用户名: 密码: 验证码:
PVC的工程化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查阅、分析大量的有关通用塑料工程化技术、聚合物基纳米复合材料、PVC结晶、PVC共混改性、PVC与纳米CaCO_3复合改性等资料的基础上,提出了用结晶PVC微粉自增塑、自增韧增强PVC提高PVC的加工性能、力学性能和耐热性,并通过受限原位复合方法制备PVC/纳米CaCO_3复合材料来实现PVC的工程化。通过结晶改性、PA6共混复合及原位复合纳米CaCO_3填充等技术对PVC的工程化进行了研究,分析了共混工艺、结晶条件、原位复合等条件下改性PVC复合材料的结构、组成与性能的关系,获得了以下研究成果:
     1.PA6与SMA在苯酚溶液中反应,可将SMA接枝到PA6分子链上。当反应物中SMA用量为60%,在100℃下反应时间8hr,接枝率最大为5.12%。PA6-g-SMA的熔点随其接枝率的升高而降低,当接枝率为5.12%时,熔点197.0℃。PA6-g-SMA能与PVC熔融共混,解决了PA6与PVC不能熔融加工的难题。
     2.PA6-g-SMA对PVC有增韧增强作用。当PA6-SMA接枝率为5.12%,添加量为15%时,共混物的冲击强度为64.7kJ/m~2,为基体树脂的161.7%;拉伸强度为55MPa,为基体树脂的148.6%。PVC/PA6-g-SMA共混物中有共晶生成。说明PA6-g-SMA能作为PVC的异相成核剂诱使无规PVC分子链结晶。
     3.以PA6-g-SMA作为PVC的异相成核剂,在适当的热处理条件下,可以诱导无规PVC结晶。当PA6-g-SMA用量为PVC原料的2%,在110℃下处理2小时,PVC结晶度最高达到了30.4%。
     4.使用改进的重力加料式流化床对撞式气流粉碎机对结晶PVC进行粉碎,制备了结晶PVC微粉,且产率较大。结晶PVC微粉内的晶粒尺寸约78nm,熔点为128℃。其形成机理可以用晶区碰撞破碎机理和晶片剪切滑移机理来解释。
     5.结晶PVC微粉对PVC具有较强的自增塑、自增韧增强作用,也具有提高PVC耐热性的作用。在PVC微粉添加量为10%时,结晶PVC微粉/PVC复合材料的玻璃化温度达到了90℃,冲击强度达到为70.3kJ/m~2;在结晶PVC微粉用量为5%时,拉伸强度达到57.3MPa。自增塑机理可用结晶PVC微粉晶粒解缠状态及速度梯度解释,其自增韧增强机理及提高耐热性机理可用PVC晶核异相作用解释。
Based on the reviews with plenty of references about the engineering technology of general plastics, nanoparticles/polymer composites, the crystallization behavior of poly(vinyl chloride)(PVC), modifying PVC by the way of blending with another polymer and mixing with nanometer CaCO_3 (nanoCaCO_3) , the new idea that engineering PVC materials may be prepared because of the effect of self-plasticization, self-toughening and self-reinforcement of nanocrystalline PVC on PVC is raised. Other new idea that high performance PVC/nanoCaCO_3 composites may be prepared through in-situ preparing nanoCaCO_3 is also raised. The three engineering technology of modifying by crystallization, blending with polyamide 6(PA6) grafted styrene-maleic anhydride (SMA) (PA6-g-SMA) and compositing with in situ prepared nanoCaCO_3 were studied respectively. The structure, morphology, composition and properties of modified PVC compounds and composites were investigated systematically. The main results obtained can be summarized in 15 parts as follow:(1) SMA can be grafted to molecular chain of PA6 by reaction between PA6 and SMA in phenol solution. The maximal grafting ratio of PA6-g-SMA can reach 5.12% when PA6 are reacted with 60% SMA for 8 hour at 100℃.The melting point of PA6-g-SMA decrease when it's grafting ratio increase. The melting point of PA6-g-SMA with 5.12% grafting ratio is 197℃. PA6-g-SMA can mix with PVC at 185℃ to prepare PVC/PA6-g-SMA compounds, it is said that, the problem of no way of PVC mixing with PA6 is solved.(2) PA6-g-SMA can toughen and reinforce PVC. The impact strength of PVC/PA6-g-SMA compound can reach 64.7kJ/m~2, which is 61.7% higher than that of pure PVC when the use level of PA6-g-SMA whose grafting ratio is 5.12% is 15%. The tensile strength of above mentioned materials can reach 55.0MPa, about 48.6% higher than that of pure PVC. Cocrystalline can found in PVC/PA6-g-SMA materials, it is suggested that PA6-g-SMA can used as nucleating agent of PVC and induce PVC crystallize.(3) After appropriate heat treated, unregulated PVC can crystallize when modified nylon uses as out-of-phase nucleating agent. The maximal crystallinity of PVC reaches 30.4% when raw PVC mixed with 2% modified nylon and heated for 2hr at 110℃.(4) Crystalline PVC can be crashed by improved flow clash crashing machine to prepare crystalline PVC micro powder effectively. The grain size of nanocrystalline in crystalline PVC micro powder is 80 nm. The melting point of nanocrystalline PVC is 128℃. The mechanism and
    decisive factor of forming nanocrystalline PVC can be simulated by the crashing broken principle schematic plan of crystalline region model and shearing slip principle schematic plan of crystal plate model.(5) Nanocrystalline PVC has obvious effect of self-plasticization, self-toughen and self-reinforcement on PVC. Nanocrystalline PVC can also improve the heat-resisting property of PVC. The impact strength of PVC/nanocrystalline PVC materials can reach 70.3kJ/m2, at the same time;the glass transition temperate of the composite can reach 90 °C when 10% nanocrystalline PVC are dispersed to PVC matrix. The tensile strength of PVC/nanocrystalline PVC composite can reach 57.3MPa when 5% nanocrystalline PVC are dispersed to PVC matrix. The mechanism and decisive factor of self-plasticization can be simulated by being relieving from wrapping model and inducing molecular to relief from wrapping through generating velocity gradient model. The mechanism and decisive factor of self-toughen but self-reinforcement also improving the heat-resisting property of PVC can be simulated by out-of-phase nucleating of crystal nucleus model.(6) Microporous PVC with pore size of 0.2-2micron can be obtained by foaming of suspension PVC powders using the solution of 2, 2'-azo-bis-iso-butyronitrile in butanone when heated in 112°C oil bath for 8min. The pore of microporous PVC can be used as reactors to in-situ restricted prepare nanoCaCO3(7) It is found that macromolecular surface-activator and chelating agent of citric acid play a key role in the formation of CaCO3 nanoparticles through affecting the yield and particle size of in-situ prepared nanoCaCO3 The maximal yield can reach 10% when 18% Ca(OH)2, 0.18% macromolecular surface-activator and 0.5% citric acid are used and CO2 aerates for 15min at the velocity of 0.25L/min.(8) It is found that in-situ nanoCaCC>3 has obvious effect of toughen and reinforcement on PVC and can also increase the glass transition temperate of PVC. The impact strength of PVC/in-situ nanoCaC03 composites can reach 90.6kJ/m2, which is 93% higher than that of pure PVC when 5% in-situ nanoCaCO3 are dispersed to PVC matrix. The tensile strength of above mentioned PVC/in-situ nanoCaC03 composites can reach 70.2 MPa, which is 63% higher than that of pure PVC. The glass transition temperate of above mentioned PVC/in-situ nanoCaCO3 composites can reach 89.4°C.(9) It is found that in-situ nanoCaCO3 and nanocrystalline PVC have obvious synergistic effect of toughen and reinforcement on PVC and can also increase the glass transition temperate
    of PVC. The impact strength of nanocrystalline PVC/PVC/in-situ nanoCaC03 composites can reach 96.5kJ/m2, which is 105% higher than that of pure PVC when 10% nanocrystalline PVC and 5% in-situ nanoCaCO3 are dispersed to PVC matrix. The tensile strength of above mentioned nanocrystalline PVC/PVC/in-situ nanoCaC03 composites can reach 95.0 MPa, which is 121% higher than that of pure PVC. The glass transition temperature of above mentioned nanocrystalline PVC/PVC/in-situ nanoCaC03 composites can reach 105.68 °C(10) PVC plastics can be used as sectional material and tubular product when PVC is modified by both nanocrystalline PVC and in-situ nanoCaCO3 The maximal impact strength of PVC sectional material can reach 85kJ/m2;its maximal tensile strength can reach 78MPa when 10% nanocrystalline PVC and 5% in-situ nanoCaC03 are dispersed to PVC matrix. The maximal impact strength of tubular product material can reach 83kJ/m2;its maximal tensile strength can reach 75MPa when 10% nanocrystalline PVC and 5% in-situ nanoCaCO3 are dispersed to PVC matrix. The vicat softening point of sectional material and tubular product can reach 110 °C.
引文
[1]. Chuanxi Xiong, shengjun Lu, et al. Microporous polyvinyl chloride: novel reactor for PVC/CaCO_3 nanocomposites. Nanotechnology. 2005, 16, 1787-1792
    [2].高军刚,杨丽庭,李燕芳.改性聚氯乙烯新材料.化学工业出版社.2002.10
    [3]. J. Marjolijn C. Knot, Jan C. M. van den Ende, Philip J. Vergragt. Flexibility strategies for sustainable technology development. Technovation, 2001, (21): 335-343
    [4].张祖钧.我国氯碱与PVC行业发展趋势.化工技术经济,2005,23 (5):8-15
    [5].邴涓林,朱平,李承志.国内聚氯乙烯行业发展前景分析.聚氯乙烯,2005,6:1-6
    [6].钱伯章,朱建芳.聚氯乙烯的市场分析和技术进展(上).上海化工,2005,30 (1):80-83
    [7].吴星,张智慧,肖厚忠.北京市多层住宅建筑的物化环境影响研究.清华大学学报(自然科学版),2005,45 (6):721-725
    [8].苏存荣,张记市.漫谈生态建材与绿色建筑.中国建材,2005,3:55-56
    [9].杨忠久.我国PVC塑料异型材与门窗发展趋势.化学建材,2004,10:17-20
    [10].高立新.我国塑料管发展对策研究.新型建筑材料,2000,2:15-17
    [11].赵吉立.浅谈塑料门窗的使用及发展前景.山西建筑,2001,27 (3):76-77
    [12].杨涛.润滑剂在PVC异型材配方中的重要作用.聚氯乙烯,2005,6:31-34
    [13].刘长功,崔科增等.我国PVC化学建材市场状况.新型建筑材料,2001,1:26-29
    [14]. E. Crawford, J. Lesser. Mechanics of rubber particle cavitation in toughened polyvinylchloride (PVC). Polymer, 2000, 41: 5865-5860
    [15]. Kaczmarek H, Kowalonek J, Oldak D. The influence of UV-irradiation on poly(vinyl chloride) modified by iron and cobalt chlorides. Polymer Degradation and Stability, 2003, 79: 231-240
    [16]. Kelnar I, Schatz M. Silane Crosslinking of PVC. Ⅱ. Influence of Silane Type and Conditions on Crosslinking by Water. J Appl Polym Sci, 1993, (48): 669-676
    [17].罗延龄,赵振兴.高分子辐射交联技术及研究进展.高分子通报,1999,(4):88-98
    [18].吴培熙,张留城主编.聚合物共混改性.北京:中国轻工业出版社,1996
    [19]. John T, Ldtz J R. Impact modifiers for PVC. J of Vinyl Technology, 1993, 15(2): 82-99
    [20]. Manoj N R, Depp J. Self-crosslinkable plastic-rubber blend system based on PVC and acrylonitrile-co-butadiene rubber. J Appl Polym Sci, 1993, 49(1): 132-136
    [21]. Lee B L. Mechanically compatible, polyphase blend of poly (vinyl chloride), chlorinated polyolefin, polyolefin, and graft copolymer of polyolefin, and rigid fiber reinforced composite [P]. Us, 4767817. 1988-08-30
    [22]. Liu Zhehui, Zhu Yiaoguang, Wu Lixin, et al. Effects of interracial adhesion on the rubber toughening ofpoly(vinyl chloride)Ⅰ: Impact tests. Polymer, 2001, 42(2): 737-746
    [23]. Breuer H, Haaf F, Stabenow J J. Stress whitening and yielding mechanism of rubber modified PVC. Macromol Sci Phys, 1977, B14(3): 387-417
    [24]. Dompas D, Groeninckx G, Isogawa M, et al. Cavitation versus debonding during deformation of rubber modified poly(vinyl chloride)Polymer, 1995, 36(3): 437-443
    [25]. Robin Madgwick, Bernard Cora New impact modifier improves mechanical and physical properties of vingl profiles. Plastics Additive and Compounding, 2002, 4(9): 16-18
    [26]. Michler G H, Bucknall C B. Blends containing core-shell impact modifiers. Plastics, Rubber and Composites, 2001, 30(3): 110-115
    [27].Lesser A J, Crawford E. Mechanics of rubber particle cavitation in toughened polyvinyl chloride(PVC). Poly me r, 2000, 41(7): 5865-5870
    [28].彭晓翊,陈军,倪海鹰,等.CPE与ACR或MBS复合增韧R-PVC体系的流变性能研究.中国塑料,1998,12(3):30-33
    [29].方少明,张玉花,杨小青,等.SBS及Elvaloy 741用于PVC共混改性体系的研究.现代塑料加工应用,1998,10(2):1-3
    [30].方少明, 刘军侠, 刘军平.滑石粉填充PVC/NR、PVC/Elvaloy741和PVC/Elvaloy741/NR三种共混体系研究.塑料科技,1998,(5):16-20
    [31]. Koo Kong Khen, Inoue Takashi, Miyasaka Keizo. Toughened plastics consisting of brittle particles andductile matrix. Polymer Engineering and Science, 1985, 25(12): 741-756
    [32]. Nakamura Y, Kanbe M, Takekuni E;et al. Effects of particle size and interfacial slope structure on the mechanical and fracture properties of PVC filled with crosslinked PMMA particles. Compos Interf (Netherlands), 2001, 8: 367-381
    [33].熊英,陈光顺,郭少云.聚氯乙烯增韧改性研究进展.聚氯乙烯,2004,(2):1-6
    [34]. Ruiz-Hitzky E, Arabda P, Casal B, et al. Nanocomposite materials with controlled ion mobility.AdvMater, 1995, 7(2): 180-191
    [35]. S. W. Shang, J. W. Williams, K. J. M. Soderholm, Work of adhesion influence on the rheological properties of silica filled polymer composites. Journal of Materials Science, 1995, 30: 4323-4334
    [36]. W. Chen, Q. Xu, R. Z. Yuan, The influence of polymer state on the electrical properties of polymer/layered-silicate nanocomposites, Composites Science and Technology, 2001, 61: 935-939
    [37]. Peter C. LeBaron, Zhen Wang, Thomas J. Pinnavaia, Polymer-layered silicate nanocomposites: an overview, Applied Clay Science, 1999, 15: 11-29
    [38].胡圣飞,严海标,王燕舞.纳米级CaCO_3填充PVC/CPE复合材料研究.塑料工业,2000,28(1): 14-15
    [39].曾晓飞,等.纳米CaCO_3/PVC共混体系的研究.塑料科技,2001,(3):1-3
    [40].田满红,郭少云.纳米SiO_2增强增韧聚氯乙烯复合材料的研究.聚氯乙烯,2003,(1):26-32
    [41].吴学明,王兰,黄建忠,等.硅灰石填充改性硬质聚氯乙烯的研究.中国塑料,2002,16(1):28-32
    [42]. Stevenson J C. Impact modifiers: Providing a boost to impact performance. J of Vinyl & Additive Technology, 1995, 1(1): 41-45
    [43].裘铎明,吴其晔.PVC/ABS/SAN三元共混物共混工艺的初步探讨.塑料 1992.21(5):7-11
    [44].苏妤,黄锐,蔡碧华,等.纳米级无机填料在炭黑填充硬质聚氯乙烯中的作用.中国塑料,1998,(4):22-26
    [45].吕彦梅,唐华杰.刚性增韧材料.塑料科技,1999,(1):33-37
    [46].陈绪煌,徐声钧.刚性有机粒子对PVC/EVA共混体系改性的研究.塑料科技,1998,(4):25-28
    [47].曾晓飞,陈建峰,王国全.纳米级CaCO_3粒子与弹性体C P E微粒同时增韧PVC的研究.高分子学报,2002,(6):738-741
    [48].裘铎明,吴其晔,汤海波.超细CaCO_3对PVC/ABS二元体系增韧改性的探讨.聚氯乙烯,1993,(6):5-9
    [49].王淑英.刚性粒子对PVC/ABS体系增韧改性的研究.聚氯乙烯,1997,(1):28-33.
    [50].吴立波,华幼卿,黄玉强.纳米级CaCO_3对聚氯乙烯/丙烯酸酯橡胶的增韧改性.北京化工大学学报,2001,28(2):89-91
    [51].万超瑛,乔秀颖,张勇,等.增韧聚氯乙烯/蒙脱土复合材料的结构与性能.中国塑料,2003,17(4):39~42
    [52]. Z. M. Xiao, B. J. Chen. A screw dislocation interacting with inclusions in fiber-reinforced composites. Actamechanica, 2002, 155(3-4): 203-214
    [53]. A. A. Moslemi, Emerging Technologies in Mineral-Bonded Wood and Fiber Composites. Advanced performance materials, 1999, 6(2): 161-179
    [54]. Wu, H. F., Dwight, D. W., Huff, N. T. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Composites Science and Technology, 1997, 57(8): 975-983
    [55].叶林忠,吴其哗,李晓明,等.短纤维/R-PVC复合材料的增韧改性研究.塑料,1993,22(3):35-38
    [56].于德梅,谢大荣,陈海峰.尼龙短纤维增强PVC复合材料研究.高分子材料科学与工程,1997, 13(2):113-115
    [57].于德梅,尼龙短纤维填充PVC体系流变性能研究.高分子材料科学与工程,1997,13(3): 115-118
    [58].熊传溪,罗杨云,等.辉绿岩纤维增强PVC复合材料.复合材料学报,2004,21(5):52-55
    [59]. Matuana Laurent M, Park Chul B, et al. Cell Morphology and property Relationships of Microcellular Foamed PVC/Wood-Fiber Composites. Polymer Engineering and Science, 1998, 38 (11): 1862-1872
    [60]. Fatih Mengeloglu. Effects of Impact Modifiers on the Properties of Rigid PVC/Wood-Fiber Composites. Journal of vinyl & additive technology, 2000, 6(3): 153-157
    [61].王敏,邹海魁,陈建峰.晶须CaCO_3超重力法制备及其在PVC中的应用.金属矿山,2005,343 (1):48-50
    [62].刘宁,樊友兵,何党庆.碳酸钙晶须对聚合物流变性能的影响.绝缘材料,2003,(1):5-8
    [63].戴芳,柳洪超,孙安垣.2004年我国热塑性工程塑料进展.工程塑料应用,2005,32(4):56-62
    [64].戴芳,柳洪超,孙安垣等.2004年我国热塑性工程塑料进展.工程塑料应用,2004,32(4): 60-66
    [65].苑会林.通用塑料工程化的进展.工程塑料应用,2000,28(12):39-41
    [66]. Li Zhen, Guo Shaoyun, Song Wentao, et al. Effect of interfacial interaction on morphology and mechanical properties of PP/POE/BaSO_4 ternary composites. J Mater Sci, 2003, 38(8): 1793-1802
    [67]. Premphet K, Horanont P. Phase structure and property relation-ships in ternary polypropylene/elastomer/filler composites: Effect of elastomer polarity. J Appl Polym Sci, 2000, 76(13): 1 929-1939
    [68]. D. M. Hobbs F. J. Muzzio. Effects of Injection Location, Flow Ratio and Geometry on Kenics Mixer Performance. RICHE Journal, 1997, 12(43), 3121-3132.
    [69]. Ramkumar D H S, Bhattacharya. M. Effect of crystallinity on the mechanical properties. J Materials Sci, 1997, 32: 2565-2572
    [70].范文春,钱欣.聚丙烯工程化研究.塑料工业,2004,32(10):18-20
    [71]. Bashir Z., Keller A. Melt drawing as a route to high performance polyethylene. Colloid. Polym. Sci., 1989, 267: 116-121
    [72]. Bashir Z., Odell J. Polyethylene-polyethylene Microfibrillar Composites. J .Mater Sci., 1993, 28: 1081-1089
    [73].傅强,黄锐.高压结晶聚乙烯的形态结构.科学通报,1995,40(20):1909-1912
    [74].谭洪生,益小苏,邹湘坪.口模拉伸共聚高密度聚乙烯的动态力学分析.高分子材料科学与工程,2001,17(5):156-158
    [75]. Huang H .X. High Property High Density Polyethylene Extrudates Prepared by Self-Reinforcement. J Materials Science Letters, 1998, 17(7): 591-597
    [76].廖永衡,中开智.振动应力场对均相体系中聚合物结品行为的影响.塑料工业,2004.32(12):27-28
    [77]. Cho K, Saheb D N, Choi J, et al. Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene [J]. Polymer, 2002, 43:1 407-1 416
    [78].陈方生,高蕊,孙玉璞.高聚物球晶的研究.中国塑料,2000,14(4):48-52
    [79]. Kiwon Choa, Saheba D Nabi, Hoichang Yanga, et al. Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer, 2003, 44: 4053-4059
    [80]. Tian M W, Loos J. Investigations of Morphological Changes during Annealing. J Polym Sci Part B: Polym Phys, 2001, 39: 763-770
    [81].袁玉珍,景遐斌,姜炳政.聚乙烯单晶的退火效应.应用化学,1997,14(3):25-28
    [82]. Fujiyama M, Wakino T. Structures and properties of injection moldings of crystallization nucleator-added polypropylenes, Ⅱ: Distribution of higher order structures. J Appi Polym Sci, 1991, 42: 2749-2754
    [83]. Takahiko Kawaia, Ryota Lijimaa, Yuzo Yamamotob, et al. Crystal orientation of β-phase isotactic polypropylene induced by magnetic orientation of N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer, 2002, 43: 7301-7306
    [84].曹明,司丽,邹桂凤.成核剂对PP结晶行为及力学性能影响的研究 塑料科技,1996,(2):8-11
    [85]. Xie Fei, ZHANG Xiang-fu, ZHANG Yin-xi. Effect of nucleating agent on the structure and properties of polypropylene/poly (ethylene-octene) blends. European Polymer Journal, 2002, 38: 1-5
    [86].李炳海,陈勇,段凯生,等.UHMWPE/HDPE共混物的流动性及力学性能的研究.塑料工业,2003,31(9):9-12
    [87].张云灿,陈瑞珠,郑海宁,等.PP/EPDM/CaCO_3三元共混体系的脆韧转变研究.高分子材料科学与工程,1998,(5):128-130
    [88].杨军,王迪珍,李炳海等.PP/UHMWPE原位成纤复合材料的混炼及成型工艺研究.中国塑料,1999,13(11):34-38
    [89]. Kiyoshi Endo. Synthesis and structure of poly (vinyl chloride). Prog Polym Sci, 2002,27: 2021-2054
    [90].L.I.纳斯.聚氯乙烯大全第一卷,北京:化学工业出版社,1983,9.262
    [91]. Marshall R A. Effect of Crystallinity on PVC Physical Properties. Vinyl Techn, 1994, 16(1). 35
    [92]. John A. Manson, Stanley A. Iobst, Rodrigo Acosta. Preparation of poly (vinyl chloride) at low temperature by a photochemical method[J]. Journal o Polymer Science: Part A, 1972, 10: 179-186
    [93].包永忠,翁志学,黄志明,潘祖仁,等.聚合温度对聚氯乙烯树脂结构和性能的影响.高等学校化学学报, 1998,19(2):313-317
    [94]. M. Gilbert and K. E. Ansari. Structure-property Relationships in PVC Compression Moldings. Appl Polym Sci., 1982, 27: 2553-2561
    [95]. Grey and M. Gilbert. Structural Order in heat treated vinyl chloride polymers.Polymer, 1976, 17: 44-50
    [96]. Li, Tieqi and Qi, Kun. unusual crystallization peak of poly(vinly chloride). Journal of Applied Polymer Science 1997, 63(13): 1747-1754
    [97].黄志明,包永忠,翁志学,潘祖仁等.聚氯乙烯结晶行为研究.高分子材料科学与工程, 1998,14(4):78-81
    [98] 张美珍,王桂花,等.用红外光谱法研究聚氯乙烯的增塑机理.北京化工大学学报 2000,27(2):29-31
    [99] Acosta R A, et al. Effect of crystallinity on the grass transition behavior of plasticized polyvinyl chloride, polym prepr, 1971, 12: 745-753
    [100] Nakajima A, et al. Effect of heat history on viscoelastic properties of PVC compounds at processing temperature. Macromol. Sci., 1981, B20 (2): 257-263
    [101] 黄志明,包永忠,翁志学,潘祖仁等.微品交联网络结构对增塑聚氯乙烯性能的影响.高分子材料科学与工程 1999,15(2):109-112
    [102] WEI G X, SUE H J, CHU J, et al. Toughening and strengthening of polypropylene using the rigid-rigid polymer toughening concept Part Ⅰ. Morphology and mechanical property investigations. Polymer, 2000, 41(8): 2947-2952
    [103] WEt G X, SUE H J. Toughening and strengthening of polypropylene using the rigid-rigid polymer toughening concept Part Ⅱ. Toughening mechanisms investigations. Journal of Materials Science, 2000, 35(3): 555-561
    [104] Song M, Pang Y. Correlation among morphology interface and mechanical properties experimental study. Journal of macromolecules science physics, 2001, B 40(6): 1153.
    [105] Champagne M F, Huneault M A, Roux C, et al. Reactive compatibilization of polypropylene/polyethylene terephthalate blends. Polymer Engineering and Science, 1999, 39(6): 976-982
    [106] Godshall D, White G, Wilkes G L. Affect of compatibilizer molecular weight and malei-anhydride content on interfacial adhesionofpolypropylene-PA6 bi-component fibers. J Appl Polym Sci, 2001, 80(2): 130-141
    [107] Joachim Rosch, Rolf Milhaupt. Deformation behavior of polypropylene/polyamide blends. J Appl polym Sci, 1995 56(4): 1607-1613
    [108] David J Tucker, SLuzggyu Lee, Richard L Einsporn. A study of the effect of PP-g-SMA and SERS-SMA on the mechanical and morphological properties of polypropylene/nylon6 blends. Polym Eng Sci, 2000 40(2): 2577-2588
    [109] Tseng F P, Lin J J, Tseng C R et al. Poly (oxypropylene)-amide grafted polypropylene as novel compatibilize r for PP and PA6 blends. Polymer, 2001 42(2): 713-725
    [110] 程奎,沈经纬.PEHD/PA66原位复合材料的制备、形态与性能.中国塑料,2004,18(7):16-4
    [111] 杨鸣波,郑学晶,李忠明.增容剂对HDPE/PC共混体系性能的影州.工程塑 料应用,2002,30(2):1-4
    [112] 许国志,陈秀娟,熊慧,等.一步法多单体反应挤出PP/PA6增容体系研究.现代塑料加工应用,2004,16(5):1-4
    [113] 张良均,童身毅.PP-g-MAH增容PP/PA66共混物形态结构和性能.塑料科技,2004,161(3):35-36
    [114] 郑宁来.我国研制A B S及其合金的进展,工程塑料应用,1998,(9):30
    [115] 连永肖,张勇,彭宗林,张隐西,张祥福,杨继承.PVC/共聚尼龙合金的性能研究.中国塑料,2000,14(8):30-35
    [116] 连永肖,张勇,彭宗林,张隐西.聚氯乙烯/三元共聚尼龙共混物的形态结构.上海交通大学学报,2001,35(4):582-586
    [117] Hofmann G H. Polymer blends. U. S. Pat. US 5352735, 1994
    [118] Hofinann G H. Polymer blends of nylon and PVC [A]. Proceeding of 54th technical conference of society of plastics engineers [C]. Connecticut, USA: Society of Plastics Engineers, 1996: 3380-3382
    [119] Hofmann G H. Polymer blends. W. O. Pat. WO 9708242, 1997
    [120] Hofmann G H. An unusual match nylon & PVC can go together. Plastics Technology, 1998(6): 55-57
    [121] Hofmann G H, Henry G. Polymer blends. U. S. Pat. US 5856405, 1999
    [122] Sherman L M. Flexible engineering alloys marry nylon with vinyl. Plastics Technology, 1997, 43(11): 17-18
    [123] Kim B J, White J L. Compatibilized blends of PVC/PA12 and PVC/PP containing poly (lauryl lactam-block-caprolactone). J. Appl. Polym. Sci., 2004, 91: 1983-1992
    [124] Lian Y X, Zhang Y, Peng Z L, Zhang X G, Fan R L, Zhang Y X. Properties and morphologies of PVC/Nylon terpolymer blends. J. Appl. Polym. Sci., 2001, 80: 2823-2832
    [125] Dong L J, Xiong C X, Wang T, Liu D;Lu S J;Wang Y Z. Preparation and properties of compatibilized PVC/SMA-g-PA6 blends. J. Appl. Polym. Sci., 2004, 94(2)432-439
    [126] 方少明,陈志军, 李亚东, 潘振环, 郭抑平.PVC/PA1010/SBS-g-MAH共混体系研究.高分子材料科学与工程,1999,15(6):132-134
    [127] 张立德、牟季美,纳米材料和纳米结构,科学出版社,2001
    [128] 张玉龙、李长德等,纳米技术与纳米塑料,中国轻工出版社,2002
    [129] Krasnov A P, Sergeev V A, Makina L B, et al. Effect of nanometer-size iron particles on surface properties of UHMPE (ultrahigh-molecular weight polyethylene)[J]. Plays Chem Mech Surface, 1995, 10(10): 1312-1318
    [130] Giri, Anit Kumar. Magnetic properties of iron-polyethylene nanocomposites prepared by high energy ball milling. J Appl Phys,1997, 81: 1348-1350
    [131] Nhkamura H, Matsuura M, Kawasaki K, et al. Low-temperature thermal conduction in panicle-dispersed polyethylene. J Appl Phys, 1996, 79(8): 15-19
    [132] Jeon H G, Jung H T, Lee S W, et al. Morphology of polymer/silicate nanocomposites, High-density polyethylene and a nitrile copoly-met. Polymer Bulletin, 1998(41): 107-113
    [133] 孟季茹,等.聚丙烯增韧改性研究的最新进展.塑料科技,2000,135(1):41-49
    [134] Kucauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN. J Mater Sci 1984 19: 1699-1709
    [135] Lauter-Pasyuk V, Lauter H J, Ausserre D, et al. Effect of nanoparticle size on the internal structure of copolymer-nanoparticles composite thin films studied by neutron reflection. Physica B, 1997, 241-243: 1092-1094
    [136] 卢希龙,卢迪芬,陈森凤,等.机械力化学在纳米无机材料制备中的应用.硅酸盐通报,2004,6:66-70
    [137] 徐伟平,黄锐.纳米级CaCO_3填充HDPE复合材料的研制.中国塑料,1998,12(6):30-34
    [138] 徐伟平,黄锐.大分子偶联剂对HDPE/纳米CaCO_3复合材料性能的影响.中国塑料,1993,13(9):25-29
    [139] 吴绍吟,叶佩凡.碳酸钙在HDPE/CaCO_3体系中的分散状况研究.工程塑料应用,1997,25(2):12-16
    [140] 黄锐,徐伟平.纳米级无机粒子对聚乙烯的增强与增强与增韧.塑料工业,1997,25(3):106-108
    [141] 钱家盛,杨海洋,何平笙.纳米SiO_2颗粒对HDPE和PP非等温结品行为的影响.高分子材料科学与工程,2004,20(6):161-164
    [142] 王旭,黄锐.PP/纳米级CaCO_3复合材料性能研究.中国塑料,1999,13(6):22-25
    [143] 任显诚,张伯兰.纳米级CaCO_3粒子增韧增强聚丙烯的研究.中国塑料,2000,14(1):22-26
    [144] 李远,陈建国,陈腊琼,等.PP/纳米CaCO_3分散体系的研究.塑料工业,2001,29,(1):16-20
    [145] 吴建国,杨晓华,郭峰等.纳米碳酸钙改性聚丙烯的结品行为.现代塑料加工.2001,13(4):1-4
    [146] 熊传溪,闻获江.LMPM/PP复合材料中PP的晶型结构.中国塑料,1999,13(4):20-28
    [147] 张云灿,陈瑞珠,郑海宁,等.PP/EPDM/CaCO_3三元共混体系的脆韧转变研究.高分子材料科学与工程,1998,14(5):128-130
    [148] 王旭,黄锐.PP/纳米级CaCO_3复合材料性能研究.中国塑料,1999,13(10):22-25
    [149] 吴唯,徐仲德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究.高分子学报,2000,(1):99-104
    [150] 曾兆华,殷根海,李化超等.高抗冲聚丙烯喷灌管材的研制.工程塑料应用,2001,29(7):28-30
    [151] 李良训,姚艰,聂伟.纳米材料对聚丙烯抗老化影响及其机理研究.金山油化纤,2001,(1):14-17
    [152] 邵军,王运华,李文春,等.供水管用改性聚丙烯/纳米CaCO_3复合材料的研究.工程塑料应用,2004,32(3):5-8
    [153] 杨伟,史炜,谢邦互,等.高分子材料科学与工程合成树脂及塑料.2005,21(2):249-252
    [154] 胡平,范守善.碳纳米管/UHMWPE复合材料的研究.工程塑料应用,1998,26(1):1-3
    [155] Ray SS, Okamoto M. Polymer/Layered Silicate Nanocomposites: a Review from Preparation to Processing.Prog. Polym. Sci., 2003, 28(11): 1604-1607.
    [156] Alexandre M, Dubois P.Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Materials Science and Engineering, 2000, 28(1): 3-5.
    [112] 熊传溪,闻荻江.超微细A12O_3增韧增强聚苯乙烯的研究.高分子材料科学与工程,1994,4:69-73
    [113] S. Hirano, T. Yogo, W. Sakamoto, S. Yamada, T. Nakamura, T. Yarnamoto, H. Ukai. In situ processing of electroceramic fine particles/polymer hybrids. Journal of European Ceramic Society, 2001, 21: 1479-1483
    [157] 郭存悦,柳忠阳,徐德民,等.粘土/聚烯烃纳米复合材料研究进展.应用化学,2001,18(5):351-356
    [158] Heinemann J, Reichert P, Thomann R, et al. Transition metal catalyzed ethene homo-and copolymerization in the presence of exfolialed organophilic layered silicates and polyolefin nanocomposite formation[J] American Chemical Society, 1999, 40(2): 788-789
    [159] Jeon H G, Jung H T, Lee S W, et al. Morphology of polymer/silicate nanocomposites, High-denisity polyethylene and a nitrile copolymer. Polymer Bulletin, 1998, (41): 107-113
    [160] 张雷,柳忠阳,胡友良.蒙脱土为载体的茂金属催化剂催化乙烯聚合.1998,27(12):890-894
    [161] 王庆昭,刘宗林.UHMWPE/蒙脱土纳米复合材料结构与流动性的关系.工程塑料应用,2003,31(1):46-10
    [162] 王庆昭,廖先玲,刘宗林.超高相对分子质量聚乙烯/蒙脱土纳米复合材料挤出自增强研究.塑料工业,2004,18(5):32-37.
    [163] Kurokawa Y. Preparation of a nanocomposite of polypropylene and smectite. J Mater Sci Lett, 1996, 15: 1481-1483
    [164] Kawasumi M, Hasegawa N, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules, 1997, 30(6): 6333-6338
    [165] 陈中华,刘书银.聚丙烯/改性膨润土复合材料的制备结构与性能.合成树脂及塑料.2000,17(1):44-47
    [166] 丁超,何慧,洪浩群,等.PP/蒙脱土纳米复合材料的制备、结构与性能.塑料工业,2004,32(1):8-10
    [167] 马晓燕,鹿海军,梁国正,等.累托石 聚丙烯插层纳米复合材料的制备与性能.高分子学报,2004(1):88-92
    [168] Hasegawa H, Araik, Satios. Effect of surfactant adsorbed on encapsulation of fine inorganic powder with soapless emulsion polymerization. J Polym Sci Part A: Polym Chem Ed, 1987, 25: 3231-3239.
    [169] Hasegawa H, Araik, Satios. Selective ad-sorption of polymer on fleshly ground solid surfaces in soapless emulsion polymerization. J Polym Sci, 1987, 33: 411-418.
    [170] Gangopadhyay R, Amitabha D. Polypyrroleferric oxide conducting nanocomposites: Ⅰ. synthesis and characterization. Eur Polym J, 1999, 35: 1985-1992.
    [171] 邬润德,童筱莉,费正新.聚氨酯/纳米SiO_2原位复合互贯网络材料研究.机械工程材料,2005, 29(4):27-30
    [172] 王杨勇,井新利,强军锋.聚苯胺/碳纳米管的原位复合.复合材料学报,2004,21(3):38-43
    [173] 马沛岚,苑会林,李军.聚丙烯/纳米碳酸钙原位聚合复合材料非等温结晶动力学研究[J].塑料,2003,32(6):1-5
    [174] 王平华,徐国永.原位聚合制备LDPE/凹凸棒土纳米复合材料.高分子材料科学与工程,2005,21(3):266-269
    [175] Giannelis E. Polymer-layered silicate nanocomposites;synthesis properties and applications. Adv Materials, 1996, 38: 29-34
    [176] Schm idt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6: 205-212
    [177] Tao Sun, Juan M. Garces. High-Performance Polyproplylene-Clay Nanocomposites by in-situ Polymerization with Nbtallocene/(lay Catalysts. Adv Mater, 2002, 14(2): 128-130.
    [178] Wasami Okamoto, Satoshi Morita, Hideyuki Taguchi, Yong Hoon Kim, Tadao Kotaka, Hiroshi Tateyama. Synthesis and Structure of Smectic Clay/poly(methyl methacrylate) and Clay/polystyrene Nanocomposites via in Situ Interala-tive Polymerization. Polymer, 2000, (41): 3887-3890.
    [179] 王留阳,何素芹,郝留成,等.尼龙1010/蒙脱土纳米复合材料的合成与表征.高分子材料科学与工程,2002,18(4):62-65
    [180] 李同年,周持兴,庐文奎,等.聚苯乙烯—蒙脱土插层复合材料的制备与性能.高分子材料科学与工程,2000,28(2):33-35
    [181] 金星,戚嵘嵘,周持兴.原位插层聚合法制备聚苯乙烯.蒙脱土纳米复合材料.高分子材料科学与工程,2005,21(4):105-108.
    [182] 赵海超,杨凤,张学全.原位聚合制备聚乙烯/蒙脱土纳米复合材料.高分子材料科学与工程,2004,20(5):63-65
    [183] Wang Xiaoping, Jia Demin, Chen Yukun. Structure and properties of natural rubber/montmorillonite nanocomposites prepared by mixing intercalation method. CHINA SYNTHETIC RUBBER INDUSTRY, 2005, 28(2): 145
    [184] 陈烨璞,刘俊康,高其君,朱勇,ADDP改性碳酸钙及其在软PVC中的应用.中国塑料,2001, 15(5):75-77
    [185] 程星发.不同碳酸钙对PVC制品机械性能的影响.现代塑料加工应用,2002,14(2):9-10
    [186] 陈小萍,刘俊康,陈烨璞,等. 系列磷酸酯表面活性剂改性纳米碳酸钙及其在聚氯乙烯中的应用.江南大学学报,2002,1(3):266—268
    [187] 汪忠清,镇红云,陆金贵.改性碳酸钙在聚氯乙烯中的应用研究.塑料科技,2003,(1):40-42.
    [188] 胡圣飞,严海标,王燕舞.纳米级CaCO_3填充PVC/CPE复合材料研究.塑料工业,2000,28 (1):14-15
    [189] 武德珍,宋勇志,金日光.PVC/弹性体/纳米CaCO_3复合体系的加工和组成对力学性能的影响.复合材料学报,2004,21(1):119-123
    [190] 曾晓飞,陈建峰,王国全.纳米级CaCO_3粒子与弹性体CPE微粒同时增韧PVC的研究.高分子学报,2002,(6):738-741
    [191] 宋艳江,朱凤娥,张云灿.CaCO_3粒子对PVC/CPE/CaCO_3复合材料力学性能的影响.中国塑料,2004,18(1):34-38
    [192] 魏刚,黄锐,宋波,等.CPE包覆纳米CaCO_3对PVC/纳米CaCO_3复合材料结构与性能的影响[J].中国塑料,2003,17(4):35-38.
    [193] 胡圣飞,彭少贤,应继儒,等.高强度聚氯乙烯共混材料研制.工程塑料应用,2000,28(2):1-2
    [194] 权英,杨明山,严庆,等.纳米刚性粒子对硬质PVC的增韧增强效果.北京化工大学学报,2002,29(6):24-26
    [195] 熊英,陈光顺,郭少云.力化学处理纳米CaCO_3/ACR复合粒子对PVC力学性能的影响[J].聚氯乙烯,2005,(1):13-18
    [196] 张立锋,黄志明,包永忠,等.原位聚合法制备PVC纳米CaCO_3复合建材专用树脂.聚氯乙烯,2001,(2):10-13
    [197] 杨洪.PVC结晶机理和纳米晶效应研究:[硕士学位论文],武汉:武汉理工大学,2004
    [198] Xu X, Wang Q. Study on morphological structure of low molecular weight PVC prepared by vibromilling degradtion. Polym Plast Tech Eng, 1995, 34(4): 621-632
    [199] Changsheng Liu, Qi Wang. Solid-phase grafting of hydroxymethyl acrylamide onto polypropylene through pan milling. J Appl Polym Sci, 2000, 78(12): 2191-2197
    [200] H.K.巴拉鲍伊姆著,江蜿兰、费鸿良译,高分子化合物力化学,化学工业出版社,1980,38-143
    [201] 沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1997
    [202] 陈志俭,刘廷华.PVC颗粒形态及其对制品力学性能的影响.2003,17(10):32-35
    [203] 赵劲松,李宁.PVC加工形态学研究.聚氯乙烯,1999,(4):29-36
    [204] 刘晓明主编.硬聚氯乙烯改性与加工.北京:中国轻工业出版社,1998,78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700