质对摩擦系数和磨损量的影响。
     结果表明,4种材料在空气中的摩擦系数和磨损量均远远高于在3种水溶液介质中的摩擦系数和磨损量,且空气中的磨损机制以氧化磨损和粘着磨损为主,明显不同于水介质中。因此,本文以纯水作为参比介质研究铝合金和钛合金在雨水和海水中的腐蚀磨损特性及交互作用,并得到以下结论:
     对铝合金LY12,雨水和海水形成的润滑膜均降低了其摩擦系数,介质中Cl-对磨痕表面的侵蚀使其磨损率增加,磨损率依次为:纯水中<雨水中<海水中,腐蚀磨损为正交互作用。
     对钛合金TC11,2种介质中形成的润滑膜也明显降低了其摩擦系数,但腐蚀磨损特性随介质和摩擦条件的不同而异:雨水中的微动腐蚀为轻微的正交互作用,海水中则为负交互作用。进一步的实验表明,微动腐蚀过程中,海水中的这种负交互作用随着频率的增加和时间的延长而逐渐变弱;随着振幅的大幅度增加,则由微动过程中的负交互逐步过渡到毫米级滑动过程中的正交互作用,体现了频率、时间、振幅对腐蚀磨损的促进效应。
     LY12和TC11经微弧氧化处理后,在四种介质中的耐磨性得到不同程度的提高,尤其是LY12,其微弧氧化膜在海水中的耐磨性是原LY12的7倍,腐蚀磨损性能大大提高。
     本文将减摩特性系数k引入到现有腐蚀磨损模型中的磨损分量上进行修正,修正后的模型对腐蚀磨损的正、负交互作用均可以作出合理的解释,通过模型分析发现,腐蚀磨损的交互作用均随着频率、时间、振幅的上升而增强,从而使得材料的腐蚀磨损总量表现为递增的趋势。
The high specific stiffness and strength alloys are widely applied in the field of aviation and navigation. In the corrosive media of rain and sea water, the behavious of friction wear and fatigue would markedly affect the mechnical properties, service life, and reliability. Titanium alloy and aluminum alloy are commonly used high specific alloys with low wear resistance. So the corrosion wear characteristics of the two alloys, both before and after surface modification, were investigated in present work simultaneously.
     The phase, surface image, thickness, and hardness of the film which modified by method of micro-arc oxidation (MAO) in LY12 and TC11were studied firstly. The corrosion fretting behavior of LY12, TC11 and their MAO-films were consequently investigated in air, distilled water, artificial sea water and rain water respectively by using the ball-on–flat configuration against 440C stainless steel ball with 300μm reciprocating amplitude. The potentiodynamic anodic polarization was used to study the corrosion behavior of the materials before and after the corrosion wear. The morphology and composition of the wear scars were observed and analyzed by using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). Elements valence in wear scars were also detected by X-ray photoelectron spectroscopy (XPS). 3D-morphology, profiles across the centre, and wear volume loss were determined by using a non-contact optical profilometer. The influences of load, frequency and media on the friction coefficient and wear volume of materials were analyzed.
     Results showed that both the friction coefficient and wear loss of the four kinds of materials in air were all much higher than those in the other three aqueous. Meanwhile, the wear characteristic in air, presented as oxidation and abrasion wear, is different from those in aqueous. So, the distilled water was selected as referrenced medium to study the corrosion-wear characteristic and their synergism between corrosion and wear. Some summaries obtained were listed as follows:
     As for LY12 aluminum alloy, lubrication films formed in seawater or rainwater can reduce the corresponding friction coefficient, but the specific wear rate increased due to the erosion effection of chlorin ion on the wear scar. The specific wear rate increased as following sequence: in distilled water, in rain, and in sea water, which demonstrate the positive synergism between corrosion and wear.
     As for TC11 titanium alloy, lubrication films formed in the two corrosive media reduced the corresponding friction coefficient, but the wear-loss presented different trends with different media and wear parameters. It was approved as slight positive synergism in rainwater and negative synergism in seawater when fretting corrosion was carried out. Further experiments showed that the negative synergism would weaken gradually as time goes by in the fretting corrosion, and it would change into positive interaction when amplitude increased from fretting scale to sliding in meter scale. It demonstrated the accelerating effection of frequency, duration, and amplitude on synergism between corrosion and wear.
     All the wear resistances of LY12 and TC11 in the four media were increased in different degree after MAO treatment, especially for MAO-LY12, which wear resistance in searwater was 7 times as much as that of original LY12. The corrosion-wear property was remarkably improved.
     The special anti-friction modulus k was introduced into current corrosion-wear model to modify the wear offset. Both positive and negative synergism can be perfectly explained by the modified model. Analyzed by the new model can be found that the synergism was enhanced as increasing of frequency, duration, and amplitude, which resulted in the increasing of the total wear-loss in corrosive medium.
引文
[1]王金全,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社.1985.7.
    [2]王章忠,机械工程材料[M].北京:机械工业出版社.2003.1.
    [3]潘复生,张丁非等.铝合金及应用[M].北京:化学工业出版社.2006.1.
    [4]穆志韬,熊玉平.飞机结构主体材料腐蚀损伤特点分析[J].材料保护.2001,34(12):49-50
    [5]张波,韩冰. LF4铝合金在海水中的腐蚀性能研究[J].海洋科学.2005.29(7):4-7.
    [6]李松梅,孙杰,刘建华等.海水体系中铝合金微生物腐蚀的研究[J].新技术新工艺.2000(12):31-32.
    [7]裘学峰.铝合金高速客船的腐蚀特点及检验对策[J].中国船检. 2005.(9):62-63.
    [8]黄桂桥.金属在海水中的腐蚀电位研究[J].腐蚀与防护.2000,21(1):8-11.
    [9]黄桂桥.铝合金在海水中的耐蚀性与腐蚀电位的关系[J].腐蚀科学与防护技术.1998,10(3):150-154.
    [10]夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状[J].中国铸造装备与技术.2002(6):1-4.
    [11]王曰义.铝合金在流动海水中的腐蚀行为[J].装备环境工程.2005.2(6):72-76.
    [12]郝美丽,曹学军,封先河等.铝合金室内加速腐蚀与大气暴露腐蚀的相关性[J].兵器材料科学与工程.2006.29(5):28-31.
    [13]安百刚,张学元,宋诗哲等. LY12铝合金在模拟酸雨溶液中的阻抗谱研究[J].中国腐蚀与防护学报. 2003,23(3):167-170.
    [14]张金涛,胡吉明,张鉴清,等. LY12铝合金/钝化膜/环氧涂层复合电极的腐蚀电化学行为[J].金属学报,2006,42(5):528-532.
    [15]林乐耘,赵月红.厦门海域海水对铝镁合金腐蚀的苛刻性及其电化学机理[J].电化学.2003.9(3):299-306.
    [16] C.莱茵斯,M.皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2005.9.
    [17]陶春虎,刘庆泉,曹春晓等.航空用钛合金的失效与预防[M].北京:国防工业出版社,2002.9.
    [18]宋静波.飞机构造基础[M].北京:航空工业出版社:2005.6.
    [19]柳文林,穆志韬,段成美.现役直升机结构腐蚀原因及控制[J].腐蚀科学与防护技术.2005,17(8).358-359.
    [20]刘文梃,李玉海.飞机结构日历寿命体系评定技术[M].北京:航空工业出版社,2004.10.
    [21] E.Eisenbarth, D.Velten, M. M. uller. Biocompatibility of b-stabilizing elements of titanium alloys. Biomaterials 2004,25: 5705–5713.
    [22] M.A. Khan, R.L. Williams , D.F. Williams. In-vitro corrosion and wear of titanium alloys in the biological environment Biomoterids. 1996.17: 2117-2126.
    [23] J. Zheng, Z.R. Zhou, Effect of age on the friction and wear behaviors of human teeth. Tribol. Int . 2006 (39):266-273.
    [24]葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报.2005,25(2):186-191.
    [25]叶定奇,刘俊新.钛合金在水中兵器中的应用[J].材料开发与应用.2004,19(6):45-46.
    [26]刘建华,尚海波,吴昊.航空用油介质和NaCl溶液中钛合金电化学特性[J].北京航空航天大学学报.2004,30(10):998-1002.
    [27]杜志惠,崔振铎,朱胜利等.钛合金阳极氧化膜在Hank’s溶液中的腐蚀行为[J].材料热处理学报.2004.25(6):101-104.
    [28]宋应亮,徐君伍,马轩祥.口腔环境中钛及钛合金腐蚀研究现状[J].国外医学生物医学工程分册2000,23(4):243-246.
    [29]朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社.2005.5.
    [30]马胜利,井晓天.铝及铝合金阳极氧化结构及其应用[J].兵器材料科学与工程.1998,21(4):54-57.
    [31]杨旭江,姚茂年.铝合金硬质阳极氧化工艺试验[J].材料保护.1996,29(5):36-37.
    [32]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制.2002,16(6):12-17.
    [33]朱祖芳.铝合金阳极氧化技术的新进展[J].表面工程.1997,34(1):14-15.
    [34]张文华,胡正前,马晋等.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术.2004,32(1):25-29.
    [35]薛文彬,邓志威,来永春.铝合金表面微弧氧化技术[J].中国有色金属学报.1997,7(10): 140-143.
    [36]薛文彬,邓志威,来永春.铝微弧氧化电流效率的测定[J].材料保护.1996,29 (2): 15-18.
    [37]薛文斌,邓志威,李永良等. Ti-6Al-4V在NaAlO2溶液中微弧氧化陶瓷膜的组织结构研究[J].材料科学与工艺.2000,8(3):41-45.
    [38]蒋百灵,白力静,蒋永锋.铝合金微弧氧化技术[J].西安理工大学学报.2000,16(2):138-142.
    [39]蒋百灵,白力静,蒋永锋.铝合金微弧氧化陶瓷层的组织结构与性能的研究[J].中国机械工程.2001,12(3):331-333.
    [40]王磊,陈建治.铝合金微弧氧化膜的研究[J].中国口腔种植学. 2006,11(1) :48-49.
    [41]来永春,陈如意.微弧氧化技术在纺织工业中的应用[J].腐蚀科学与防护技术. 1998,10(1):49-52.
    [42]胡信国,张钦京.化学镀镍技术的新发展[J].新技术新工艺.材料与表面处理.2001,(2):34-36
    [43] Khobai M, Reynolds L.B, DonleyM S. A comparative evaluation of corrosion protection of sol-gel based coatings systems.Surface and Coatings Technology .2001,140 (1):16-23.
    [44] Hinton B.R.W. The inhibition of aluminum corrosion by cerium cations. Metal Forum.1984,7(4):211-217.
    [45]于兴文,曹楚南,林海潮等.铝合金表面稀土转化膜研究进展[J].中国腐蚀与防护学报.2000,20(5):298-307.
    [46]王涛,郑启光,陶星之,辜建辉.金属表面陶瓷层的激光熔覆[J].华中理工大学学报.1995,23(8):70-73.
    [47]周香林,叶以富,于家洪等.激光熔覆陶瓷涂层的有关理论及工艺[J].中国机械工程,1995,6(6) :50-52.
    [48]范长刚,王爱华,谢长生.铝合金表面激光熔覆的新进展[J].激光技术,1996,20(6) :366-369
    [49]赵文轸,王汉功.国外铝合金激光表面改质研究进展[J].中国表面工程,1996,9(1):43-47.
    [50]汤宝寅,张更伟,王小峰.氮、氧及金属离子注入铝合金表面改性层摩擦磨损性能研究[J].摩擦学学报.2003.23(4):287-291.
    [51]廖家轩,夏立芳.氮及钛等离子体基离子注入铝合金表面改性层的摩擦磨损性能研究[J].摩擦学学报.2001.21(1):10-14.
    [52]蔡洵,杨晓豫,陈秋龙等. ZL109激光表面改性处理—激光表面重熔[J].上海交通大学学报.1999,33(7):805-812.
    [53] Jasim R.M,Rawlings R.D. Metal-ceramic functionally gradient material produced by laser pocessing[J] .Mater Sci . 1993 ,128 (10) :2820-2826.
    [54]赵晖,王涛.纯铝脉冲电子束表面强化研究[J].沈阳工业学院学报.2003.22(4):43-45.
    [55]徐勇.国内铝和铝合金微弧氧化技术研究动态[J].腐蚀与防护.2003,24(4):154-157.
    [56]贺子凯,唐培松.不同基体材料微弧氧化生成陶瓷膜的研究[J].材料保护.2002.35(4):31.
    [57] Bakovets V.V, Dolgovesova L.P, Nikiforova G.L. Oxidized films produced by treatment of aluminum alloys in concentrated sulfuric acid in an anodic spark system [J]. Zasheh Met.1986, 22 (3): 440-444.
    [58] Van T.B, Brown S.D, Wirtz G.P. Anode spark reaction products in aluminate, tungstate and silicate[J]. Bulletins American Ceramic Society.1977, 56(6): 563-565.
    [59] Dittrich K.H, Leoard L.G. Micro-arc oxidation of aluminum alloy components[J]. Crys & Res Technol.1984,19(1): 93-96.
    [60]张宏,石岩,徐春鹰等.激光淬火对钛合金TC11微动磨损性能的影响[J].材料热处理学报.2001,22 (2):37-40.
    [61]李连清.激光熔覆工艺的应用[J].宇航材料工艺.2002,2:54.
    [62]张光磊,钟涛兴,张国珍等.激光熔覆化学处理钛合金表面改性的研究[J].材料科学与工艺.2003,11(1):11-13.
    [63]蒋平,张继娟,于利根等. Ti-6Al-4V合金SiC粉激光表面合金化组织与耐磨性[J].应用激光.1999,19(5):229-231.
    [64]陈路,唐光昕,朱张校等.TC11合金多弧离子镀表面改性层的组织及耐磨性研究[J].金属热处理.2003,28(11):40-43.
    [65]王均石,陈元儒,陈庆武.Ti6A14V等离子体浸没式离子注入[J].材料研究学报.2001,15(2):225-229.
    [66]陈飞,周海,张跃飞等.钛合金表面加弧辉光离子无氢渗碳层的摩擦磨损性能研究[J].摩擦学学报.2005,25(2):121-124.
    [67]徐重.双层辉光离子渗金属的发展、现状和展望[J].表面工程.1997,(1):4-10.
    [68]王亚明,蒋百灵,雷廷权等.Ti6Al4V表面微弧氧化陶瓷涂层的结构和摩擦学特性[J].摩擦学学报.2003,23(5):371-375.
    [69]幸泽宽,唐恩军,颜明华等.TC4钛合金微弧氧化膜层结构与性能的研究[J].材料保护.2005,38(12):54-57.
    [70] T.B Wei, F.Y Yan, J Tian. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds. 2005 ,389: 169–171.
    [71]吴晓宏,姜兆华,辛世刚等.钛合金微等离子体氧化表面陶瓷膜耐腐蚀性研究[J].高技术通讯.2002.12(7): 80-82.
    [72]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社.2003.1.
    [73]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社.1987.10.
    [74]汪定洋.民用航空飞机的腐蚀与防护[M].北京:化学工业出版社.1987.1.
    [75]周仲荣,Leo Vincent.微动磨损[M].北京:科学出版社.2002.3.
    [76]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社.2003.10.
    [77]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社.1999.3.
    [78]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002.9.
    [79] C.莱格拉夫, T.格雷德尔,韩恩厚译.大气腐蚀[M].北京:化学工业出版社.2005.5.
    [80]张天成,姜晓霞,李诗卓.Ti6Al4V合金氢致脆性磨损机制[J].腐蚀科学与防护技术.1999,11(3):11-14.
    [81]张福泽.金属机件腐蚀损伤日历寿命的计算模型和确定方法[J].航空学报.1999.20(1):75-79.
    [82]刘延利,钟群鹏,张峥.基于人工神经网络的预腐蚀铝合金疲劳性能预测[J].航空学报. 2001,22(2):135-139.
    [83]刘延利,钟群鹏,王宇魁.铝合金预腐蚀与疲劳性能灰色模型研究[J].北京航空航天大学学报.2001,27(2):129-132.
    [84] Urs I. Thomann, Peter J. Uggowitzer . Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear.2000,239: 48–58.
    [85] M.Reza Bateni , J.A.Szpunar, X. Wang. Wear and corrosion wear of medium carbon steel and 304 stainless steel. Wear. 2006,260:116–122.
    [86] Y.L. Huang, I.N.A. Oguocha, S. Yannacopoulos. The corrosion wear behaviour of selected stainless steels in potash brine. Wear. 2005,258:1357–1363.
    [87]闫建中,吴荫顺,李久青,张琳.316L不锈钢微动磨蚀过程力学化学交互作用的迁移行为[J].中国腐蚀与防护学报.2001,21(2):88-94.
    [88]李强,张永忠,李劲风,等.激光熔覆316L不锈钢涂层的结构与腐蚀性能[J].激光技术.2004,28(3): 277-270.
    [89] B.R. Pearson, R.B. Waterhouse. Fretting corrosion of a nitrogen-bearing austenitic stainless steel in artificial seawater and 0.1M H2SO4.Wear.1992,28(3):271-277.
    [90]任平弟,陈光雄,周仲荣.不同水介质润滑下GCr15钢的微动磨损特性[J].摩擦学学报2003,23 (4 ):332-335
    [91] Maria L, Niki K, Mauro G. Corrosion and wear resistant electrodeposited composite coatings. Electrochimica Acta. 2005,50:4551-4556.
    [92] Peter A. D, Giles A.S. Corrosion–wear mechanisms of hard coated austenitic 316L stainless steels. Wear.2004,256: 491–499.
    [93] L. Fedrizzi, S. Rossi, F. Bellei, et al. Wear–corrosion mechanism of hard chromium coatings. Wear. 2002,253: 1173-1181.
    [94] M.A. Khan, R. L. Williams, D.F.Williams. Conjoint corrosion and wear in titanium alloys. Biomaterials.1999 (20): 765-772.
    [95] S.Saritas, R.P.M.Procter, W.A.Grant. Effect of ion implantation on fatigue, fretting and fretting-corrosion of Ti-6Al-4V. Materials science and engineering A.1989,115(8):307-314.
    [96] Hasan Güleryüz, Hüseyin ?imeno?lu. Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials. 2004,25(15): 3325–3333.
    [97]张天成,姜晓霞,李诗卓.钝化膜在腐蚀磨损过程中的作用[J].腐蚀科学与防护技术.1998,10(5):258-262.
    [98] I. Gurappa, Degradation of Ti–24Al–15Nb alloys under different environmental conditions, Intermetallics.2003 (11): 867-871.
    [99] Ponthiaux, F. Wenger , D. Drees. Electrochemical techniques for studying tribocorrosion processes. Wear. 2004,256: 459–468.
    [100] Akira Iwabuchi, Tetsuya Sonoda, Hitoshi Yashiro.Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear. Wear.1999,181: 225–229.
    [101]姜晓霞,李诗卓,林晓娉等.不锈钢的负交互作用[J].金属学报. 1991,27(1):21-23.
    [102]周广宏,丁红燕,戴起勋.无镍奥氏体不锈钢在模拟体液中的摩擦学特性研究[J].材料热处理学报. 2007,28(1):62-65.
    [103]张天成,姜晓霞,路新春等.腐蚀磨损交互作用的定量研究[J].材料研究学报.1994.8(5):397-400.
    [104]赵国鹏,于欣伟,吴荫顺,等.腐蚀磨损协同作用率的研究[J].摩擦学学报,1998.18(2):157-161.
    [105]王志刚,李久青,吴荫顺. 1Cr13不锈钢微动腐蚀中腐蚀与磨损交互作用[J].北京科技大学学报.2002.22.(2):138-141.
    [106] M.M. Stack, N. Corlett and S. Zhou, A methodology for the construction of the erosion–corrosion map in aqueous environments. Wear. 1997,203–204: 474-480.
    [107] M.M. Stack, N. Corlett, S. Zhou. Some thoughts on the effects of elastic rebounds on the boundary of the aqueous erosion–corrosion map. Wear.1998, 214: 175-182.
    [108] Stack M.M. Lekatos.S. Stott F.H. Erosion-corrosion regimes: number, nomenclature and justification. Tribology International. 1995,28(7): 445-451.
    [109]何大雄,李诗卓,姜晓霞等.磨损机制图的研究现状及发展趋势[J].中国表面工程.1999,42(1):1-6
    [110]杨院生,曲敬信,邵荷生.两种金属材料腐蚀磨损的交互作用[J].摩擦学学报, 1996.16(1):47-53.
    [111] Kenneth G. Budinski. Tribological properties of titanium alloys.Wear.1991,151,(2):203-217
    [112] Marc Longa, H.J. Rackb, Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion, Wear.2001,249:158-168.
    [113] K.Miyoshi, B.A.Susan, L.Draper. Fretting wear of Ti-48Al-2Cr-2Nb, Tribol. Int. 2003 (36):145-153.
    [114] Harun Mindivan, Murat Baydogan, E. Sabri Kayali. Wear behaviour of 7039 aluminum alloy. Materials Characterization. 2005 (54): 263–269.
    [115] M.Baydogan, H.?imenoglu, E.S.Kayal. A study on sliding wear of a 7075 aluminum alloy. Wear 2004,257: 852–861.
    [116]朱如鹏,潘升材,高德平.微动疲劳中的应力状态参数和微动磨损参数的选择[J].工程力学.1998,15(4):117-120.
    [117]陶峰,张雨. LY12铝合金微动损伤机制的研究[J].航空材料学报.2002,22(2):1-4.
    [118]张宏,戴振东.激光淬火对钛合金微动磨损性能影响的研究[J].激光与光电子学进展. 1999(6):24-27.
    [119]张文光,王成焘,刘维民.钛合金表面改性层的摩擦学性能[J].摩擦学学报.2003,23(2):91-94.
    [120]刘道新,何家文.经不同表面改性处理的钛合金的微动疲劳和微动磨损行为对比研究[J].摩擦学学报.2005.25(1):13-17.
    [121]苏冰,王成焘,于旭东.Ti6Al4V表面生物活性陶瓷涂层的摩擦学性能[J].润滑与密封.2006.183(11): 50-52.
    [122] A.L.Hutson, C.Neslen, T.Nicholas, Characterization of fretting fatigue crack initiation processes in CR Ti-6Al-4V. Tribol. Int. 2003 (36):133-143.
    [123] T.Hattori, M.Nakamura, T.Watanabe, Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribol. Int. 2003 (36):87-97.
    [124] H.Lee, S.Mall. Effect of dissimilar mating materials and contact force on fretting fatigue behavior of Ti–6Al–4V. Tribol. Int. 2004 (37):35-44.
    [125] O.Jin, S.Mall. Effect of independent pad displacement on fretting fatigue behavior of Ti–6Al–4V. Wear.2002,253: 585–596.
    [126]李家柱,马颐军,祁凤玉.铝合金阳极氧化和化学氧化试样大气暴露试验研究[J].材料保护. 2001,34(5):7-8,14.
    [127]李均明,朱静,白力静.铝合金微弧氧化陶瓷层的磨损特性[J].材料保护.2005,38(1):27-29
    [128] T.Kacsich, K.P.Lieb. Oxidation of thin CrN and Cr2N films analyzed via nuclear reaction analysis and Rutherford backscattering. Thin Solid Films. 1994 ,235:4-5.
    [129]刘绍伦,邱俊文. 3.5%NaCl溶液和取向对铝合金2124T851疲劳裂纹扩展特性的影响[J].航空学报. 1994,15:1362-1369.
    [130] Y.J.Du, M.Damron, G.Tang.Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Progress in Organic Coatings. 2001,41:226–232.
    [131]蒋百灵,张先峰,朱静.铝合金镁合金微弧氧化陶瓷层的形成机理及性能[J].西安理工大学学报.2003,19(4):297-301.
    [132]秦妍梅,范爱兰,秦林等.纯钛Mo2N渗镀改性层在人工体液中的腐蚀行为[J].理化检验-物理分册.2005,41(3):117-119.
    [133] E.Eisenbarth, D.Velten, M. Muller. Biocompatibility ofβ-stabilizing elements of titanium alloys, Biomaterials. 2004,25:5705-5713.
    [134] M. Long, H.J. Rack. Titanium alloys in total joint replacement materials science perspective. Biomaterials. 1998 ,19: 1621-1639.
    [135] P.A. Dearnley. A brief review of test methodologies for surface-engineered biomedical implant alloys. Surface & Coatings Technology.2005,198: 483–490.
    [136] P.Q.Wu, D.Drees, L.Stals. Comparison of wear and corrosion wear of TiN coatings under uni-and bidirectional sliding. Surface & Coatings Technology.1999,113:251–258.
    [137] E.T.Gutelmacher, D.E.Eylon, The effects of low fugacity hydrogen in duplex- and beta -annealed Ti–6Al–4V alloy. Mater. Sci. Eng. A. 2004,381:230-236.
    [138] G. Gusmano, G. Montesperelli, G. Forte et al. On-line corrosion resistance tests in sea water on metals for MED plants. Desalination.2005,183:187-194.
    [139] A.S.Stephen, C.M.Terry. Distributions of dissolved titanium in pore waters of estuarine and coastal marine sediments. Marine Chem. 2002,77:109-122.
    [140] I.Gurrappa, D.V.Reddy. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions. J. Alloy and Compd. 2005,90:270-274.
    [141] I. Gurrappa. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications, Mater. Charact. 2003,51: 131-136.
    [142] A.Bloyce, P.Y.Qi, H.Dong, T.Bell. Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology. 1998,107:125–132.
    [143]阎逢元,周惠娣,张泽抚.球-盘微动磨损件磨损体积的测量与计算[J].摩擦学学报.1995.15(2):145-151.
    [144]李清,张立新,王华.医用金属材料的腐蚀测量[J].功能材料增刊. 2001(10): 1360-1365.
    [145]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.11.
    [146] J.A.Richardson, G.C.Wood. A study of the pitting corrosion of Al by scanning electron microscopy. Corros.Sci. 1970,10:313-323.
    [147] M.J. Hunter and P.Fowels. Natural thermally formed oxide film on Al. J.Electrochem.Soc. 1956,103:482-485.
    [148] J.J.Friel. Atmospheric corrosion products on Al, Zn, and AlZn coatings, Corrosion. 1986,42:422-426.
    [149] L.F. Lin, C.Y. Chao, D.d. Macdonald. A point defect model for anodic passive films: Chmical breakdown and pit initiation. Electrochem. Soc. 1981,128:1194-1198.
    [150] R. Ambat and E.S. Dwarakadasa. Studies on the influence of chloride ion and pH on the electrochemical behavior of aluminum alloys 890 and 2014. J. Appl. Electrochem. 1994, 24:911-916.
    [151] S.I Pyun, E.J Lee. Effect of halide ion and applied potential on repassivation behavior of Al-1wt%Si-0.5wt%Cu alloy. Electrochimica. Acta. 1995,40:1963-1970.
    [152]周和荣,李晓刚,董超芳.铝合金及其氧化膜大气腐蚀行为与机理研究进展[J].装备环境工程. 2006,3(1):1-8.
    [153] C.M.A.Brett. The application of electrochemical impedance techniques to aluminum corrosion in acidic chloride solution. J. Appl. Electrochem. 1990,20:1000-1003.
    [154] W. Levason, D. Pletcher, A. M. Smith. Studies of platinum electroplating baths Part V: Solutions derived from Pt(NO2)42-) in aqueous acid. Journal of applied electrochenisiry. 1998,28:18-26.
    [155] A.S. Elola, T.F. Otero, A.Porro, Evolution of the pitting of aluminum exposed to the atmosphere. Corrosion. 1992, 48(10):854-863.
    [156] L.Liepina, V.Kadek. Coditions for disruption of the primary film during corrosion of aluminum in netural solutions. Corros.Sci. 1966,6(3-4):177-181.
    [157] T.H.Nguyen, R.T.Foley. The chemical nature of aluminum corrosion. J.Electrochem.Soc. 1980,127:2563-2570.
    [158] C.Edeleanu, U.r.Evans. The causes of the localized character of corrosion on aluminum. Trans.FaradaySoc. 1951,47:1121-1128.
    [159]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社.2002.9.
    [160]戴振东,王珉.摩擦热力学体系[M].北京:国防工业出版社.2002.1.
    [161]辛湘杰,薛俊峰,董敏.钛的腐蚀、防护及工程应用[M].合肥:安徽科学技术出版社:1988.
    [162]徐增华.金属耐蚀材料[J].腐蚀与防护.2002,23(1):42-45.
    [163] J. Jiang, M.M. Stack, A. Neville. Modelling the tribo-corrosion interaction in aqueous sliding conditions. Tribology Internationa. 2002, l35: 669–679.
    [164]邱明,张永振,杨建恒等.摩擦热对Ti6Al4V合金摩擦磨损性能的影响[J].摩擦学学报. 2006,26(3):203-207.
    [165]李金桂,吴再恩.防腐蚀表面工程技术[M].北京:化学工业出版社.2003.1.
    [166]戴振东,薛群基.摩擦体系结构分析和定量建模的熵探索[J].南京航空航天大学学报.2003,35(6):585-589.
    [167] Mischler S, Debaud S, Landolt D. Wear-accelerated corrosion of passive metals in tribocorrosion systems. J Electrochem Soc.1998;145:750–8.
    [168] M.M. Stack, B.D. Jana. Modelling particulate erosion–corrosion regime transitions for Al/Al2O3 and Cu/Al2O3 MMCs in aqueous conditions. Tribology International 2005,38: 995–1006.
    [169] Jiaren Jiang, M.M. Stack. Modelling sliding wear: From dry to wet environments Wear. 2006,261: 954–965
    [170]王勇,任平弟,周仲荣.Ti6Al4V合金在Saline溶液中的微动腐蚀特性[J].润滑与密封. 2006,175(3):36-38
    [171] Adler TA, Walters RP. Corrosion and Wear of 304 stainless steel using a scratch test. Corros Sci. 1992,33:1855–76.
    [172] Zhang TC, Jiang XX, Lu XC,et al. Corrosion wear of duplex stainless-steels in sulphuric-acidic solution containing chloride. Corrosion. 1994;50:339–44.
    [173] Iwabuchi A, Tsukamoto T, Tatsuyanagi Y, et al. Electrochemical approach to corrosion wear of SKD61 die steel in Na2SO4 solution. Wear. 1992,156:301–307.
    [174] Congleton J, Craig IH, Olieh RA, et al. Some electrochemical and microstructural aspects of corrosion fatigue. In: Crooker TW, Leis BN, editors. Mechanics, metallurgy, electrochemistry,and engineering. ASTM STP 801.1983:367–89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700