用户名: 密码: 验证码:
城市生活排水系统废气产排污系数核算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活排水系统主要由化粪池、输送管道、各类检查井、泵站和污水处理厂等单元组成,是城市的一项基础设施,为城市的正常运转提供了重要支撑。它作为城市生活污水收集、输送和处理系统的同时,也成为一个巨大的生化反应系统,其间产生的CH4、H2S等废气一直威胁着市政工人的正常作业和生命,影响着城市居民生活和健康。这些有毒、有害气体的监测和控制已引起政府和公众的关注。国外在这方面的研究工作起步较早,国内则对污水处理厂废气的研究较多,而对收集和输送系统废气的研究很少,尤其是产排污系数方面的研究尚属空白。本论文以昆明城市生活污水排放系统中化粪池和各种检查井废气产生与排放为主要研究对象,结合课题组提供的广州、兰州城市生活排水系统废气产排放系数,开展了以下研究工作:
     (1)在文献调研、专家咨询和初步实测的基础上,确定城市生活排水系统废气的特征污染因子,通过开展城市生活排水系统废气产生、排放规律研究,系统分析城市生活污水排放系统废气的组成及其影响因素;
     (2)通过实验室模拟研究,获取分功能区城市生活污水在不同条件下的污染物降解和废气产生量数据,采用模型分析工具软件等手段,研究其动力学规律;
     (3)采用现场实测与实验室模拟相结合的研究方法,初步建立基于可获取统计量(如居民人口、生活污水排水量、城市生活排水管线长度或单位污染负荷等)的城市生活排水系统废气产排放系数,构建特征废气排放量核算方法,初步估算主要废气污染指标的排放量。
     通过对昆明城市生活污水排水系统现场实测和开展模拟实验,研究排水系统废气产生、排放规律,测算城市生活污水排水系统中特征废气的产排污量,主要得出以下结论:
     (1)特征废气的产排具有时段性,体现在一天之内的用水高峰时段和低峰时段,也体现在一周之内工作日和非工作日的区别:在用水高峰时段,各种特征废气的产排量要明显高于用水低峰时段;降雨对合流制排水系统中特征废气的产排具有较大影响,而对分流制排水系统无影响;排水系统中跌水井内因污水紊流程度较高,有利于废气从液相到气相的扩散,导致排水系统中废气的产排量增大。
     (2)城市生活排水系统的废气产生与排放单元主要集中在化粪池和各种检查井,尤以化粪池的产生和排放占主要比例,一般在检查井(包括沉沙井、沉泥井和跌水井等)中只能监测到H2S和C02气体,而化粪池能监测到H2S、CO2和CH4,化粪池和检查井相比,其厌氧程度要高,化粪池中C02浓度高于检查井,这是因为污水在化粪池停留时间一般为12-24h,停留时间长有利于污水有机物的厌氧降解反应和提高废气累积量,化粪池底部由于长期淤积,会沉积大量的底泥,有利于CH4气体的产生。
     (3)各个功能区由于水质水量不同导致各区排水系统特征废气的产排有所差异,餐饮区污水中COD浓度要明显高于其他三个功能区,餐饮区H2S和C02气体的排放速率要高于居民区。
     (4)通过模拟实验得出影响生活污水在排水系统中生化反应产气的主要因素有水力停留时间(Hydraulic Retention Time, HRT)、有机物浓度、pH值和水温;影响其排放进入城市大气环境的主要因素则是水力湍流程度;排水体制对废气的产排影响主要体现在合流制排水系统在雨季时因管道充满度的增大而使气体排放量增大。
     (5)根据居民生活污水模拟实验结果,得出污水中COD降解和CH4产量之间的关系,并用一级动力学方程获得底物的降解系数常数为KH=0.0164h-1,拟合方程为-1n(X0/Xt)=0.0164t-0.21;pH为6.9时,CH4的最终浓度最大为5.80g/m3;温度为25℃时,居民生活污水CH4的最终浓度9.18g/m3。
     (6)对比研究城市生活污水排水系统CH4的产排系数与IPCC清单指南中的建议值可以发现,由IPCC指南提供的CH4的最大产生系数为0.25gCH4/gCOD,化粪池CH4排污系数为0.125gCH4/gCOD。此产污系数是兰州产污系数的3.6倍,排污系数是兰州产污系数的10.7倍;IPCC提供的CH4排污系数是昆明化粪池排污系数的43倍,是广州化粪池排污系数的33倍。估算昆明市排水系统中2011年产生的H2S气体产生量为7.96t/a,排放量为1.46t/a,排放率为18.30%,CH4气体产生量为109.52t/a,排放量为44.63t/a,排放率为40.74%,C02气体产生量为957.69t/a,排放量为300.13t/a,排放率为31.00%。
     本论文的研究成果不仅提供了昆明市城市生活排水系统废气的产排污系数,而且实证了IPCC清单指南中给出的城市废水处理CH4排放系数建议值偏大,为城市温室气体核算提供了基础数据,具有重要意义。本论文部分研究成果已经在昆明市排水系统管理中得到了应用,对国内其他城市生活污水排水系统废气产排污系数核算研究和废气控制具有较好的指导和借鉴意义。
Consisting of septic tanks, pipes, various inspection wells, pump stations and domestic sewage treatment plants, the urban sewer system is the fundamental municipal facility to provide important support for maintaining the city environment. As the system of collecting, transporting and treating domestic sewage, it serves as a huge biological reactor, from which the exhaust gases like CH4and H2S will be produced, threatening the work and lives of municipal workers and endangering city people's lives and health. Monitoring and controlling these harmful and toxic exhaust gases have aroused great concern from the government and public. Researches on this topic began abroad quite earlier than domestic researches. Although many domestic studies on exhaust gases from sewage treatment plants have been carried out, concerns on exhaust gases from collecting and transporting sewage system are quite few, especially it's still blank in the research on generation and emission coefficients. Centered on the generation and emission of exhaust gases from Kunming domestic sewage system, including septic tanks and various inspection wells, and joining the exhaust gases generation and emission coefficients of Guangzhou and Lanzhou, the studies carried out are as follows:
     (1) Based on the wide range of literature review, expert consultancy and the preliminary on-the-spot monitoring, the study determines the pollution factors of exhaust gases from sewage system. With researching the rules of generation and emission of exhaust gas from sewage system, we systematically analyzed the composition and affecting factors of exhaust gases.
     (2) By the laboratory simulation, the statistics of pollutant degradation and exhaust gases of varied functional zones in different situations are attained. Rules of their dynamics are studied by means of model analysis software.
     (3)Combining on-the-spot monitoring with the laboratory simulation, generation and emission coefficients based on the available statistic units (such as population, sewage flow, pipeline length or unit pollution load etc.) are attained, calculating method of exhaust gases quantity is worked out, and the major exhaust gases quantity is estimated.
     By on-the-spot monitoring and the laboratory simulation in Kunming urban sewage system, the generation and emission rules of exhaust gases are researched, the emissions system and emissions rules were researched. The quantity of exhaust gases generation and emission is calculated. The conclusions are come up with as follows:
     (1) The generation and emission of exhaust gases occur in different time, that is, the peak and off peak time of using water as well as weekdays and weekends in a week. During the peak time the generation and emission quantity is evidently more than that of off peak time. Rainfall influences the generation and emission from the combined flowing system but the split flow system is not affected. High turbulent flow of sewage of drop manholes in sewage system is advantageous to gas diffusion from liquid phase to gas phase, increasing the generation and emission quantity.
     (2) The generation and emission of exhaust gas from drainage system are mainly concentrated in the septic tank and various inspection wells, especially the generation and emission of septic tank account for the major proportion. Usually only H2S and CO2gas can be detected in inspection wells (sand sediment traps, water wells of clay and drop wells), and in septic tank H2S, CH4and CO2can be detected. Compared with inspection wells, septic tanks have higher anaerobic degree. CO2concentration in septic tanks is higher than that in inspection wells because the hydraulic retention time in the septic tank is generally12-24h. Long retention time benefits organic compounds degradation of sewage anaerobic reaction and increase the accumulation of exhaust gases. Due to the long-term accumulation, the bottom of septic tank will deposit sediment greatly, which enhances the production of CH4.
     (3)The characteristics of exhaust gases emission from various sewage areas are different, because the sewage flow and concentration is different. COD concentration of catering sewage is evidently higher than that of other three kinds of sewage. H2S and CO2emission rate of catering sewage is higher than the residential sewage.
     (4)By simulating experiments, main affecting factors of biochemical reaction in sewage system are attained, such as Hydraulic Retention Time (HRT), organic concentration, pH value and temperature. Major factor which influences exhaust gases discharging into the atmosphere is the degree of hydraulic turbulence. Exhaust gases emission from different sewage systems gives express to rising emission quantity because of the increasing depth ratio of combined sewage system in raining time.
     (5)According to the simulation experiments, the relationship of COD and CH4concentrations can be expressed by one-level dynamic formula-ln(Xo/Xt)=0.0164t-0.21, and its degradation coefficient KH=0.0164h-1.When pH=6.9, final CH4concentration is5.80g/m3. When temperature is25℃, the final CH4concentration of residential sewage is9.18g/m3.
     (6)By comparison of CH4generation and emission coefficients attained from researching Chinese cities and the recommended CH4value of IPCC Greenhouse Gas Inventories, conclusions can be drawn that the maximal value of CH4generation coefficient provided by IPCC Guidelines is0.25gCH4/gCOD, and CH4emission coefficient of sewage septic tanks is0.125gCH4/gCOD. This generation coefficient is3.6times of that of Lanzhou city, and emission coefficient is10.7times of Lanzhou. The IPCC commending CH4emission coefficient value is43times of Kunming and33times of Guangzhou. In2011, H2S generation quantity and emission quantity estimated from Kunming sewage are7.96t/a and1.46t/a, and its emission proportion is18.3%. CH4generation quantity and emission quantity are109.52t/a and44.63t/a, and its emission proportion is40.74%. CO2generation quantity and emission quantity are957.69t/a and300.13t/a, and its emission proportion is31.00%.
     The results of this research not only provide exhaust gases generation and emission coefficients of Kunming sewage system, but also prove that CH4emission coefficient of sewage system given by IPCC guidance is bigger. That is significant because the research provides basic data for calculating greenhouse gas. Partial research results have been applied to the management of Kunming sewage system, which can be served as guidance and reference for calculating and controlling exhaust gases in other Chinese cities.
引文
[1]陈卫,宋佩娣,郑兴灿等.污水系统中导致硫化氢中毒的影响因素与控制措施[J].给水排水,2006,32(1):15-19
    [2]城市污水处理厂恶臭对大气环境的影响与防治措施研究
    [3]张涛,周丹.城市排水管道污水水质的变化过程[J].环境科学与技术2007,30(8):112-114
    [4]任南琪,王爱杰,赵阳国等.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社,2009
    [5]IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. IPCC, 2006.
    [6]张奎,张志刚,给水排水管道系统[M].机械工业出版社,北京
    [7]陆永生,胡龙兴,陈玮.下水道-污水处理的良好场所[J].水世界:中国城镇水网
    [8]马涛,刁锐.城市污水处理厂恶臭对大气环境的影响与防治措施研究[J].内蒙古环境科学第21卷第4期2009年8月:82-86
    [9]孙力平,马耀平,侯红娟等.下水道中污染物质的转化过程[J].中国给水排水,2001(17):67-69
    [10]梅特卡夫和埃迪公司等译,废水工程处理及回用[M],第四版,2004,化学工业出版社,北京
    [11]McCarty,P.L and D.P Smith. Anaerobic wastewater treatment, Environmental science technology,1986,20:1200-1226
    [12]牛克胜,张建峰.城市污水处理厂H2S气体的产生、危害及预防[J].中国沼气,2003(21):28-30
    [13]孙维生.硫化氢的危害及防治[J].劳动保护.2002:42-43
    [14]IPCC,2006. In:Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T.,Tanabe, K. (Eds.), 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan
    [15]A.U.Spencer, S.S, Nolland, L.J. Gottlieb, Bathtub fire:an extraordinary burn injury. Journal of Burn Care & Research,2006,27(1),97-98
    [16]Albert Guisasola, Keshab R. Sharmaa, Jurg Keller, et al. Development of a model for assessing methane formation in rising main sewers. Water Research,2009,43(11): 2874-2884
    [17]Tae-Young Jeong, Hyung-Keun Chung, Sung Ho Yeom, et al. Analysis of methane production inhibition for treatment of sewage sludge containing sulfate using an anaerobic continuous degradation process. Korean J. Chem. Eng.,2009,26(5): 1319-1322
    [18]Albert Guisasola, David de Haas, Jurg Keller, et al. Methane formation in sewer systems. Water Research,2008,42(6-7):1421-1430
    [19]Nozhevnikova AN, Simankova MV, Parshina SN, et al. Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Science and Technology,2001,44(8):41-48
    [20]张记市,张雷,王华等.城市有机生活垃圾厌氧发酵处理研究.生态环境,2005,14(3):321-324
    [21]鲁珍,周兴球,武建东等.初始pH对产氢发酵液厌氧产甲烷的影响研究.环境工程学报,2011,5(5):1115-1118
    [22]张超,姜应和.城市污水处理厂除臭工艺优化研究[D]
    [23]1991 US Environmental Protection Agency,1991. Hydrogen sulphide corrosion in wastewater collection and treatment system. Technical Report,430/09-91-010
    [24]王爱杰,徐潇文,任南琪等.污水厂臭气生物处理技术研究现状与发展趋势[J].中国沼气,2005,23(3):15-19
    [25]张娜,吴言荪.基于GPRS网络的下水道可燃气体监测系统的研究[D].重庆大学
    [26]Boon,A.G.,Liser,A.R..Formation of sulfide in rising main sewers and its prevention by injection of oxygen[J]. Prog. Water Technol,1975,7(2),289-300
    [27]Pomeroy,R, Bowlus,F.D. Progress report on sulfide control research[J]h. Sewage Works J.1946,18(4),597-640
    [28]Anja, K., Peter, S., Heide, N., Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl. Environ. Microbiol.2006,72 (7),4755-4760
    [29]Freudenthal, K., Koglatis, J., Otterpohl, R., Behrendt, J.,2005. Prediction of sulfide formation in sewer pressure mains based on the IWA Anaerobic Digestion Model No.1 (ADM1). Water Sci. Technol.52 (10-11),13-22
    [30]Albert Guisasola, Keshab R. Sharma, Jurg Keller et al. Development of a model for assessing methane formation in rising main sewers[J].Water research 43(2009) 2874-2884
    [31]Zhiguo Yuan, Albert Guisalo et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J].Water Research 43(2009)4430-4440
    [32]Zhiguo Yuan, Oriol Gutierrez, Janani Mohanakrishnan et al. Evaluation of oxygen injection as a means of controlling sufide production in a sewer system[J]. Water Research 42(2008)4549-4561
    [33]Pomeroy. Generation and control of sulfide in filled pipes[J]. Sewage and Industrial Wastes,1959,31 (9):1082-1095
    [34]Boon, A.G. Septicity in sewers:causes, consequences and containment[J]. Water Sci. Technol.,1995,31 (7):237-253
    [35]B. Jefferson, A. Hurst, R. Stuetz, et al. A comparison of chemical methods for the control of odours in wastewater. Trans IChemE5Vol 80, Part B, March 2002
    [36];Esoy, A.,(?)sterhus, S.W., Bentzen, G, Controlled treatment with nitrate in sewers to prevent concrete corrosion. Water Sci. Technol.:Water Supply.2002,2 (4),137-144
    [37]Jenneman, GE., McInerney, M.J., Knapp, R.M.,1986. Effect of nitrate on biogenic sulfide production. Appl. Environ. Microbiol.51 (5),1205-1211
    [38]Guang-ming Jiang, Oriol Gutierrez, Keshab Raj Sharma, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems, Water research, Vol 44,4241-4251,2010
    [39]Nemati, M., Jenneman, G.E., Voordouw, G.,2001a. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol. Prog.17,852-859
    [40]Hvitved-Jacobsen,T.,Vollertsen,J., Matos, J.S..,2002.The sewer as a bioreactor—a dry weather approach. Water Sci.Technol.45(3),11-24
    [41]Chen, G., Leung, D. Utilization of oxygen in a sanitary gravity sewer[J]. Water Res, 2000,34 (15),3813-3821
    [42]陈中元.含硫臭味污染气体的危害和防治[J].贵州化工,2005(12):32-34
    [43]Carpenter,W.T.. Sodium nitrate used to control nuisance[J].Water works sewerage, 1932,79,175-176
    [44]Heukelelekian, H. Effect of the addition of sodium nitrate to sewage on hydrogen sulphide production and BOD reduction[J].Sewage works,1943,15,255-261
    [45]Allen,L.A..The effect of nitro-compounds and some other substances on production of hydrogen-sulphide by sulphate-reducing bacteria in sewage[J]. Proc.Soc.Appl. Bacteriol,1949,2,26-38
    [46]Jameel P. The use of ferrous chloride to control dissolved sulfldes in interceptor sewers[J]. J WPCF 1989,61(2):230-236
    [47]Tomar M, Abdullah TA, Evalution of chemicals to control the generation of malodorous hydrogen sulfide in waste water[J]. water research, 1994,28(12):2542-2552
    [48]Lehua Zhang, Peter De Schryver, Bart De Gusseme et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:A review[J]. Water research 2008(42):1-12
    [49]Mikio Sayama, Nils Risgaard-Petersen. Impact of bacterial NO3- transport on sediment biogeochemistry[J].2005,71(11):7575-7577
    [50]Buisman, C., Driessen, W., Meijer, H., et al. Effect of organic substrates on biological sulphide oxidation[J]. Appl.Microbiol. Biotechnol.1990(33):459-462
    [51]S. Gadekar, M. Nemati, G.A. Hill. Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO:Reaction kinetics and stoichiometry[J]. Water research,2006, 40:2436-2446
    [52]杨静,梁伟臻,孟庆强等.城市下水道可燃有毒气体的监测方法[J].中国给水排水,2005(21):89-90
    [53]任叙合,程建军,张海娟等.海洋石油开发工业污染物产生系数和排放系数研究[J].中国海上油气,2006,18(2):141-144
    [54]周灵辉.南京市小型餐饮娱乐服务业废水排放系数计算[J].环境监测管理与技术,2004,16(3):38-40
    [55]国家环境保护局科技标准司.工业污染物产生和排放系数手册[M].北京:中国环 境科学出版社,1996:2-260
    [56]藏曙光,庞坤,马振珠等.国内平板玻璃行业产排污染系数核算及与国外产排污系数比较[J].建筑玻璃与工业玻璃,2009(10):10-13
    [57]林秀丽.中国机动车污染物排放系数研究[J].环境科学与管理,2009,34(6):27-33
    [58]杨卫国,陈家军,张瑛华.pH值对有机废水厌氧产酸发酵影响研究[J].环境工程,2008,26(增刊):136-138
    [59]任南琪,王爱杰等.厌氧生物技术原理与应用[M].化学工业出版社,2004
    [60]高文乔.H2S引起的污水管道腐蚀及其控制[J].安徽建筑,2001(1):15-18
    [61]梅特卡夫和埃迪公司等译,废水工程处理及回用[M],第四版,2004,化学工业出版社,北京
    [62]朱雁伯,王溪蓉,张礼文等.排水系统中硫化氢的危害及预防措施[J].中国给水排水,2000(16):45-47
    [63]路民旭.材料在H2S和CO2环境中的腐蚀机理和控制研究[C].2006NACE中国分会技术年会论文:167-181
    [64]《水和废水监测分析方法》(第四版增补版)[M].中国环境科学出版社.2002
    [65]胡家骏,周群英.环境工程微生物学[M].北京高等教育出版社:1996
    [66]Guangming Jiang, Keshab Raj Sharma, Zhiguo Yuan et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water research 43(2009) 4430-4440
    [67]J.Mohanakrishnan, O.Gutierrez, Z.Yuan et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor[J]. Water research 42(2008)3961-3971
    [68]Zehnder A J B.Characeterization of an acetate-decarboxylatiog nonhydrogen-oxidozing methane bacterium. Arch.Microbiol,1980,124(1):1-11
    [69]Thistlethwayte, D.T. The control of sulfides in Sewerage Systems, Butterworth, Sydney,1971
    [70]USEPA,.Process Design Mannual for sulfide control in sanitary sewerage systems.625/1-74-005.USEPA,Washington,DC,1974
    [71]Sandes W T M, Veeken A H M, Zeeman G, et al. Analysis and optimization of the anaerobic digestion of the organic fraction of municipal solid waste[C]. Mata-Alvarez J, eds Proceedings of Biomethanization of the organic fraction of municipal solid wastes. London:IWA Publishing,2003.63-90
    [72]Rao M S, Singh S p,Singh A K, et al. Bioenergy conversion studies of the organic fraction of MSW:assessment of ultimate bioenergy production potential of municipal garbage[J]. Applied energy,200,66(1):75-87
    [73]B.Jeeferson,A.Hurst, R.Stuetz, S.A.Parsons. A comparison of chemical methods for the control of odours in wastewater[J].Trans Icheme,2002,80b:93-99
    [74]Nielsen, A.H., Yongsiri, C., Hvitved-Jacobsen, T., Vollertsen, J.. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks[J]. Water Sci. Technol., 2005b,52,201-208
    [75]Ochi, T., Kitagawa, M., Tanaka, S.,1998. Controlling sulfide generation in force mains by air injection[J]. Water Sci.Technol.37,87-95
    [76]Oriol Gutierrez, Donghee Park, Zhiguo Yuan et al. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water research 43(2009) 2549-2557
    [77]Roberts D J, Nica D, Zuo G, et al. Quantilying microbially induced deterioration of concrete:initial studies. International Biodeterioration &Biodegradation,2002(49):227-234
    [78]周新云,宁平,黄建洪,杨丽萍,周瑜.城市生活污水排水管道H2S溢出特性的研究[J].云南大学学报(自然科学版),2012.(2):210-217
    [79]王红燕,李杰,王亚娥等,化粪池污水处理能力研究及其评价[J].兰州交通大学学报,2009,28(1):118-120
    [80]Robert T.Bachmann, Adrian J.Saul, Robert G.J. Edyvean. Investigating and modelling the development of septic sewage in filled sewers under static condition:A lab-scale feasibility study [J]. Science of the total Environment 2007(388):194-205
    [81]Susanne Liebner, Simon P. Schwarzenbach, Josef Zeyer. Methane emissions from an alpine fen in central Switzerland[J]. Biogeochemistry,2012,109 (1-3):287-299
    [82]J.Mohanakrishnan, O.Gutierrez, K.R.Sharma at al. Impact of nitrate addition on biofilm properties and activities in rising main sewers [J]. Water research,2009 (43):4225-4237
    [83]陈振民.提高厌氧处理甲烷生成量方法的初步探讨[J].2004,5(5):43-47
    [84]彭喜曦,张明青.不产甲烷菌低温降解秸秆粪便试验研究[J].2012,37(1):57-60
    [85]国家环保局科技标准司编,工业污染物产生和排放系数手册[M].1996,中国环境科学出版社,第一版,北京
    [86]顾夏生,李献文,竺建荣.水处理微生物学(第三版)[M].北京:中国建筑工业出版社:1998
    [87]顾夏声,李献文,俞毓馨.水处理微生物学基础(第二版)[M].北京中国建筑工业出版社:1988
    [88]胡家骏,周群英.环境工程微生物学[M].北京高等教育出版社:1996
    [89]孙永利.研究SBR工艺硫化物气体产生机理试验研究[D].重庆:重庆大学出版社:2001
    [90]张奎,张志刚,给水排水管道系统[M].机械工业出版社,北京,2007
    [91]国务院第一次全国污染源普查领导小组办公室.2008,《第一次全国污染源普查城镇生活源产排污系数手册》[M].北京:中国建筑工业出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700