用户名: 密码: 验证码:
杂交稻米质与生理生化特性的遗传及相互关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用稻米RVA谱特征值差异显著的深95A、389A、中3A、T98A、五丰A、炳1A等6个籼型杂交稻不育系和R031、湘恢059、湘农恢076、优恢036、R342等5个恢复系,按不完全双列杂交设计配制了的30个杂交稻组合。以这些杂交稻组合及其亲本和天优华占(对照)为A组材料,以直链淀粉含量差异显著的62个籼稻品种(组合)为B组材料。以A组材料研究了杂交稻RVA谱特征值及光合生理生化特性的杂种优势、配合力和遗传特性及相互关系;以A、B两组材料研究了杂交稻RVA谱特征值与主要米质性状间的关系。主要结果如下:
     1.杂交稻RVA谱特征值的峰值粘度存在超高亲优势,崩解值、消减值、回复值、最低粘度和最终粘度存在正向中亲优势;RVA谱特征值存在极显著的组合间遗传差异,其中变异系数最大的是消减值,最小的是糊化开始温度;基因加性效应和非加性效应对杂交稻RVA谱特征值均存在极显著的影响,以亲本基因的加性效应为主(糊化开始温度除外):不育系GCA方差远远大于父本GCA方差和组合SCA方差,表明杂交稻RVA谱特征值主要受不育系的影响;杂交稻RVA谱特征值的竞争优势与母本GCA呈极显著正相关,且决定系数较高,表明不育系的一般配合力高,其所配杂交稻组合的竞争优势也强。
     2.不同水稻品种(组合)的稻米RVA谱特征值与主要米质性状间的关系表明:精米的长/宽、精米长与峰值粘度、崩解值和糊化开始温度极显著负相关,与其它RVA谱特征值显著或极显著正相关;透明度与峰值粘度和崩解值极显著正相关,与消减值、回复值和峰值时间显著或极显著负相关。因此,优质籼型杂交稻品种(组合)选育,不宜过份追求长粒型特征,而应注重透明度的选择;蒸煮食味和营养品质与RVA谱特征值关系密切,RVA谱特征值能反应米质的优劣。直链淀粉含量越高,其崩解值越小,消减值和回复值越大。RVA谱特征值能反映中低(15%≤AC<17%)及中等AC (17%≤AC≤22%)含量相似的水稻品种间的蒸煮食味品质的差异。
     3.净光合速率、气孔导度、蒸腾速率,Fm、Fv/Fm、Y(NPQ)、NPQ、qN、qP和qL存在杂种优势;光合特性和叶绿素荧光参数存在极显著的组合间差异,主要受非加性效应影响,Fm、Y(Ⅱ)、Y(NPQ)和气孔导度受不育系的影响显著,叶绿素a和叶绿素b受恢复系的影响显著;净光合速率、Fv/Fm、Y(Ⅱ)和Y(NPQ)的竞争优势与母本GCA呈显著或极显著正相关,且相关系数较大,表明不育系GCA高,其所配杂交稻组合的光合能力竞争优势也强。
     4. SOD、MDA及根系活力的杂种优势并不普遍存在;SOD、MDA及根系活力存在极显著的组合间差异,亲本的遗传力低于20%,广义遗传力高,主要受非加性效应影响:SOD、根系活力的竞争优势与母本GCA分别呈显著或极显著正相关,表明杂交稻母本一般配合力高,其所配杂交稻组合的SOD和根系活力的竞争优势也强。
     5.稻米RVA谱特征值与植株生理生化特性的关系表现为:峰值粘度和崩解值与气孔导度分别呈极显著正相关,糊化开始温度与蒸腾速率呈显著正相关;RVA谱特征值与叶绿素荧光参数的关系表现为:Y(Ⅱ)与峰值粘度、崩解值、糊化开始温度呈显著或极显著正相关,与其它RVA谱特征值呈显著或极显著负相关。Y(NPQ)和qN与峰值粘度和崩解值呈显著负相关,与消减值和回复值呈显著正相关。表明PS(Ⅱ)天线色素吸收的光能用于光化学电子传递的份额越多,以热的形式耗散的光能越少,光能实际利用率高,其籽粒充实度好,蒸煮食味品质优良;Fv/Fm与气孔导度、胞间CO2浓度、叶绿素含量分别呈显著或极显著正相关。表明潜在光合效率高的杂交稻组合有气孔导度大、胞间CO2浓度高、叶绿素含量高的特点。
This study was conducted via6indica hybrid rice sterile lines:SHEN95A,389A, ZHONG3A, T98A, WUFENG A and BING1A, and5indica hybrid rice restorer lines: R031, XIANGHUI059, XIANG NONGHUI076, YOUHUI036and R342, which have significant difference in starch RVA profile properties. Thirty different hybrid rice combinations were derived from above hybrid rice lines based on incomplete diallel cross. Two sets of materials were prepared for this study, these hybrid rice combinations and their parents together with Tian You Hua Zhan(Control) were set up as group A; the62indica varieties or hybrid rice combinations with significant difference in amylose contents were set up as group B. The heterosis and combining ability, inheritance traits of starch RVA profile properties, physio-biochemical characteristics and the correlations between RVA profile properties and physio-biochemical characteristics in indica hybrid rice were analyzed for samples of group A, and the correlations between RVA profile properties and the main rice qualities also were analyzed for samples of group B. The main results are listed below:
     1. There were significant over high-parent heterosis in peak viscosity and over mid-parent heterosis in breakdown, setback, consistency, trough viscosity and final viscosity. Results showed that there were highly significant genetic diversities of the RVA profile properties in hybrid rice combinations, among those RVA profile properties setback had the widest range of variations while the pasting temperature had the narrowest range of variations. The starch viscosity properties in hybrid rice combinations were significantly affected by gene additive effects and non-additive effects, mainly determined by gene additive effects of parents (not covering pasting temperature). Among all the genotype variances, the GCA variance of sterile lines was far higher than that of both GCA variance in restorer lines and SCA variance in hybrid rice combinations, indicating that the starch viscosity properties in hybrid rice combinations were mainly affected by the sterile lines. Results also showed that there were significant positive correlations between the competitive advantages of hybrid rice combinations and the GCA of sterile lines in RVA profile properties with higher determination coefficients, indicating that higher general combining ability of the sterile lines had the higher competitive advantages from those hybrid rice combinations would be obtained.
     2. The correlations between rice starch viscosity properties and main rice qualities from different combinations were analyzed. There were significant negative correlations between the length, the rate of length and width of polished rice and peak viscosity, breakdown and pasting temperature from different combinations, but significant positive correlations to other RVA profile properties were presented; Transparency was found to have significant positive correlations to peak viscosity and breakdown, but to have significant negative correlations to setback, consistency and peak time. In this case, the rice variety seeds with better transparency should be preferred and the ones with longer length should not be excessively focused on during any selection and breeding activity of high-quality indica hybrid rice varieties (combinations). Results also indicated that cooking/eating and nutritional qualities in different rice varieties (combinations) had close correlations with their RVA profile properties, and the superior or inferior quality of rice could be highly indicated by their RVA profile properties. The rice varieties (combinations) with higher AC content, their breakdown would be smaller while their setback and consistency would be bigger. RVA profile properties would reflect the difference in cooking and eating quality among hybrid rice varieties with similar AC content, from low-mid-level (15%≤AC<17%) to mid-level (17%≤AC≤22%).
     3. The net photosynthetic rate, stomatal conductance, transpiration rate, Fm、Fv/Fm、 Y(NPQ)、NPQ、qN、qP and qL showed positive effects over mid-parent heterosis. Significant genetic diversities were found in photosynthesis traits and chlorophyll fluorescence parameters of hybrid rice combinations. Photosynthesis traits and chlorophyll fluorescence parameters were mainly affected by non-additive effects. Fm, Y (Ⅱ), Y (NPQ) and stomatal conductance were significantly affected by the sterile lines while chlorophyll a and chlorophyll b were significantly affected by the restorer lines. The net photosynthetic rate, Fv/Fm, Y (Ⅱ) and Y (NPQ) of competitive advantages in hybrid rice combinations were significantly correlated to the GCA of the sterile lines, indicating that the sterile lines with higher GCA would obtain a better competitive advantage of their combinations.
     4. Heterosis in SOD, MDA and root activity of hybrid rice combinations were not universal. Significant genetic diversities were found in SOD, MDA and root activity among different hybrid rice combinations with below20%heritability from parents and higher broad heritability. SOD, MDA and root activity were mainly affected by non-additive effects. The competitive advantages of SOD and root activity in hybrid rice combinations were significantly correlated to their GCA effects respectively, indicating that the sterile lines with higher GCA effects would obtain a better competitive advantage of their combinations.
     5. The correlations between RVA profile properties and Physio-biochemical characteristics indicated that there were significant positive correlations between the peak viscosity, breakdown and stomatal conductance. There were positive correlations between pasting temperature and the transpiration rate. The correlations between RVA profile properties and chlorophyll fluorescence parameters showed Y (Ⅱ) had significant positive correlations to peak viscosity, breakdown, pasting temperature but negative correlations to other RVA profile properties; Y (NPQ) and qN had significant negative correlations to peak viscosity and breakdown but significant positive correlations to setback and consistency. The analyses indicated that PS(Ⅱ) antenna pigment of hybrid rice combinations absorbed light energy that the more it transmitted by photochemical electron, the less it dissipated in form of heat, and the actual utilization rate of light energy would be higher, which would result in better grain filling and higher quality in cooking and eating etc. There were significant positive correlations between stomatal conductance, intercellular CO2concentration, chlorophyll and carotenoid content respectively. The results indicated that the hybrid rice combinations would have higher potential photosynthesis efficiency due to bigger stomatal conductance, higher intercellular CO2concentration and chlorophyll content.
引文
[1]Henry R J, Kettlewell P S. Cereal grain quality[M]. London:Chapman & Hall Ltd, 1996:55-76.
    [2]American association of cereal chemist. Methods 61-02 for RVA[C]//Approved Method of the AACC,9th ed., St. Paul, Minn.:The Association,1995:1-53.
    [3]吴殿星,舒庆尧,夏英武.RVA分析辅助选择食用优质早籼稻的研究[J].作物学报,2001,27(2):165-172.
    [4]包劲松,舒庆尧,夏英武,等.γ-辐照对稻米蒸煮和食用品质的影响[J].核农学报,1998,12(6):327-331.
    [5]刘怀年.稻种资源光合速率研究及杂交稻亲本配合力分析[D].雅安:四川农业大学,2006.
    [6]Shukla S K, Pandey M P. Combining ability and heterosis over environments for yield and yield components in two-line hybrids involving thermosensitive genic male sterile lines in rice (oryza satival.)[J]. Plant Breeding,2008,127(1):28-32.
    [7]Qu Z, Li L Z, Luo J Y, et al. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses [J]. PLOS ONE,2012,7(1):1-10.
    [8]林强,王旭春,王洪飞,等.早籼杂交稻稻米胶稠度的遗传效应与杂种优势[J].福建农林大学学报(自然科学版),2012,41(6):561-565.
    [9]王丽,赵德明,林纲,等.杂交稻新组合主要农艺性状配合力分析及利用评价[J].江西农业大学学报,2012,34(2):208-212+21.
    [10]Lin J R, Song X W, Wu M G. Genetic effects and heterosis in plant height and internode traits of japonica-indica hybrid rice[J]. Agricultural Science & Technology,2012,13(4):746-750.
    [11]胡荣华,王牡丹,王海凤,等.杂交稻新恢复系主要农艺性状的配合力分析[J].亚热带农业研究,2011,7(2):73-78.
    [12]林强,梁康迳,郑秀平,等.早籼杂交稻粒形和产量性状的遗传效应与杂种优势分析[J].福建农林大学学报(自然科学版),2009,38(4):337-341.
    [13]李耘,赵甘林,左永树,张长伟.不同环境下籼型杂交稻整精米率的配合力研究[J].西南农业学报,2003,16(2):22-25.
    [14]张利华,王林友,王建军.籼型杂交稻稻米碾磨品质与外观品质的配合力及遗传 力研究[J].核农学报,2003,17(6):417-422.
    [15]国家粮食储备局标准质量管理办公室,GB/T 17891-1999.优质稻谷[S],1999.
    [16]杨益善,陈立云,徐耀武.从稻米品质评价标准的变化看我国水稻品质育种的发展[J].杂交水稻,2004,19(3):5-10.
    [17]王肇慈.稻米食用、蒸煮品质评价与分析-粮油品质分析[M].北京:中国轻工业出版社,1997:1-70.
    [18]Wang X Q, Yin L Q, Shen G Z, et al. Determination of amylose content and its relationship with RVA profile within genetically similar cultivars of rice(oryza satival.ssp.japonica)[J]. Agricultural Sciences in China,2010,9(8):1101-1107.
    [19]Bason M L, Blakeney A B, Booth R I. Assessing rice quality using the RVA-Results of an international collaborative trial[J]. RVA World,1994(6):2-5.
    [20]国家质检总局,GB/T 24853-2010.小麦、黑麦及其粉类和淀粉糊化特性测定.快速粘度仪法[S],2010.
    [21]Tian Z X, Qian Q, Liu Q Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences,2009,106(51):21760-22176.
    [22]He Y, Han Y P, Jiang L, et al. Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities[J]. Molecular Breeding,2006,18(4): 277-290.
    [23]Wang L Q, Liu W J, Xu Y, et al. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain[J]. Theoretical and Applied Genetics,2007,115(4):463-476.
    [24]Liu X L, Wan X Y, Ma X D, et al. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution[J]. Genome,2011,54(1):64-80.
    [25]Radhika R K, Zakiuddin A S, Bhattacharya K R. The fine structure of rice-starch amylopectin and its relation to the texture of cooked rice[J]. Carbohydrate Polymers,1993,22(4):267-275.
    [26]Radhika R K, Subramanian R, Zakiuddin A S. Viscoelastic properties of rice flour pastes and their relationship to amylose and rice quality [J]. Cereal Chemistry,1994, 71(6):548-552.
    [27]Chinnaswamy R, Bhattacharya K R. Characteristics of Gel-chromatographic fractions of starch in relation to rice and expanded Rice-Product qualities [J]. Starch-Starke,1986,38(2):51-57.
    [28]Hizukuri S, Takeda Y, Maruta N. Molecular structures of rice starch[J]. Carbohydrate Research,1989,189(6):227-235.
    [29]Lin J H, Chang Y H. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch[J]. Journal of Agricultural and Food Chemistry,2006,54(16):5880-5886.
    [30]Syahariza Z A, Sar S, Hasjim J, et al. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains[J]. Food Chemistry, 2013,136(2):742-749.
    [31]Fan D M, Wang L Y, Ma S Y, et al. Structural variation of rice starch in response to temperature during microwave heating before gelatinisation[J]. Carbohydrate Polymers,2013,92(2):1249-1255.
    [32]吴殿星,舒庆尧,夏英武.利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性[J].中国水稻科学,2001,15(1):57-59.
    [33]李欣,张蓉,隋炯明,等.稻米淀粉粘滞性谱特征的表现及其遗传[J].中国水稻科学,2004,18(5):10-16.
    [34]吴殿星,舒庆尧,夏英武.胚乳外观标记与RVA谱理化指标相结合辅助改良早籼稻食用品质[J].中国水稻科学,2002,16(1):80-82.
    [35]王丰,程方民,钟连进,等.早籼稻米RVA谱特性的品种间差异及其温度效应特征[J].中国水稻科学,2003,17(4):328-332.
    [36]李刚,邓其明,李双成,等.稻米淀粉RVA谱特征与品质性状的相关性[J].中国水稻科学,2009,23(1):99-102.
    [37]贾良,丁雪云,王平荣,等.稻米淀粉RVA谱特征及其与理化品质性状相关性的研究[J].作物学报,2008,34(5):790-794.
    [38]隋炯明,李欣,严松,等.稻米淀粉RVA谱特征与品质性状相关性研究[J].中国农业科学,2005,38(4):657-663.
    [39]王玉文,李会霞,田岗,等.小米外观品质及淀粉RVA谱特征与米饭适口性的关系[J].山西农业科学,2008,36(7):34-39.
    [40]Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties [J]. Journal of Cereal Science,2002,36(3):285-294.
    [41]Gravois K A, Webb B D. Inheritance of long grain rice amylograph viscosity characteristics[J]. Euphytica,1997,97(1):25-29.
    [42]金正勋,秋太权,孙艳丽,等.粳稻杂种后代稻米垩白率的配合力分析[J].中国水稻科学,2000,14(4):199-202.
    [43]Bao J S, Xia Y W. Genetic control of paste viscosity characteristics in indica rice (oryza satival.)[J]. Theoretical and Applied Genetics,1999,98(6-7):1120-1124.
    [44]Zhang Z J, Li M, Fang Y W, et al. Diversification of the WAXY gene is closely related to variations in rice eating and cooking quality[J]. Plant Molecular Biology Reporter,2012,30(2):462-469.
    [45]Zheng L N, Zhang W W, Liu S J, et al. Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred population of rice[J]. Journal of Cereal Science,2012,56(2):153-160.
    [46]沈新平,顾丽,沈小燕,等.两优培九稻米淀粉黏滞性(RVA谱)的纬度地域和播期变化特征[J].中国水稻科学,2007,21(1):59-64.
    [47]包劲松,夏英武.稻米淀粉RVA谱的基因型×环境互作效应分析[J].中国农业科学,2001,34(2):123-127.
    [48]陆芳芳,陆卫平,刘萍,等.糯玉米淀粉RVA黏度的杂种优势分析[J].作物学报,2006,32(4):503-508.
    [49]Wang G L, Kang M S, Moreno O. Genetic analyses of grain-filling rate duration in maize[J]. Field Crops Research,1999,61(3):211-222.
    [50]Hagarth D M, Kingston G. The inheritance of ash in juice from sugarcane[J]. Sugar CANE,1984(5):21-27.
    [51]Song C, Zeng F, Pao Z, et al. Characterization of high-yield performance as affected by genotype and environment in rice[J]. Journal of Zhejiang University Science B,2008,9(5):363-370.
    [52]Panda D, Sharma S G, Sarkar R K. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (oryza satival.)[J]. Aquatic Botany,2008, 88(2):127-133.
    [53]Pang J, Kobayashi K, Zhu J G. Yield and photosynthetic characteristics of flag leaves in chinese rice (oryza sativa 1.) varieties subjected to free-air release of ozone[J]. Agriculture Ecosystems & Environment,2009,132(4):203-211.
    [54]Bhardwaj H L, Weaver J J. Combining-ability analysis in cotton for agronomic characters, fruiting efficiency, photosynthesis and bollworm resistance[J]. The Journal of Agricultural Science,1984,103(3):511-518.
    [55]翟虎渠,曹树青,唐运来,等.籼型杂交水稻光合性状的配合力及遗传力分析[J].作物学报,2002,28(2):154-160.
    [56]张玲,杨国涛,谢崇华,等.几个籼型杂交水稻光合特性的配合力研究[J].南京农业大学学报,2009,32(2):5-9.
    [57]张其德,卢从明,张世平,等.几组有优和无优杂交组合中杂交稻及其亲本光合功能的比较[J].植物学通报,1998,15(1):51-56.
    [58]王娜,陈国祥,吕川根.两优培九与其亲本剑叶光合特性的比较研究[J].杂交水稻,2004,19(1):53-55.
    [59]李季航,向殉朝,何立斌,等.水稻亚种间杂种F1光合特性研究[J].植物学通报,2005,22(4):432-438.
    [60]杨玉景,李世平,闫翠萍,等.冬小麦非旗叶光合器官光合效应的遗传规律[J].西北农业学报,2008,17(6):59-62.
    [61]李卫青,万勇善,刘风珍.花生品种间净光合速率的配合力分析[J].华北农学报,2009,24(S1):159-162.
    [62]李霞,丁在松,李连禄,等.玉米光合性能的杂种优势[J].应用生态学报,2007,18(5):1049-1054.
    [63]邓仲篪,孙济中,张金发,等.杂交棉及其亲本光合特性的研究[J].华中农业大学学报,1995,14(5):429-434.
    [64]张永丽,肖凯,李雁鸣.不同组合杂种小麦旗叶光合优势特点的研究[J].华北农学报,2004,19(1):63-66.
    [65]董合忠,李维江,李振怀,等.转Bt基因抗虫杂交棉与其亲本的光合能力比较[J].核农学报,2000,14(5):284-289.
    [66]邹学校,马艳青,陈文超,等.辣椒净光合速率杂种优势及其稳定性分析[J].上海农业学报,2005,21(3):4-8.
    [67]Yu G H, Li W, Yuan Z Y, et al. The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice liangyoupeijiu at the reproductive stage[J]. Photosynthetica,2013,51(1):33-44.
    [68]Niu X D, Li G R, Kang Z H, et al. Photosynthetic characteristics and antioxidant enzyme system in high-chlorophyll rice GC mutant[J]. Russian Journal of Plant Physiology,2012,59(5):691-695.
    [69]Kang Z H, Li G R, Huang J L, et al. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (gc)[J]. Plant Physiology and Biochemistry, 2012,60:81-87.
    [70]Huang X Q, Jiao D M, Li X. Characteristics of chlorophyll fluorescence and Membrane-lipid peroxidation of various High-yield rices under photooxidation conditions[J]. ACTA Botanica Sinica,2002,44(3):279-286.
    [71]Li X, Jiao D M, Liu Y L, et al. Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under natural condition[J]. ACTA Botanica Sinica,2002,44(4): 413-421.
    [72]Wang Q, Zhang Q D, Zhu X G, et al. PSII photochendstry and xanthophyll cycle in two super high-yield rice hybrids, liangyoupeijiu and Hua-an 3 during photoinhibition and subsequent restoration[J]. ACTA Botanica Sinica,2002,44(11): 1297-1302.
    [73]Zhang Y H, Chen L J, He J L, et al. Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress[J]. Biologia Plantarum,2010,54(1):164-168.
    [74]Zhang M P, Zhang C J, Yu G H, et al. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage[J]. Journal of Plant Physiology,2010,167(4):277-285.
    [75]Zhu S Q, Yu C M, Liu X Y, et al. Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice[J]. Journal of Integrative Plant Biology,2007,49(4):463-471.
    [76]杜尧东,李键陵,王华,等.高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响[J].生态学杂志,2012,31(10):2541-2548.
    [77]Hamaoka N, Araki T, Kumagai E, et al. Photosynthetic traits of upper three leaves in the vietnamese F1 hybrid rice vietlai 45 and its parents during the ripening period[J]. Journal of the Faculty of Agriculture Kyushu Unive,2012,57(1):27-33.
    [78]张其德,朱新广,王强,等.冬小麦杂种F1及其亲本光合特性的研究初报[J].作物学报,2001,27(5):653-657.
    [79]Khayatnezhad M, Zaeifizadeh M, Gholamin R. Effect of end-season drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide dismutase enzyme (sod) in susceptible and tolerant genotypes of durum wheat[J]. African Journal of Agricultural Research,2011,6(30):6397-6406.
    [80]Czyczylo-mysza I, Marcinska I, Skrzypek E, et al. Mapping QTLS for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability[J]. Plant Genetic Resources-Characterization and Utili,2011, 9(2):291-295.
    [81]Burling K, Hunsche M, Noga G. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat[J]. Journal of Plant Physiology,2011,168(14): 1641-1648.
    [82]王路路.6个双列杂交玉米亲本及其杂交株系的生长及光合特性差异分析[D].南京:南京农业大学,2011.
    [83]O' neill P M, Shanahan J E, Schepers J S. Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions[J]. Crop Science,2006,46(2):681-687.
    [84]Wu W M, Li J C, Chen H J, et al. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (zea MAYS 1.) under waterlogging at seedling stage[J]. Journal of Food Agriculture & Environment,2013,11(1):545-552.
    [85]De.souza T C, Magalhaes P C, De.castro E M, et al. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in TWO maize hybrids with contrasting drought resistance[J]. ACTA Physiologiae Plantarum,2013,35(2):515-527.
    [86]张春梅,王笑言,徐海江,等.棉花叶绿素荧光诱导动力学参数遗传分析[J].棉花学报,2006,18(3):180-183.
    [87]Shahenshah, Isoda A. Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut[J]. Plant Production Science,2010, 13(3):269-278.
    [88]Longenberger P S, Smith C W, Duke S E, et al. Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton[J]. Euphytica,2009,166(1):25-33.
    [89]Li D X, Li C D, Sun H C, et al. Photosynthetic and chlorophyll fluorescence regulation of upland cotton (gossiypium hirsutum 1.) under drought conditions [J]. Plant Omics,2012,5(5):432-437.
    [90]徐良年,罗俊,陈如凯,等.甘蔗杂交后代主要荧光性状的遗传力及配合力分析[J].热带作物学报,2007,28(1):34-39.
    [91]Molinari H C, Marur C J, Daros E, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (saccharum spp.):osmotic adjustment, chlorophyll fluorescence and oxidative stress[J]. Physiologia Plantarum,2007, 130(2):218-229.
    [92]Goncalves E R, Ferreira V M, Silva J V, et al. Gas exchange and chlorophyll a fluorescence of sugarcane varieties submitted to water stress[J]. Revista Brasileira DE Engenharia Agricola E Ambien,2010,14(4):378-386.
    [93]张春梅.棉花光合特性的遗传分析及其在杂种优势预测中的应用[D].石河子:石河子大学,2006.
    [94]魏亦农,孔广超,曹连莆.棉花叶绿素荧光诱导动力学参数遗传特性的初步研究[J].种子,2003(6):43-44.
    [95]印志同,孟凡凡,宋海娜,等.大豆开花盛期快速叶绿素荧光参数的QTL分析[J].中国农业科学,2011,44(24):4980-4987.
    [96]郭培国,李明启.杂交水稻及其亲本光合特性的研究Ⅰ.功能叶片叶绿素含量、叶绿素-蛋白复合物及诱导荧光动力学[J].热带亚热带植物学报,1996,4(4):60-65.
    [97]王荣富,黄正来,王建华,等.两系杂交稻两优培九苗期若干光合特性初探[J].安徽农业大学学报,2003,30(2):113-116.
    [98]Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during EX vitro acclimatization of micropropagated CAM doritaenopsis plantlets under relative humidity and air temperature[J]. Environmental and Experimental Botany,2006,55(2):183-194.
    [99]Dumlao M R, Darehshouri A, Cohu C M, et al. Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type[J]. Photosynthesis Research,2012,113(3):181-189.
    [100]Delagrange S. Light- and seasonal-induced plasticity in leaf morphology, N partitioning and photosynthetic capacity of TWO temperate deciduous species[J]. Environmental and Experimental Botany,2011,70(1):1-10.
    [101]Bubier J L, Smith R, Juutinen S, et al. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three BOG shrubs[J]. Oecologia,2011, 167(2):355-368.
    [102]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    [103]嵇晓雷,杨平.基于根系形态的根系固坡作用数值分析[J].南京林业大学学报(自 然科学版),2013,37(2):113-114,11.
    [104]漆栋良,胡田田,李瑞,等.局部灌水条件下玉米根系的时空分布研究[J].西北农林科技大学学报(自然科学版),2013,41(3):1-7.
    [105]李双双,李晶,陈龙涛,等.施氮量对春小麦根系生长及产量的影响[J].麦类作物学报,2013,33(1):1-5.
    [106]张静,张志,杜彦修,等.不同深耘及施穗肥方式对水稻根系活力、籽粒灌浆及产量的影响[J].中国农业科学,2012,45(19):4115-4122.
    [107]Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice[J]. Journal of Integrative Agriculture,2012,11(6):920-926.
    [108]Mishra A, Salokhe V M. Rice root growth and physiological responses to SRI water management and implications for crop productivity [J]. Paddy and Water Environment,2011,9(1):41-52.
    [109]Li H W, Liu L J, Wang Z Q, et al. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of yangtze river of china[J]. Field Crops Research,2012,133:119-129.
    [110]曹树青,邓志瑞,翟虎渠,等.籼型杂交水稻根系活力及其衰退特性的配合力及杂种优势分析[J].中国水稻科学,2002,16(1):20-24.
    [111]周小平,张岁岐,杨晓青,等.玉米根系活力杂种优势及其与光合特性的关系[J].西北农业学报,2008,17(4):84-90.
    [112]赵全志,吕德彬,程西永,等.杂种小麦群体光合速率及伤流强度优势研究[J].中国农业科学,2002,35(8):925-928.
    [113]金蕙芬,王国芳,陆春祥.玉米杂种与其亲本根系活力及三磷酸腺苷酶、核糖核酸酶活性的比较研究[J].中国农业科学,1994,27(3):19-24.
    [114]何之常,汤华云,崔志斌,等.杂交水稻的超氧化物歧化酶活性及其在杂种优势预测中的作用[J].湖北农业科学,1990,29(11):10-12.
    [115]Bughio N, Yamaguchi H, Nishizawa N K, et al. Cloning an iron-regulated metal transporter from rice[J]. Journal of Experimental Botany,2002,53(374):1677-1682.
    [116]Basra A S. Crop responses and adaptations to temperature stress[M]. New York: CRC PressI Llc,2001.
    [117]Waisel Y, Eshel A, Kafkafi U, et al. Plant roots:the hidden half[M].3rd ed. New York:Marcel dekker press,1996.
    [118]Lu Y H, Rosencrantz D, Liesack W, et al. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere[J]. Environmental Microbiology,2006,8(8):1351-1360.
    [119]Li S, Yu J L, Zhu M J, et al. Cadmium impairs ion homeostasis by altering k+ and Ca2+ channel activities in rice root hair cells[J]. Plant Cell and Environment,2012, 35(11):1998-2013.
    [120]Tsakirpaloglou N, Kohli A, Gatehouse A. Unusual expression patterns of SODS in rice[J]. Comparative Biochemistry and Physiology a-Molecula,2007,146(4):263.
    [121]Shah K, Nahakpam S. Heat exposure alters the expression of sod, pod, APX and cat isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars[J]. Plant Physiology and Biochemistry,2012,57:106-113.
    [122]Dehury B, Sarma K, Sarmah R, et al. In silico analyses of superoxide dismutases (sods) of rice (oryza satival.)[J]. Journal of Plant Biochemistry and Biotechnology, 2013,22(1):150-156.
    [123]朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学,2002,16(4):326-330.
    [124]乔江方.水稻根系与叶片光合生理特性关系的研究[D].郑州:河南农业大学,2008.
    [125]朱萍,杨世民,马均,等.遮光对杂交水稻组合生育后期光合特性和产量的影响[J].作物学报,2008,34(11):2003-2009.
    [126]沈波,王熹.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系[J].中国水稻科学,2000,14(2):122-124.
    [127]Li M Y, Zheng W, Shi Q H, et al. Leaf senescence characteristics and responses to water shortage of different hybrid rice cultivars during grain filling stage[J]. Agricultural Science & Technology,2012,13(2):330-338.
    [128]Li M Y, Wang Z Q, Zeng L, et al. Effects of water deficit and increased nitrogen application in the late growth stage on physiological characters of Anti-aging of leaves in different hybrid rice varieties[J]. Agricultural Science & Technology, 2012,13(11):2311-2322.
    [129]戴正元,李爱宏,刘广青,等.儿个优良籼稻亲本品质性状的配合力和杂种优势分析[J].植物遗传资源学报,2006,7(2):234-238.
    [130]Bao J S, Shen S Q, Xia Y W. Analysis of genotype × environment interaction effects for starch pasting viscosity characteristics in indica rice[J]. ACTA Genetica Sinica,2006,33(11):1007-1013.
    [131]金正勋,姜文洙,晋重玄,等.籼稻品种味度及淀粉RVA谱特性配合力分析[J].作 物学报,2004,30(12):1210-1214.
    [132]Han Y P, Xu M L, Liu X Y, et al. Genes coding for starch branching enzymes are major contributors to starch viscositycharacteristics in waxy rice[J]. Plant Science, 2004,166(2):357-364.
    [133]Traore K, Mcclung A M, Chen M H, et al. Inheritance of flour paste viscosity is associated with a rice WAXY gene EXON 10 SNP marker[J]. Journal of Cereal Science,2011,53(1):37-44.
    [134]陈书强,薛菁芳,杜金岭.两种穗型水稻穗上不同粒位籽粒淀粉黏滞谱特征的比较分析[J].华北农学报,2012,27(1):110-117.
    [135]焦桂爱,胡培松,唐绍清,等.香稻品种RVA谱多样性研究[J].核农学报,2010,24(1):78-82.
    [136]Zhang Q F, Zhang Y D, Zhu Z, et al. Inheritance analysis and QTL mapping of rice starch viscosity (rapid visco analyzer profile) characteristics[J]. Rice Science,2008, 15(3):186-194.
    [137]周开达,黎汉云,李仁端,等.杂交水稻主要性状配合力、遗传力的初步研究[J].作物学报,1982,8(3):145-152.
    [138]莫惠栋.农业试验统计[M].上海:科学技术出版社,1992.
    [139]张利华,王林友,王建军.籼型杂交稻稻米碾磨品质与外观品质的配合力及遗传力研究[J].核农学报,2003,17(6):417-422.
    [140]李慧敏,赵凤梧,李爱国,等.早稻(Oryza sativa)×长芒稗(Echinochloa caudata)远缘杂交后代结实率及杂种优势分析[J].核农学报,2003,17(1):11-15.
    [141]张宏根,孔宪旺,朱正斌,等.粳稻三系亲本的性状特征与杂种优势分析[J].作物学报,2010,36(5):801-809.
    [142]Bao J S, Corke H, He P, et al. Analysis of quantitative trait LOCI for starch properties of rice based on an RIL population[J]. ACTA Botanica Sinica,2003, 45(8):986-994.
    [143]朱满山,顾铭洪,汤述翥.不同粳稻品种和DH群体稻米淀粉RVA谱特征与蒸煮理化指标及相关分析[J].作物学报,2007,33(3):411-418.
    [144]舒庆尧,吴殿星,夏英武,等.籼型杂交水稻稻米表观直链淀粉含量和淀粉粘滞性研究[J].浙江农业大学学报,1998,24(6):621-626.
    [145]中国水稻研究所谷化系,NY/T 83-1988.米质测定方法[S],1988.
    [146]欧洲标准学会,EN ISO 6647-2-2007.稻米.直链淀粉含量测定.第2部分:常规方法[S],2007.
    [147]国家质检总局,GB/T 5511-1985.粮食、油料检验粗蛋白质测定法[S],1985.
    [148]萧浪涛,王三根.植物生理学实验技术[M].北京:中国农业出版社,2005.
    [149]邹学校,马艳青,张竹青,等.辣椒净光合速率杂种优势与农艺性状的相关分析[J].中国农学通报,2009,25(7):188-192.
    [150]Hochholdinger F, Hoeckera N. Towards the molecoular basis of heterosis[J]. Trends in Plant Science,2007,12(9):427-432.
    [151]Stupar R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo 17 leads to additive expression patterns in the F1 hybrid[J]. Genetics,2006, 173(4):2199-2210.
    [152]周艳敏,张春庆.玉米生育后期光合特性的遗传分析[J].中国农业科学,2008,41(7):1900-1907.
    [153]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490.
    [154]E空军,胡昌浩,董树亭,等.我国不同年代玉米品种开花后叶片保护酶活性及膜脂过氧化作用的演进[J].作物学报,1999,25(6):700-770.
    [155]谭德刃,王康.低温与稻苗超氧物歧化酶活性变化及细胞膜损伤的关系[J].西南农业大学学报,1988,10(1):87-92.
    [156]尹春佳,李彩凤,孙世臣,等.寒地超级稻叶片衰老过程中SOD、POD活性的动态变化[J].作物杂志,2009(3):37-39.
    [157]华春,王仁雷.杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化[J].西北植物学报,2003,23(3):406-409.
    [158]Davies W J, Zhang H J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review of Plant Physiology and Plant Molecu, 1991,42:55-76.
    [159]陆秀明,黄庆,刘怀珍,等.华南超级稻根系特点和根系活力研究[J].中国农学通报,2012,28(6):30-34.
    [160]沈波,王熹.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系[J].中国水稻科学,2000,14(2):122-124.
    [161]李木英,石庆华,郑伟,等.杂交稻后期叶片早衰特征及其与叶片N含量和根系活力关系初探[J].江西农业大学学报,2008,30(5):757-765.
    [162]黄农荣,钟旭华,王丰,等.超级杂交稻结实期根系活力与籽粒灌浆特性研究[J].中国农业科学,2006,39(9):1772-1779.
    [163]陈建伟,吴东辉,陈文丰,等.广东省杂交水稻新组合米质评价[J].杂交水稻,2003, 18(2):22-25.
    [164]赵全志,乔江方,刘辉,等.水稻根系与叶片光合特性的关系[J].中国农业科学,2007,40(5):1064-1068.
    [165]王法宏,王旭清,李松坚,等.小麦根系扩展深度对旗叶衰老及光合产物分配的影响[J].麦类作物学报,2003,23(1):53-57.
    [166]叶宝兴,毛达超,刘学春.超级小麦生育后期根系活力与净光合速率相关性的研究[J].山东农业科学,2005,37(4):15-18.
    [167]包劲松,徐惠英,谢建坤,等.稻米食用和蒸煮品质与不同发育阶段株高的遗传相关分析[J].浙江农业学报,2000,12(1):6-10.
    [168]朱满山.利用日本粳稻改良直穗型粳稻品种品质的研究[D].扬州:扬州大学,2002:1-43.
    [169]王志芬,陈学留,余美炎,等.冬小麦群体根系32P吸收活力与群体光合速率关系的研究[J].作物学报,1999,25(4):458-465.
    [170]Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in VIVO photosynthesis[C]//Ecophysiology of photosynthesis, New York:Springer-Verla Berlin Heidelberg,1994:49-70.
    [171]柯裕州,周金星,张旭东,等.盐胁迫对桑树幼苗光合生理生态特性的影响[J].林业科学,2009,45(8):61-66.
    [172]Lu C M, Zhang J H. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants[J]. Plant Science, 2000,151(2):135-143.
    [173]Young A J. The photoprotective role of carotenoids in higher plants[J]. Physiologia Plantarum,1991,83(4):702-708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700