用户名: 密码: 验证码:
有机—无机杂化纳米材料的组装及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,有机-无机纳米杂化材料由于其在结构、尺度上的不断匹配,尤其达到纳米尺度范围后,实现了材料在分子、原子等范围内的性质可控,逐渐成为材料科学中最具前途的研究方向之一。由于其将不同的无机元素和有机配体或聚合物引入体系中,使材料不仅具有无机活性中心或有机物各自的相关性质,更可以通过两者之间的相互作用或能量转移,产生许多独特新颖的性能;同时,通过运用不同的反应机理、制备条件以及合成方法等,可以制得形貌结构多样的纳米多孔材料、纳米颗粒材料、纳米薄膜材料等,在光、电、磁性、催化、吸附、药物载体、生物成像等方面展现出良好的应用前景,受到世界范围内相关研究者的极大重视。
     然而,如何运用更为简单有效的方法,制备出结构新颖、性能优异的有机-无机纳米杂化材料一直是人们追求的目标。纳米材料的分子自组装技术是指在氢键、静电、疏水亲脂作用、π-π堆积等弱力推动下,分子自发的构筑成具有特殊结构和形状的稳定集合体的技术。它的出现,为液晶、胶束、二维薄膜、三维骨架等多种材料的合成和制备提供了新的思路,开辟了新的捷径,在实际中得到广泛的应用。
     因此,根据以上研究背景,本论文致力于运用简洁有效的纳米组装技术,成功合成了介观结构的金属-有机骨架材料、功能化配位聚合物纳米晶复合材料和金属有机多面体纳米笼有序多孔薄膜材料,并对其生成机理、结构组成以及性能应用等方面进行了研究,并取得以下的主要成果:
     1.利用协同自组装、配位反应、超分子作用等已知机理和合成策略,通过简洁、有效、普遍的水热合成方法,直接由Cu~(2+),5-OH-BDC和CTAC在水体系中的协同自组装成功制备出具有介观结构的金属有机骨架材料Cu-(5-OH-BDC)-C16。由XRD和TEM表征可以看出此材料具有高度有序的平面六方结构,并且通过碳链的变化可以得到相应晶格间距的变化;通过IR表征得出在骨架结构中金属铜离子与羧基发生配位,表面活性剂起到模板效应;由ICP、HPLC、EPR、CHN分析可以得出,产物中Cu~(2+)与配体的摩尔比为1:1,并且以一维线性链接的方式构成金属有机骨架结构,体系中的多余的N,H元素来源于NO_3-和H_2O分子,它们在体系中起到了平衡电荷、填补配位点以及促进协同自组装过程等作用;通过类似合成方法,成功合成Co-(5-OH-BDC)-C16和Ni-(5-OH-BDC)-C16介观结构的金属有机骨架材料,表明此合成策略和方法具有一定的规律性和普遍性,具有很好的研究价值和意义。此工作很好的融合了介孔材料和微孔MOF材料领域中的核心思想,为开创出新颖、独特具有广泛实际应用的多功能复合型纳米多级孔材料打下良好的基础。
     2.由MOP-OH晶体单元结构拆分再组装的制备思路,与F127的带有羟基的烷基链相互作用,直接包覆制得配位聚合物纳米晶复合材料F127-[MOP-OH]。通过对反应物浓度的改变,不仅可以控制复合材料中纳米晶的颗粒大小(3nm~50nm)和调节复合材料的形貌变化,制得大小均一,单分散性好的纳米球(200nm左右);有机溶剂中Cu~(2+)释放速率研究表明,产物F127-[MOP-OH]中的[CuL]单元结构更为牢固,具有更为缓慢的Cu~(2+)的释放速率,为产物在防污涂层应用方面打下良好的基础;同时,F127-[MOP-OH]与原晶体材料相比,水中稳定性获得极大提高,并且在对PZA的释放研究中,其药物释放时间显著提高,释放速率更加平稳,为其在生物、医学方面的应用开辟了新的方向。
     3.以MOP-SO_3阴离子纳米笼为基元,通过静电作用,与阳离子表面活性剂双十八烷基二甲基氯化铵(DODAMCl)反应,成功制得表面烷基化的纳米笼复合材料{MOP-SO_3}-DODMA。通过1H NMR结果表明DODMACl阳离子端通过强烈的静电相互作用完成对阴离子MOP-SO_3纳米笼组装和包覆,综合TG、CHN、ICP表征结果得出每个MOP-SO_3纳米笼被24个DODMA~+所包覆,同它们的电荷数相匹配;由SAXS,UV-Vis,IR测试结果可知产物中MOP-SO_3纳米笼是以完整的中空球形纳米笼形态存在的(D=3.00.2nm),各种化学键的链接保存完好,其整体结构没有被破坏或发生分解;运用水滴模板法,在空气/水界面进一步将产物组装为{MOP-SO_3}-DODMA多孔蜂窝状薄膜。实验表明,MOP-SO_3完好的存在于多孔薄膜中,当浓度为1.7mg·ml-1时,一张薄膜中会出现不同孔形貌特征的三块区域:气泡状孔薄膜区域、六方排列孔薄膜区域和大孔薄膜区域;溶剂挥发速率和溶液浓度对制备六方有序的多孔薄膜具有重要影响,只有浓度适中,使粒子沉积速率,溶剂挥发速率同水珠模板的形成和排列处于适当的动态平衡中,才能制备出高度有序的六方排列的多孔结构薄膜。此研究成果,对生物大分子的可控组装、多种纳米簇有序结构薄膜的合成及其在气体分离、选择性吸附等方面的应用都具有一定意义。
Recent years, due to the increasing matching between organic and inorganic matterin structures and sizes, especially the material controllability in the range of molecularand atomic level, organic-inorganic hybrid nanomaterials gradually become the mostpromising research direction of material science. Because of the different inorganicelements and organic ligand or polymer coexisted in the system, organic-inorganichybrid nanomaterials not only have their respective nature, but will likely obtainmany special and innovative properties through the interaction between organic andinorganic matter. Meanwhile, through the applications of different reactionmechanisms, the preparation conditions as well as synthetic methods, diversemorphology of nanoporous materials, nanoparticles, nano-film materials can beproduced, which have been widely used in the optics, electricity, magnetics, catalysis,adsorption, drug delivery, bio-imaging and so on. Great attentions have been paid byworldwide researchers.
     However, the organic-inorganic hybrid nanomaterials with the novel structure andexcellent performance, which are synthesized by more simple and effective method,have always been the goal pursued by scientists. Molecular self-assembly technologyis the process method of the molecules spontaneously built into a stable structure andspecial shape of the aggregates, which is driven by hydrogen bonding, electrostatic,hydrophobic, lipophilic role, π-π stacking. The rise of molecular self-assembly technology has provided new ideas and a improvement for the synthesis of liquidcrystals, micelles, two-dimensional film in practice.
     Therefore, in accordance with the above background, this thesis is committed touse a simple and effective nano-assembly technique, and successfully synthesize amesoscopic structure of the metal-organic framework materials, functionalcoordination polymer nano-crystal composite materials and surface functionalizedmetal-organic polyhedron nanocages thin film materials with ordered honeycombarchitectures. The formation mechanism, structural composition and properties havebeen investigated and major achievements have been made as following:
     1. Based on the known synthetic mechanism and strategies of cooperativeself-assembly, through a simple, effective, widespread hydrothermal synthesis method,coordination reaction and supramolecular interaction, through a simple, effective andwidespread hydrothermal method, the mesostructured metal-organic frameworkmaterials Cu-(5-OH-BDC)-C16have been prepared directly with the cooperativeself-assembly of Cu~(2+),5-OH-BDC and CTAC in aqueous system. This material hasshown a highly ordered hexagonal structure and a corresponding increase of unit cellsize with increase of surfactant chain length with the XRD and TEM characterization.IR spectra could prove the phenyl hydroxyl might participate in the reaction duringthe self-assembly progress and the coordination between the carboxyl and metal ionsto form frameworks of the materials. Through the analysis of ICP, HPLC, EPR, CHN,it could conclude that the chain connective construction between mononuclear Cu~(2+)and ligand is the most possible structures existd in the framework with the molar ratioof Cu~(2+)to ligand at1:1, and the redundant N, H element quite likely come from thenitrate and water molecules, which could play important parts in the system. TheCo-(5-OH-BDC)-C16and of Ni-(5-OH-BDC)-C16mesostructured metal-organicframework materials have also been successfully synthesized by similar syntheticmethods, which could shown a certain regularity and universality of the syntheticstrategy and method. This work well integrate the core idea in the field of mesoporousmaterials and microporous MOF materials, which make a foundation to create new and unique multi-functional nanoporous materials with a wide range of practicalapplications.
     2. The NMOF-organic hybrid materials of F127-[MOP-OH] has been obtainedthrough the MOP-OH crystal cell structure splitted and reorganized in the system ofF127methanol solution. The change of concentration of reactants can not only controlthe particle size of the nanocrystals in the composite (3nm to50nm), but adjustmorphology of the material with uniform size and good monodisperse nanospheres(200nm). The studies of Cu~(2+)released rate experiment in organic solvents have shownthat the [CuL] unit structure of F127-[MOP-OH] is more solid and the Cu~(2+)releaserate of the product is more slowly than [MOP-OH] crystall, which make a goodfoundation for anti-fouling coatings applications. Furthermore, compared to theoriginal crystal materials, the stability of F127-[MOP-OH] in water has been greatlyimproved. In the experiment of PZA release, the NMOF-organic hybrid material hasexhibited more stable release rate and longer drug release time, which opened up newareas of applications in biology or medicine directions.
     3. The surface alkylation of nanocage composite material {MOP-SO_3}-DODMAhas been successfully prepared with the anion metal-organic nanocage MOP-SO_3andcationic surfactant DODAMCl through electrostatic interaction.1H NMR shows thatDODMACl cationic side is fixed in anionic MOP-SO_3nanocages through a strongelectrostatic interaction. Due to the caculation of TG、CHN、ICP test, it could beproved that every MOP-SO_3were surrounded by about24DODMA~+; Throughthe analysis of SAXS, UV-Vis, IR, it could conclude that MOP-SO_3nanocages in theproduct is intact hollow spherical shape (D=3.0±0.2nm) and all bond bindings ofnanocages preserved the well. With the water droplets templating method, the surfacefunctionalized MOP-SO_3nanocages film with ordered honeycomb architectures hasbeen successfully obtained. The experiments show that the MOP-SO_3nanocages arealso intact in the porous film. At the concentration of1.7mg·ml-1, a film will appearthree different pore morphology regions: alveoli-like porous domains, hexagonalporous domains and huge porous domains. The solvent evaporation rate and solute concentration play an imortant influence on the preparation of hexagonal porous films.When the particle deposition rate, solvent evaporation rate and the formation andarrangement of water droplets template are in the appropriate dynamic balance, highlyordered hexagonal arrangement films could possibly be obtained. Due to theaggregating similarity of metal-organic macroionic unit and viral capsid, theself-assembly method of metal-organic nanocages could also make a good foundationfor organization or controllability of biological macromolecules (protein, nucleic acidetc.) in biology or medicine domains.
引文
[1] INTERRANTE L V, HAMPDEN-SMITH, M. J., Chemistry of Advanced Materials,1998,271.
    [2] CHANDROSS E A, MILLER R D. Nanostructures: Introduction [J]. Chemical Reviews,1999,99(7):1641-1642.
    [3] SOLER-ILLIA G J D A A, SANCHEZ C, LEBEAU B, et al. Chemical Strategies To DesignTextured Materials: from Microporous and Mesoporous Oxides to Nanonetworks andHierarchical Structures [J]. Chemical Reviews,2002,102(11):4093-4138.
    [4] BALL P. G L. Science at the atomic scale [J]. Nature,1992,355,761-766.
    [5] HALPERIN W. P. Rev of Mordern Phys,,1986,58,532.
    [6] L. FELDHEIM D, D. KEATING C. Self-assembly of single electron transistors and relateddevices [J]. Chemical Society Reviews,1998,27(1):1-12.
    [7] ROGEZ G, DONNIO B, TERAZZI E, et al. The Quest for Nanoscale Magnets: The exampleof [Mn12] Single Molecule Magnets [J]. Advanced Materials,2009,21(43):4323-4333.
    [8] IMAGAWA H, TANAKA T, TAKAHASHI N, et al. Synthesis and characterization of Al2O3and ZrO2–TiO2nano-composite as a support for NOx storage–reduction catalyst [J]. Journalof Catalysis,2007,251(2):315-320.
    [9] BONANNI A, DIETL T. A story of high-temperature ferromagnetism in semiconductors [J].Chemical Society Reviews,2010,39(2):528-539.
    [10] LIN W, RIETER W J, TAYLOR K M L. Modular Synthesis of Functional NanoscaleCoordination Polymers [J]. Angewandte Chemie International Edition,2009,48(4):650-658.
    [11] NEL A E, MADLER L, VELEGOL D, et al. Understanding biophysicochemical interactionsat the nano-bio interface [J]. Nat Mater,2009,8(7):543-557.
    [12]白春礼.纳米科学及产业化前景[J].国家科教领导小组科技知识讲座,2000.12.14,
    [13]王素娜,江国庆,白俊峰,等.无机分子纳米材料的研究进展[J].[J].无机化学报,2005,1-12.
    [14]郭献敏.基于SiO2基质稀土可见及近红外杂化材料的制备与发光性能[D].[J].长春:长春应用化学研究所,2009,
    [15]王海平.新型喹啉-酰胺型配体系图配合物及其杂化发光材料的研究[D].[J].兰州:兰州大学,2010,
    [16]刘镇,吴庆银,钟芳锐.无机-有机杂化材料的研究进展[J][J].石油化工,2008,649-55.
    [17] BINNEMANS K. Lanthanide-Based Luminescent Hybrid Materials [J]. Chemical Reviews,2009,109(9):4283-4374.
    [18] ELISEEVA S V, BUNZLI J-C G. Lanthanide luminescence for functional materials andbio-sciences [J]. Chemical Society Reviews,2010,39(1):189-227.
    [19] WU Q, ZHAO S, WANG J, et al. Preparation and conductivity of tungstovanadogermanicheteropoly acid polyethylene glycol (PEG) hybrid material [J]. Journal of Solid StateElectrochemistry,2007,11(2):240-243.
    [20] FENG W, WANG J, WU Q. Preparation and conductivity of PVA films composited withdecatungstomolybdovanadogermanic heteropoly acid [J]. Materials Chemistry and Physics,2005,93(1):31-34.
    [21] WU Q, XIE X. Preparation, characterization and properties of polypyrrolevanadotungstogermanic triheteropoly acid hybrid material [J]. Materials Chemistry andPhysics,2003,77(3):621-624.
    [22] SMITHA S, SHAJESH P, MUKUNDAN P, et al. Synthesis of biocompatible hydrophobicsilica–gelatin nano-hybrid by sol–gel process [J]. Colloids and Surfaces B: Biointerfaces,2007,55(1):38-43.
    [23]雷自强苏左胡.聚苯胺/CoFe2O4纳米复合材料的电磁性能研究[J].化学试剂,2008,30,734-736.
    [24] HENCH L L. Bioceramics: From Concept to Clinic [J]. Journal of the American CeramicSociety,1991,74(7):1487-1510.
    [25] RUSU V M, NG C-H, WILKE M, et al. Size-controlled hydroxyapatite nanoparticles asself-organized organic–inorganic composite materials [J]. Biomaterials,2005,26(26):5414-5426.
    [26]邸利芝刘,罗越娥,等.聚富马酸丙二醇酯/(硫酸钙/β-磷酸三钙)生物复合材料的体外降解研究[J].天津师范大学学报(自然科学版)[J],2009,29,50-53.
    [27] DAVIS M E. Ordered porous materials for emerging applications [J]. Nature,2002,417(6891):813-821.
    [28] WAN Y, SHI Y, ZHAO D. Designed synthesis of mesoporous solids vianonionic-surfactant-templating approach [J]. Chemical Communications,2007,897-926.
    [29] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [30] BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sievesprepared with liquid crystal templates [J]. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [31] GALLEZOT P. Preparation of Metal Clusters in ZeolitesPost-Synthesis Modification I [M].Springer Berlin/Heidelberg.2002:257-305.
    [32] CHEN C-Y, BURKETT S L, LI H-X, et al. Studies on mesoporous materials II. Synthesismechanism of MCM-41[J]. Microporous Materials,1993,2(1):27-34.
    [33] HUO Q, MARGOLESE D I, CIESLA U, et al. Generalized synthesis of periodicsurfactant/inorganic composite materials [J]. Nature,1994,368(6469):317-321.
    [34] MONNIER A, SCHüTH F, HUO Q, et al. Cooperative Formation of Inorganic-OrganicInterfaces in the Synthesis of Silicate Mesostructures [J]. Science,1993,261(5126):1299-1303.
    [35] INAGAKI S, FUKUSHIMA Y, KURODA K. Synthesis of highly ordered mesoporousmaterials from a layered polysilicate [J]. Journal of the Chemical Society, ChemicalCommunications,1993,8):680-682.
    [36]徐如人,庞文琴.分子筛与多孔材料化学[M][M].北京;科学出版社.2004.
    [37] XU RUREN P W, YU JIHONG, ET AL. Chemistry of Zeolites and related porousmaterials:synthesis and structure [M][M]. Wiley-Interscience.2007.
    [38] VAN DER VOORT P, MOREY M, STUCKY G D, et al. Creation of VOx Surface Specieson Pure Silica MCM-48Using Gas-Phase Modification with VO(acac)2[J]. The Journal ofPhysical Chemistry B,1998,102(3):585-590.
    [39]WAN Y, ZHAO. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J].Chemical Reviews,2007,107(7):2821-2860.
    [40] VIEN V, SUH M-J, HUH S, et al. Mesostructured material based on [Re6Te8(CN)6]4-clusterand Mn2+: a rational synthesis of hexagonal nonoxidic mesoscale material [J]. ChemicalCommunications,2009,541-543.
    [41] LAI X, LI X, GENG W, et al. Ordered Mesoporous Copper Oxide with Crystalline Walls [J].Angewandte Chemie International Edition,2007,46(5):738-741.
    [42] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-Based MesoporousOrganic-Inorganic Hybrid Materials [J]. Angewandte Chemie International Edition,2006,45(20):3216-3251.
    [43] LIANG C, DAI S. Synthesis of Mesoporous Carbon Materials via EnhancedHydrogen-Bonding Interaction [J]. Journal of the American Chemical Society,2006,128(16):5316-5317.
    [44] F W A. Three Dimensional Nets and Polyhedra [M][M]. New York.1977.
    [45] F W A. Structural Inorganic Chemistry,5th Ed.[c][M]. Oxford Univ. Press.1983.
    [46] ABRAHAMS B F, HOSKINS B F, ROBSON R. A new type of infinite3D polymericnetwork containing4-connected, peripherally-linked metalloporphyrin building blocks [J].Journal of the American Chemical Society,1991,113(9):3606-3607.
    [47] JAMES S L. Metal-organic frameworks [J]. Chemical Society Reviews,2003,32(5):276-88.
    [48]张道军.含羧基配体金属-有机配位聚合物的合成,结构域性质[D][J].吉林:吉林大学化学学院,2008,
    [49] MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-Organic Frameworks: ARapidly Growing Class of Versatile Nanoporous Materials [J]. Advanced Materials,2011,23(2):249-267.
    [50] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organicframeworks using metal-organic polyhedra as supermolecular building blocks [J]. ChemicalSociety Reviews,2009,38(5):1400-1417.
    [51] PERRY, KRAVTSOV V C, MCMANUS G J, et al. Bottom up Synthesis That Does NotStart at the Bottom:Quadruple Covalent Cross-Linking of Nanoscale Faceted Polyhedra [J].Journal of the American Chemical Society,2007,129(33):10076-10077.
    [52] CAIRNS A J, PERMAN J A, WOJTAS L, et al. Supermolecular Building Blocks (SBBs)and Crystal Design:12-Connected Open Frameworks Based on a MolecularCubohemioctahedron [J]. Journal of the American Chemical Society,2008,130(5):1560-1561.
    [53] NOUAR F, EUBANK J F, BOUSQUET T, et al. Supermolecular Building Blocks (SBBs)for the Design and Synthesis of Highly Porous Metal-Organic Frameworks [J]. Journal of theAmerican Chemical Society,2008,130(6):1833-1835.
    [54] LI J-R, ZHOU H-C. Bridging-ligand-substitution strategy for the preparation ofmetal–organic polyhedra [J]. Nat Chem,2010,2(10):893-898.
    [55] QIU L-G, XU T, LI Z-Q, et al. Hierarchically Micro-and Mesoporous Metal-OrganicFrameworks with Tunable Porosity [J]. Angewandte Chemie International Edition,2008,47(49):9487-9491.
    [56] FANG Q-R, ZHU G-S, JIN Z, et al. Mesoporous Metal–Organic Framework with Rare etbTopology for Hydrogen Storage and Dye Assembly [J]. Angewandte Chemie InternationalEdition,2007,46(35):6638-6642.
    [57] PARK Y K, CHOI S B, KIM H, et al. Crystal Structure and Guest Uptake of a MesoporousMetal-Organic Framework Containing Cages of3.9and4.7nm in Diameter [J]. AngewandteChemie International Edition,2007,46(43):8230-8233.
    [58] ZHAO D, YUAN D, SUN D, et al. Stabilization of Metal-Organic Frameworks with HighSurface Areas by the Incorporation of Mesocavities with Microwindows [J]. Journal of theAmerican Chemical Society,2009,131(26):9186-9188.
    [59] MUELLER U, SCHUBERT M, TEICH F, et al. Metal-organic frameworks-prospectiveindustrial applications [J]. Journal of Materials Chemistry,2006,16(7):626-636.
    [60] OCKWIG N W, DELGADO-FRIEDRICHS O, O'KEEFFE M, et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks [J].Accounts of Chemical Research,2005,38(3):176-182.
    [61]卢柯.纳米晶体材料的研究进展[J].中国科学基金,1994,245-251.
    [62] CONG H P, YU S H. Hybrid ZnO–Dye Hollow Spheres with New Optical Properties by aSelf-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide [J].Advanced Functional Materials,2007,17(11):1814-1820.
    [63] STOCK N, BISWAS S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to VariousMOF Topologies, Morphologies, and Composites [J]. Chemical Reviews,2011,112(2):933-969.
    [64] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8)nanocrystals in an aqueous system [J]. Chemical Communications,2011,47(7):2071-2073.
    [65] CRAVILLON J, MüNZER S, LOHMEIER S-J, et al. Rapid Room-Temperature Synthesisand Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J].Chemistry of Materials,2009,21(8):1410-1412.
    [66] CHALATI T, HORCAJADA P, GREF R, et al. Optimisation of the synthesis of MOFnanoparticles made of flexible porous iron fumarate MIL-88A [J]. Journal of MaterialsChemistry,2011,21(7):2220-2227.
    [67] HERMES S, WITTE T, HIKOV T, et al. Trapping Metal-Organic FrameworkNanocrystals:An in-Situ Time-Resolved Light Scattering Study on the Crystal Growth ofMOF-5in Solution [J]. Journal of the American Chemical Society,2007,129(17):5324-5325.
    [68] CRAVILLON J, NAYUK R, SPRINGER S, et al. Controlling Zeolitic ImidazolateFramework Nano-and Microcrystal Formation: Insight into Crystal Growth byTime-Resolved In Situ Static Light Scattering [J]. Chemistry of Materials,2011,23(8):2130-2141.
    [69] SCHAATE A, ROY P, GODT A, et al. Modulated Synthesis of Zr-Based Metal–OrganicFrameworks: From Nano to Single Crystals [J]. Chemistry–A European Journal,2011,17(24):6643-6651.
    [70] GUO H, ZHU Y, QIU S, et al. Coordination Modulation Induced Synthesis of NanoscaleEu1-xTbx-Metal-Organic Frameworks for Luminescent Thin Films [J]. Advanced Materials,2010,22(37):4190-4192.
    [71] TANAKA D, HENKE A, ALBRECHT K, et al. Rapid preparation of flexible porouscoordination polymer nanocrystals with accelerated guest adsorption kinetics [J]. Nat Chem,2010,2(5):410-416.
    [72] GORKA J, FULVIO P F, PIKUS S, et al. Mesoporous metal organic framework-boehmiteand silica composites [J]. Chemical Communications,2010,46(36):6798-6800.
    [73] PETIT C, BANDOSZ T J. MOF–Graphite Oxide Composites: Combining the Uniqueness ofGraphene Layers and Metal–Organic Frameworks [J]. Advanced Materials,2009,21(46):4753-4757.
    [74] PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-basedmetal-organic framework/graphite oxide composites [J]. Carbon,2011,49(2):563-572.
    [75] PETIT C, BANDOSZ T J. Synthesis, Characterization, and Ammonia Adsorption Propertiesof Mesoporous Metal–Organic Framework (MIL(Fe))-Graphite Oxide Composites:Exploring the Limits of Materials Fabrication [J]. Advanced Functional Materials,2011,21(11):2108-2117.
    [76] SCHWAB M G, SENKOVSKA I, ROSE M, et al. MOF@PolyHIPEs [J]. AdvancedEngineering Materials,2008,10(12):1151-1155.
    [77] PEREZ E V, BALKUS JR K J, FERRARIS J P, et al. Mixed-matrix membranes containingMOF-5for gas separations [J]. Journal of Membrane Science,2009,328(1-2):165-173.
    [78]-, et al. CO2Transport in PolysulfoneMembranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation andPFG NMR Techniques [J]. Macromolecules,2009,43(1):316-325.
    [79] OSTERMANN R, CRAVILLON J, WEIDMANN C, et al. Metal-organic frameworknanofibers via electrospinning [J]. Chemical Communications,2011,47(1):442-444.
    [80] ROSE M, B HRINGER B, JOLLY M, et al. MOF Processing by Electrospinning forFunctional Textiles [J]. Advanced Engineering Materials,2011,13(4):356-360.
    [81] O'NEILL L D, ZHANG H, BRADSHAW D. Macro-/microporous MOF composite beads [J].Journal of Materials Chemistry,2010,20(27):5720-5726.
    [82] LIU K, YOU H, ZHENG Y, et al. Facile shape-controlled synthesis of luminescent europiumbenzene-1,3,5-tricarboxylate architectures at room temperature [J]. CrystEngComm,2009,11(12):2622-2628.
    [83] LIU K, YOU H, JIA G, et al. Coordination-Induced Formation of One-DimensionalNanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State ThermalTransformation [J]. Crystal Growth&Design,2009,9(8):3519-3524.
    [84] RIETER W J, POTT K M, TAYLOR K M L, et al. Nanoscale Coordination Polymers forPlatinum-Based Anticancer Drug Delivery [J]. Journal of the American Chemical Society,2008,130(35):11584-11585.
    [85] RIETER W J, TAYLOR K M L, AN H, et al. Nanoscale Metal Organic Frameworks asPotential Multimodal Contrast Enhancing Agents [J]. Journal of the American ChemicalSociety,2006,128(28):9024-9025.
    [86] TAYLOR K M L, RIETER W J, LIN W. Manganese-Based Nanoscale Metal OrganicFrameworks for Magnetic Resonance Imaging [J]. Journal of the American Chemical Society,2008,130(44):14358-14359.
    [87] WHITESIDES G M, GRZYBOWSKI B. Self-Assembly at All Scales [J]. Science,2002,295(5564):2418-2421.
    [88] JACOBS H O, TAO A R, SCHWARTZ A, et al. Fabrication of a Cylindrical Display byPatterned Assembly [J]. Science,2002,296(5566):323-325.
    [89] CLARIDGE S A, CASTLEMAN A W, KHANNA S N, et al. Cluster-Assembled Materials[J]. ACS Nano,2009,3(2):244-255.
    [90] LIU S, TANG Z. Polyoxometalate-based functional nanostructured films: Current progressand future prospects [J]. Nano Today,2010,5(4):267-281.
    [91] ZHANG T, SPITZ C, ANTONIETTI M, et al. Highly PhotoluminescentPolyoxometaloeuropate-Surfactant Complexes by Ionic Self-Assembly [J]. Chemistry-AEuropean Journal,2005,11(3):1001-1009.
    [92] JIANG M, ZHAI X, LIU M. Fabrication and Photoluminescence of Hybrid OrganizedMolecular Films of a Series of Gemini Amphiphiles and Europium(III)-ContainingPolyoxometalate [J]. Langmuir,2005,21(24):11128-11135.
    [93] JIANG M, ZHAI X, LIU M. Hybrid molecular films of gemini amphiphiles and Keggin-typepolyoxometalates: effect of the spacer length on the electrochemical properties [J]. Journal ofMaterials Chemistry,2007,17(2):193-200.
    [94] STEIN A, FENDORF M, JARVIE T P, et al. Salt-Gel Synthesis of Porous Transition-MetalOxides [J]. Chemistry of Materials,1995,7(2):304-313.
    [95] TAGUCHI A, ABE T, IWAMOTO M. Non-Silica-Based Mesostructured Materials:Hexagonally Mesostructured Array of Surfactant Micelles and11-TungstophosphoricHeteropoly Anions [J]. Advanced Materials,1998,10(9):667-669.
    [96] NYMAN M, INGERSOLL D, SINGH S, et al. Comparative Study of Inorganic Cluster-Surfactant Arrays [J]. Chemistry of Materials,2005,17(11):2885-2895.
    [97] JIN Y, BI L, SHAO Y, et al. Robust Core-Shell Supramolecular Assemblies Based onCationic Vesicles and Ring-Shaped {Mo154} Polyoxomolybdate Nanoclusters:Template-Directed Synthesis and Characterizations [J]. Chemistry-A European Journal,2004,10(13):3225-3231.
    [98] LI H, SUN H, QI W, et al. Onionlike Hybrid Assemblies Based on Surfactant-EncapsulatedPolyoxometalates [J]. Angewandte Chemie International Edition,2007,46(8):1300-1303.
    [99] CLEMENTE-LEóN M, MINGOTAUD C, AGRICOLE B, et al. Application of theLangmuir-Blodgett Technique to Polyoxometalates: Towards New Magnetic Films [J].Angewandte Chemie International Edition in English,1997,36(10):1114-1116.
    [100] BU W, LI H, SUN H, et al. Polyoxometalate-Based Vesicle and Its HoneycombArchitectures on Solid Surfaces [J]. Journal of the American Chemical Society,2005,127(22):8016-8017.
    [101] SUN H, LI H, BU W, et al. Self-Organized Microporous Structures Based onSurfactant-Encapsulated Polyoxometalate Complexes [J]. The Journal of Physical ChemistryB,2006,110(49):24847-24854.
    [102] FAN D, JIA X, TANG P, et al. Self-Patterning of Hydrophobic Materials into HighlyOrdered Honeycomb Nanostructures at the Air/Water Interface [J]. Angewandte ChemieInternational Edition,2007,46(18):3342-3345.
    [103] BU W, LI H, LI W, et al. Surfactant-Encapsulated Europium-Substituted Heteropolyoxo-tungstates: Structural Characterizations and Photophysical Properties [J]. The Journal ofPhysical Chemistry B,2004,108(34):12776-12782.
    [104] LI W, YI S, WU Y, et al. Thermotropic Mesomorphic Behavior of Surfactant-EncapsulatedPolyoxometalate Hybrids [J]. The Journal of Physical Chemistry B,2006,110(34):16961-16966.
    [105] ZHANG H, LIN X, YAN Y, et al. Luminescent logic function of a surfactant-encapsulatedpolyoxometalate complex [J]. Chemical Communications,2006,4575-4577.
    [106] ZHANG T, LIU S, KURTH D G, et al. Organized Nanostructured Complexes ofPolyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism [J].Advanced Functional Materials,2009,19(4):642-652.
    [107] QI W, WANG Y, LI W, et al. Surfactant-Encapsulated Polyoxometalates as ImmobilizedSupramolecular Catalysts for Highly Efficient and Selective Oxidation Reactions [J].Chemistry-A European Journal,2010,16(3):1068-1078.
    [108] MORIGUCHI I H K, HOSHIKUMA A, TERAOKA Y, KAGAWA S. Novel MultibilayerFilm Incorporating Electro-and Photo-Chemically Active Decatungstate Anion [J].Chemistry Letters,1994,691-694.
    [109] YAMASE T. Anti-tumor,-viral, and-bacterial activities of polyoxometalates for realizingan inorganic drug [J]. Journal of Materials Chemistry,2005,15(45):4773-4782.
    [110] WANG X, LIU J, POPE M T. New polyoxometalate/starch nanomaterial: synthesis,characterization and antitumoral activity [J]. Dalton Transactions,2003,957-960.
    [111] MEI NER T, BERGMANN R, OSWALD J, et al. Chitosan-encapsulated Keggin Anion
    [Ti2W10PO40]7-,Synthesis,Characterization and Cellular Uptake Studies [J]. TransitionMetal Chemistry,2006,31(5):603-610.
    [112] YANG Y, HE J, WANG X, et al. Preparation, characterization and in vitro antitumoralactivity of a nanosize liposome complex encapsulated polyoxotungstate K6H2[CoW11TiO40][J]. Transition Metal Chemistry,2004,29(1):96-99.
    [113] WANG X, LI F, LIU S, et al. New liposome-encapsulated-polyoxometalates: synthesis andantitumoral activity [J]. Journal of Inorganic Biochemistry,2005,99(2):452-457.
    [1] ROY X, THOMPSON L K, COOMBS N, et al. Mesostructured Prussian Blue Analogues [J].Angewandte Chemie International Edition,2008,47(3):511-514.
    [2] CHOI E-Y, GAO C, LEE H-J, et al. Transformation of framework solids into processablemetallo-polymers [J]. Chemical Communications,2009,48):7563-7565.
    [3] QIU L-G, XU T, LI Z-Q, et al. Hierarchically Micro-and Mesoporous Metal–OrganicFrameworks with Tunable Porosity [J]. Angewandte Chemie International Edition,2008,47(49):9487-9491.
    [4] SUN L-B, LI J-R, PARK J, et al. Cooperative Template-Directed Assembly of MesoporousMetal-Organic Frameworks [J]. Journal of the American Chemical Society,2011,134(1):126-129.
    [5] ZHAO Y, ZHANG J, HAN B, et al. Metal-Organic Framework Nanospheres with Well-Ordered Mesopores Synthesized in an Ionic Liquid/CO2/Surfactant System [J]. AngewandteChemie,2011,123(3):662-665.
    [6] LI X, CAO R, SUN D, et al. Syntheses and Characterizations of Zinc(II) CompoundsContaining Three-Dimensional Interpenetrating Diamondoid Networks Constructed by MixedLigands [J]. Crystal Growth&Design,2004,4(4):775-780.
    [7]毛卫民.材料的晶体结构原理[M].北京;冶金工业出版社.2007.
    [8] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [9] RYOO R, JUN S. Improvement of Hydrothermal Stability of MCM-41Using Salt Effectsduring the Crystallization Process [J]. The Journal of Physical Chemistry B,1997,101(3):317-320.
    [10] BELLAMY L J. The Infrared Spectra of Complex Molecules [M]. New York: Wiley,1958.
    [11] ABOURAHMA H, MOULTON B, KRAVTSOV V, et al. Supramolecular Isomerism inCoordination Compounds:Nanoscale Molecular Hexagons and Chains [J]. Journal of theAmerican Chemical Society,2002,124(34):9990-9991.
    [12] CHUI S S-Y, LO S M-F, CHARMANT J P H, et al. A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(5405):1148-1150.
    [13] CARA BOVET A R B. EPR Spectroscopy: An Overview [J].2009.
    [14] LANCASTER G. Electron Paramagnetic Resonance(A Review)[J]. JOURNAL OFMATERIALS SCIENCE,1967,489-495.
    [15] UITERKAMP A J M S, VAN DER DEEN H, BERENDSEN H C J, et al. Computersimulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitric oxide-and nitrite-treated hemocyanins and tyrosinase [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1974,372(2):407-425.
    [16] JIANG Y, HUANG J, KASUMAJ B, et al. Adsorption Desorption Induced StructuralChanges of Cu-MOF Evidenced by Solid State NMR and EPR Spectroscopy [J]. Journal ofthe American Chemical Society,2009,131(6):2058-2059.
    [17] ZHAO D, TAN S, YUAN D, et al. Surface Functionalization of Porous CoordinationNanocages Via Click Chemistry and Their Application in Drug Delivery [J]. AdvancedMaterials,2011,23(1):90-93.
    [18] LARSEN R W, MCMANUS G J, PERRY, et al. Spectroscopic Characterization ofHydroxylated Nanoballs in Methanol [J]. Inorganic Chemistry,2007,46(15):5904-5910.
    [19] CHE S, LIM S, KANEDA M, et al. The Effect of the Counteranion on the Formation ofMesoporous Materials under the Acidic Synthesis Process [J]. Journal of the AmericanChemical Society,2002,124(47):13962-13963.
    [1] LYU S C, ZHANG Y, LEE C J, et al. Low-Temperature Growth of ZnO Nanowire Array by aSimple Physical Vapor-Deposition Method [J]. Chemistry of Materials,2003,15(17):3294-3299.
    [2] VAYSSIERES L, KEIS K, HAGFELDT A, et al. Three-Dimensional Array of HighlyOriented Crystalline ZnO Microtubes [J]. Chemistry of Materials,2001,13(12):4395-4398.
    [3] GUO L, JI Y L, XU H, et al. Regularly Shaped, Single-Crystalline ZnO Nanorods withWurtzite Structure [J]. Journal of the American Chemical Society,2002,124(50):14864-14865.
    [4] YAN Y, LIU P, WEN J G, et al. In-Situ Formation of ZnO Nanobelts and Metallic ZnNanobelts and Nanodisks [J]. The Journal of Physical Chemistry B,2003,107(36):9701-9704.
    [5] XIA H-L, TANG F-Q. Surface Synthesis of Zinc Oxide Nanoparticles on Silica Spheres:Preparation and Characterization [J]. The Journal of Physical Chemistry B,2003,107(35):9175-9178.
    [6] YAN H, HE R, PHAM J, et al. Morphogenesis of One-Dimensional ZnO Nano-andMicrocrystals [J]. Advanced Materials,2003,15(5):402-405.
    [7] ISMAIL A F, DAVID L I B. A review on the latest development of carbon membranes for gasseparation [J]. Journal of Membrane Science,2001,193(1):1-18.
    [8] CARO J, NOACK M, K LSCH P, et al. Zeolite membranes-state of their development andperspective [J]. Microporous and Mesoporous Materials,2000,38(1):3-24.
    [9] VAN DE GRAAF J M, VAN DER BIJL E, STOL A, et al. Effect of Operating Conditions andMembrane Quality on the Separation Performance of Composite Silicalite-1Membranes [J].Industrial&Engineering Chemistry Research,1998,37(10):4071-4083.
    [10] STOCK N, BISWAS S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to VariousMOF Topologies, Morphologies, and Composites [J]. Chemical Reviews,2011,112(2):933-969.
    [11] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscalecarriers as a potential platform for drug delivery and imaging [J]. Nat Mater,2010,9(2):172-178.
    [12] LARSEN R W, MCMANUS G J, PERRY, et al. Spectroscopic Characterization ofHydroxylated Nanoballs in Methanol [J]. Inorganic Chemistry,2007,46(15):5904-5910.
    [13] ABOURAHMA H, COLEMAN A W, MOULTON B, et al. Hydroxylated nanoballs:synthesis, crystal structure, solubility and crystallization on surfaces [J]. ChemicalCommunications,2001,2380-2381.
    [14] LIU K, YOU H, JIA G, et al. Coordination-Induced Formation of One-DimensionalNanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State ThermalTransformation [J]. Crystal Growth&Design,2009,9(8):3519-3524.
    [15] G. BORKOW AND J. GABBAY. Copper as a Biocidal Tool [J]. Current MedicinalChemistry,2005,(12):2163-2175.
    [16] TONIGOLD M, HITZBLECK J, BAHNMULLER S, et al. Copper(II) Nanoballs asmonomers for polyurethane coatings: synthesis, urethane derivatization and kinetic stability[J]. Dalton Transactions,2009,(8):1363-1371.
    [17] TONIGOLD M, VOLKMER D. Comparative solvolytic stabilities of copper(II) nanoballsand dinuclear Cu(II) paddle wheel units [J]. Inorganica Chimica Acta,2010,363(15):4220-4229.
    [18] MARTIN R L, WHITLEY A.279. Magnetic studies with copper(II) salts. Part III. Theconstitution of copper(II)n-alkanoates in solution [J]. Journal of the Chemical Society(Resumed),1958,1394-1402.
    [19] ZHAO D, TAN S, YUAN D, et al. Surface Functionalization of Porous CoordinationNanocages Via Click Chemistry and Their Application in Drug Delivery [J]. AdvancedMaterials,2011,23(1):90-93.
    [20] LI J-R, ZHOU H-C. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra [J]. Nat Chem,2010,2(10):893-898.
    [1]王结良,朱光明,梁国正,赵雯,吕生华.自组装制备纳米材料的研究现状[J].材料导报,2003,17(7):67-69.
    [2] LIU S, TANG Z. Polyoxometalate-based functional nanostructured films: Current progressand future prospects [J]. Nano Today,2010,5(4):267-281.
    [3] ZHAO D, TAN S, YUAN D, et al. Surface Functionalization of Porous CoordinationNanocages Via Click Chemistry and Their Application in Drug Delivery [J]. AdvancedMaterials,2011,23(1):90-93.
    [4] MOHOMED K, ABOURAHMA H, ZAWOROTKO M J, et al. Persistent interactionsbetween hydroxylated nanoballs and atactic poly(2-hydroxyethyl methacrylate)(PHEMA)[J].Chemical Communications,2005,26):3277-3279.
    [5] FURUKAWA H, KIM J, OCKWIG N W, et al. Control of Vertex Geometry, StructureDimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of CrystallineMetal Organic Frameworks and Polyhedra [J]. Journal of the American Chemical Society,2008,130(35):11650-11661.
    [6] JUNG M, KIM H, BAEK K, et al. Synthetic Ion Channel Based on Metal–Organic Polyhedra[J]. Angewandte Chemie International Edition,2008,47(31):5755-5757.
    [7] LI J-R, TIMMONS D J, ZHOU H-C. Interconversion between Molecular Polyhedra andMetal Organic Frameworks [J]. Journal of the American Chemical Society,2009,131(18):6368-6369.
    [8] FURUKAWA H, KIM J, PLASS K E, et al. Crystal Structure, Dissolution, and Deposition ofa5nm Functionalized Metal Organic Great Rhombicuboctahedron [J]. Journal of theAmerican Chemical Society,2006,128(26):8398-8399.
    [9] LI D, ZHOU W, LANDSKRON K, et al. Viral-Capsid-Type Vesicle-Like StructuresAssembled from M12L24Metal-Organic Hybrid Nanocages [J]. Angewandte ChemieInternational Edition,2011,50(22):5182-5187.
    [10] WIDAWSKI G, RAWISO M, FRANCOIS B. Self-organized honeycomb morphology ofstar-polymer polystyrene films [J]. Nature,1994,369(6479):387-9.
    [11] BLOCK M J. Surface Tension as the Cause of Benard Cells and Surface Deformation in aLiquid Film [J]. Nature,1956,178(4534):650-651.
    [12] BUNZ U H F. Breath Figures as a Dynamic Templating Method for Polymers andNanomaterials [J]. Advanced Materials,2006,18(8):973-989.
    [13] SAUNDERS A E, SHAH P S, SIGMAN M B, et al. Inverse Opal Nanocrystal SuperlatticeFilms [J]. Nano Letters,2004,4(10):1943-1948.
    [14] BEATTIE D, WONG K H, WILLIAMS C, et al. Honeycomb-Structured Porous Films fromPolypyrrole-Containing Block Copolymers Prepared via RAFT Polymerization as a Scaffoldfor Cell Growth [J]. Biomacromolecules,2006,7(4):1072-1082.
    [15] MCMANUS G J, WANG Z, ZAWOROTKO M J. Suprasupermolecular Chemistry: InfiniteNetworks from Nanoscale Metal-Organic Building Blocks [J]. Crystal Growth&Design,2003,4(1):11-13.
    [16] LI J-R, ZHOU H-C. Bridging-ligand-substitution strategy for the preparation ofmetal–organic polyhedra [J]. Nat Chem,2010,2(10):893-898.
    [17] VOLKMER D, DU CHESNE A, KURTH D G, et al. Toward Nanodevices:Synthesis andCharacterization of the Nanoporous Surfactant-Encapsulated Keplerate (DODA)40(NH4)2
    [(H2O)nMo132O372(CH3COO)30(H2O)72][J]. Journal of the American Chemical Society,2000,122(9):1995-1998.
    [18] STOWELL C, KORGEL B A. Self-Assembled Honeycomb Networks of Gold Nanocrystals[J]. Nano Letters,2001,1(11):595-600.
    [19] NISHIKAWA T, NONOMURA M, ARAI K, et al. Micropatterns Based on Deformation of aViscoelastic Honeycomb Mesh [J]. Langmuir,2003,19(15):6193-6201.
    [20] STEYER A, GUENOUN P, BEYSENS D, et al. Two-dimensional ordering during dropletgrowth on a liquid surface [J]. Physical Review B,1990,42(1):1086-1089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700