用户名: 密码: 验证码:
受污染武汉南湖底泥特征分析及其处置方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水体污染情况总体来说比较严重,底泥与其上覆水体之间存在物质交换的动态平衡,研究底泥特征对水体治理具有重要的意义;水体治理中常采用底泥疏浚的办法,疏浚出的底泥如何处置是个难题。本研究在南湖设置了12个表层底泥采样点、5个柱状底泥采样点,通过样点中有机物、营养盐、重金属等指标的含量及分布来研究南湖底泥的污染特征;利用湖底底泥进行批式和半连续厌氧消化试验,研究底泥产能的可行性;同时利用底泥及厌氧消化以后的残泥进行土地投放试验,研究其对植物生长和土壤性质的影响,分析其土地利用的可行性。研究结论如下:
     (1)表层底泥的有机质(OM)和总氮(TN)、总磷(TP)之间,各种氮的形态之间,TN和TP之间都显著相关。从TOC/TN的值来看外源与内源污染对南湖有机物污染贡献相差不大。OM和大部分重金属元素显著相关,表层泥样各项污染指标在空间的分布上都有强变异性。
     (2)柱状底泥基本呈现污染物含量随泥深而降低的规律,各样点的OM和TN、OM和TP之间大都显著相关,但TN和TP之间大都没有显著相关关系。底泥的各指标在垂直方向的变异性一般为中等或强变异。
     (3)通过对间隙水和上覆水氮磷含量分析,发现南湖底泥会向上覆水体释放氮元素,而释磷的可能性不大。上覆水、间隙水和底泥的氮、磷之间存在一定相关关系。
     (4)采用有机氮评价法和有机指数评价法判定南湖的有机污染情况,结果表明南湖有机污染比较严重。用地积累指数法和潜在生态危害指数法评价重金属污染,结果表明:除Cd属中度污染以外,其余元素(Hg、As、Cu、Pb、Cr、Zn)均为轻度污染;所有元素潜在生态危害均属轻微。
     (5)进行了批式厌氧发酵的正交试验,结果表明:温度、碳氮比、固体浓度都对产气量影响非常显著,接种比率对产气影响不显著。按影响程度大小对四个因素进行排序为:温度>碳氮比>固体浓度>接种比率。最佳的工艺参数组合是:温度55℃,C/N为20:1,TS为10%,接种比率按VS(基)为1:1。
     (6)在中温条件下进行半连续厌氧消化试验,反应器运行正常。容积负荷对产气率、排泥VS/TS含量以及甲烷含量都有一定影响,在1.96gVS/(L·d)时消化效果最好。根据厌氧消化产气的动力学模型,得到有机物的理论产气率和动力学参数分别为278.6ml/gVS和0.166d-1。
     (7)将南湖的原始底泥和厌氧消化后的残泥投放于红壤,结果表明:加入底泥后,容重、孔隙度都保持在土壤正常范围以内,但引起pH值升高;底泥投放促进了作物生长,作物重金属Cd含量也未超过农产品和食品的相关标准限值;土壤养分含量显著提高,Cd含量也有升高,但未超出土壤环境质量标准;加入粉煤灰或猪粪可对Cd起到一定的钝化作用,还可提高土壤孔隙度,说明其在底泥土地投放时可以起到辅助作用。
     (8)从容重、孔隙度、养分、重金属、阳离子含量、钾含量等各指标来分析,南湖原始底泥或消化残泥均适于农用或绿化使用,但若用于种植食用农产品应注意控制施用量(尤其是在酸性或中性土壤条件下)。
Water pollution in china is serious, and there is dynamic balance of material exchange between the sediment and its overlying water; the study of sediment characteristics is of great significance for improving quality of water body; sediment dredging is often used in governance of water, but how to dispose dredged sediment is a problem. In this study,12surface sediment and5cylindrical sediment sampling points were set up in South Lake of Wuhan city, contents of organic matter, nutrients, heavy metals and other indicators in sediment of every sampling point were measured to analysis the pollution characteristics of sediment in South Lake; batch and semi-continuous anaerobic digestion test were conducted with sediment to study the feasibility of energy production; influence of land application of original sediment and anaerobic digestion residue on plant growth and soil properties and feasibility of land application were analyzed. The conclusions are as follows:
     (1) For the surface sediment, these characteristics were found:organic matter (OM) and total nitrogen (TN), OM and total phosphorus (TP) were significantly related; the TN and TP, the various forms of nitrogen were significantly related too. From point of view of TOC/TN, there was similar influence from external source and internal source pollution on sediment. OM and most of the heavy metals were significantly related. There was strong variability of spatial distribution of various pollutants.
     (2) For the stanchion form sediment:the contents of pollutants decrease along depth. OM and TN, OM and TP were significantly related; TN and TP weren't significant related. There were strong or moderate variability of vertical distribution of various pollutants.
     (3) By comparing the contents of pollutants of pore water and overlying water, nitrogen may be released from sediments to overlying water but phosphorus may be not. There were certain correlation of nitrogen or phosphorus among overlying water, pore water and sediment.
     (4) The organic pollution status of sediment in Nanhu Lake were evaluated by organic nitrogen evaluation and organic index evaluation, results showed that the organic pollution of sediment in Nanhu Lake is serious. Two assessment methods were used to assess the pollution degree of heavy metals of sediment in Nanhu Lake, which were Index of Geoaccumulation and Potential Ecological Risk Index. The results showed that for cadmium the pollution degree was moderate; for mercury, arsenic, copper, lead, chromium, zinc, the pollution degree were slight; and potential ecology risk of all element were slight.
     (5) The orthogonal experiment of batch anaerobic digestion was conducted, the results showed that:gas yield was significantly impacted by temperature, carbon and nitrogen ratio (C/N), the solid concentration; and were affected indistinctively by Inoculum-Substrate ratio (ISR). The influence order of the four factors on biogas yield are temperature> C/N> solid concentration>ISR. The best optimum anaerobic digestion conditions are the temperature is55℃, the C/N value is12.5:1, solid concentration is10%and ISR is1:1.
     (6) Semi-continuous anaerobic digestion experiment was conducted on mesophilic condition, the reactor was operating normally. Volume load had influence on biogas yield, VS/TS of discharged sludge and percentage of methane in biogas, the best digestion efficiency is in the condition of1.96gVS/(L·d). The anaerobic digestion kinetics model has been deduced that theoretical gas yield was278.6ml/gVS and the reaction rate constant was0.166d-1
     (7) when applying sediments and anaerobic digestion residue from Nanhu Lake on red soil, the results showed that:bulk density and porosity were within the normal range of soil, pH was increased; crop growth was promoted, heavy metals contents in crop did not exceed the relevant standards of agricultural products and food; nutrient contents of soil were significantly increased; content of Cd in soil were also increased but did not overturn the soil environmental quality standards; after fly ash or pig manure was added, activation of Cd was decreased, available content of Cd in soil and absorption of Cd for crop were reduced; soil porosity increased; therefore fly ash and pig manure can play a supporting role in land application of sediment.
     (8) From view of bulk density, porosity, nutrients, heavy metals, cation exchange capacity and potassium, sediments of Nanhu Lake are suitable for agriculture or greening application. However, if the sediments are used to plant edible agricultural products, application amount should be controlled, especially under acidic or neutral soil conditions.
引文
[1]王占生,刘文君.微污染水源饮用水处理[M].1999,北京:建筑工业出版社.
    [2]丁永良,虞宗敢,黄一心,等.畜禽粪便与河道污染的综合治理[J].渔业现代化,1999,(4):3-6.
    [3]沈德中编.污染环境的生物修复[M].北京:化学工业出版社,2003.
    [4]国家环境保护局.中国环境状况公报[R].2010.
    [5]王俊杰,朱德清,臧淑英.松嫩平原中西部湖泊底泥营养盐的空间变异特征[J].地理与地理信息科学,2011,27(2):92-95,113.
    [6]陈雷,张文斌,余辉,等.洪泽湖输沙淤积、底泥理化特性及重金属污染变化特征分析[J].中国农学通报,2009,25(12):219-226.
    [7]张建华,郑宾国,张继彪,等.太湖底泥污染物分布特征分析[J].环境化学,2011,30(5):1047-1048.
    [8]陈蕾,郑西来,刘杰.产芝水库底泥和其间隙水中氮、磷分布特征[J].环境污染与防治,2011,33(2):44-48.
    [9]曾永,周艳丽,李群.黄河水体中泥沙与污染物迁移转化关系探讨[J].人民黄河,2006,28(11):28-29.
    [10]李勇,朱智兵.里运河底泥COD和NH3-N空间分布及对水质的影响[J].水资源保护,2008,24(6):72-75.
    [11]国家环境保护局.GB15618-1995士壤环境质量标准[S].北京:中国标准出版社,1995-07-13
    [12]中国人民共和国城乡建设环境保护部.GB4284-84农用污泥中污染物控制标准[S].北京:中国标准出版社,1984-5-18
    [13]文军,骆东奇,罗献宝,等.千岛湖底泥重金属污染的生态风险评价[J].水土保持研究,2006,13(1):11-14.
    [14]余世清,许文锋,王泉源.杭州城区河道底泥重金属污染及潜在生态风险评价[J].四川环境,2011,30(4):36-43.
    [15]郭海涛,张进忠,魏世强,等.长寿湖底泥中重金属的季节性变化[J].中国农学通报,2011,27(6):327-332.
    [16]陈书琴,童芳,马德庆,等.破罡湖底泥重金属分布特征及潜在生态危害[J].湿地科学,2011,9(2):151-156.
    [17]刘晖,张昭,李伟.梁子湖水体和底泥中微量元素及重金属的空间分布格局及污染评价[J].长江流域资源与环境,2011,20(Z1):105-111.
    [18]胡利娜,刘小真,周文斌,等.鄱阳湖水域DW采样点底泥重金属垂直污染分析[J].环境科学与技术,2009,32(6):108-111.
    [19]弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732-736.
    [20]李鸣,刘琪璟.鄱阳湖水体和底泥重金属污染特征与评价[J].南昌大学学报(理科版),2010,34(5):486-489.
    [21]朱健,李捍东,王平.环境因子对底泥释放COD、TN和TP的影响研究[J].水处理技术, 2009,35(8):44-49.
    [22]苏丽丹,林卫青,杨漪帆,等.淀山湖底泥氮、磷释放通量的研究[J].环境污染与防治,2011,33(5):32-35+39.
    [23]李大鹏,黄勇,袁砚,等.城市重污染河道底泥对外源磷的吸附和固定机制[J].环境科学,2011,32(1):84-85.
    [24]涂保华,雷春生,魏永,等.竺山湖底泥疏浚对内源磷释放控制作用研究[J].安徽农业科学,2011,39(3):1675-1676,1678.
    [25]袁砚,李大鹏,黄勇.底泥再悬浮对磷的吸收和固定作用研究[J].苏州科技学院学报(工程技术版),2011,24(1):1-4,26.
    [26]沈乐.重污染河道疏浚程度对底泥中总氮释放的影响[J].水资源保护,2011,27(2):6-8+12.
    [27]高慧琴,刘凌,闫峰,等.底泥疏浚对湖泊内源磷释放的短期效应研究[J].水资源保护,2011,27(3):33-37.
    [28]丁艳青,朱广伟,秦伯强.波浪扰动对太湖底泥磷释放影响模拟[J].水科学进展,2011,22(2):273-278.
    [29]叶青青,官宝红,李君.杭州城市内河底泥磷污染与磷释放水力模拟[J].环境科学,2009,30(5):1351-1356.
    [30]王忖,王超.湖流作用下太湖底泥再悬浮和NH_4-N释放规律研究[J].环境保护科学,2011,37(2):7-9+13.
    [31]包先明.水生植被原位恢复对底泥磷释放的影响[J].水土保持通报,2011,31(2):68-72.
    [32]李勇,李大鹏,黄勇,等.曝气对重污染河道底泥吸收和持留磷的影响[J].黑龙江大学自然科学学报,2011,28(3):388-392.
    [33]陈蕾,郑西来,刘杰.改性凹凸棒士覆盖抑制底泥磷释放的影响和效果[J].环境科学学报,2011,31(9):1962-1967.
    [34]张雷燕.李柯,刘正文.太湖不同污染程度底泥对磷滞留能力的比较[J].农业环境科学学报,2010,29(3):546-550.
    [35]贝荣塔,周跃,陈慧泉.污染底泥粒径分析与铜、锌吸附特性的研究[J].环境研究与监测,2010,23(4):3-6,15.
    [36]宁寻安,陈文松,李萍,等.污染底泥修复治理技术研究进展[J].环境科学与技术,2006,29(9):100-102,121.
    [37]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护,2002,21(2):179-182.
    [38]毕磊,邱凌峰.污染底泥修复治理技术[J].中国环保产业,2010(11):32-35.
    [39]Xing Y, Liang L, Hu L. Review for Phosphate Inactivation and Remediation Technology with Different Reagents in-situ Treatment on Contaminated Sediment of Lake, in Beijing International Environmental Technology Conference.2006:Beijing.437-444.
    [40]桑伟莲,孔繁翔.植物修复研究进展[J].环境科学进展,1999,7(3):41-45.
    [41]孙铁珩,周启星,李培军.污染生态学[M].2001,北京:科学出版社.
    [42]Garbaciak S. J. Field demonstrations of sediment treatment technologies by the USEPA's Assessment and Remediation of Contaminated Sediments (ARCS) program[J]. AS TM, 1995,1293:145-154.
    [43]Anderson T. A, Elizabeth A. G, Walton B. T. Bioremediation in the rhizosphere[J]. Environ Sci Technol,1993,27(13):2630-2635.
    [44]Katayarna A, Matsumura F. Degradation of organochlorine pesticides, particularly endosulfun by Trichodenna harzianum[J]. Environ Toxical chem,1993,12:1059-1065.
    [45]冯奇秀,谢骏,刘军.底泥生物氧化与城市黑臭河涌治理[J].水利渔业,2003,23(6):42-44.
    [46]Deque E. Construction of a Pseudomonas hybrid stain that mineralizes 2.4.6-trinitrotoluene[J]. J Bacteriol,1993,175(8):2278-2283.
    [47]闫艳春,姚良同,宋晓妍,等.工程菌及其固定化细胞对有机磷农药的降解[J].中国环境科学,2001,21(5):29-33.
    [48]王新,李培军,巩宗强,等.采用固定化技术处理士壤中菲、芘污染物[J].环境科学,2002,23(3):84-87.
    [49]Sebatieh M. J, Ferrier ON. Lake restoration by sediment dredging[J]. Verh lnternat Verein Limnol,1997,26(2):776-781.
    [50]范成新,胡维平,张路,等.太湖底泥内源污染及污泥疏浚研究[R].中国科学院南京地理与湖泊研究所鉴定材料.
    [51]周少奇.城市污泥处理处置与资源化[M].2002,广州:华南理工大学出版社.
    [52]尹军,谭学军.污水污泥处理处置与资源化利用[M].2005,北京:化学工业出版社.
    [53]张旭东,祁继英.疏浚底泥的资源化利用[J].北方环境,2005,30(2):48-50.
    [54]黄红丽,樊曙先,汤莉莉,等.秦淮河疏浚底泥土地投放对投放土壤的影响[J].安徽农业科学,2008,36(13):5591-5593.
    [55]Woodard H. J. Plant Environmental. Science and growth on soils mixed with dredged lake sediment[J]. Journal of Health. Part A:Toxic Hazardous Substances and Environmental Engineering,1999,34:1229-1252.
    [56]马伟芳,赵新华,干洪云,等.排污河道的疏浚底泥在园林中的应用研究[J].中国给水排水,2006,22(23):74-77.
    [57]彭咏梅.疏浚底泥的资源化利用研究[J].河北化工,2007,30(10):65-67.
    [58]E, R.B., L, M.P.,文湘华等译.环境生物技术的原理与应用[M].2004,北京:清华大学出版社.
    [59]Bolzonella D, Innocenti L, Traverso P. Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste:focusing on the start-up phase[J]. Bioresource Technology,2003,86:123-129.
    [60]刘晓风,廖银章,刘克鑫.城市有机垃圾厌氧干发酵研究[J].太阳能学报,1995,16(2):170-173.
    [61]Han Y, Song S, Park S. H, et al. Enhanced anaerobic stabilization of sewage and organic waste[J]. Environ. Sci. Health,1996, A31(9):2211-2231.
    [62]王家城,赵志林.中国能源发展报告[M].2001,北京:中国计量出版社.
    [63]Lepisto S. S, Rintala J. A. Thermophilic anaerobic digestion of the organic fraction of municipal solid waste:Start-up with digested material from a mesophilic process [J]. Environmental Technol,1995,16:157-164.
    [64]Zinder S. H. Conversion of acetic acid to methane by thermophiles, anaerobic digestion.[J]. Proceedings International Symposium on Anaerobic Digestion,1988:1-12.
    [65]McIntosh K. B, Oleszkiewicz J. A. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge[J]. Water Sci Tech,1997,36(7):189-196.
    [66]Ahring B. K, Ibrahim A, Mladenovska A. Effect of temperature increase from 55 to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J]. Water Res,2001,35(10):2446-2452.
    [67]Bouallagui H, Haouari O, Touhami Y. Effect of temperature on the performance of annaerobic tubular reactor treating fruit and vegetable waste[J]. Process Biochem,2004, 39(12):2143-2148.
    [68]Gamze Gungor-Demirci, Goksel N. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatabilityof broiler and cattle manure[J]. Bioresource Technology,2004,93:109-117.
    [69]田晓东,强健,张典,等.环境温度影响沼气发酵装置平稳产气因素分析,农村沼气发展与农村小康建设研讨会2003:中国宜昌.
    [70]孙孝政,夏吉庆,田晓峰.厌氧发酵技术工厂化生产沼气的现状及展望[J].东北农业大学学报,2005,36(1):109-112.
    [71]Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components[J]. Bioresource Technol,1999,69(3):249-254.
    [72]Mahmoud N, Zeeman G, Gijzen H, et al. Anaerobic stabilization and corversion of biolymers in primary sluge-effct of temperature and sludge retention time[J]. Water Res, 2004,38(4):983-991.
    [73]Ferreiro N, Soto M. Anaerobic hydrolysis of primary sludge:influence of sludge concentration and temperature[J]. Water Sci Tech,2003,47(12):239-246.
    [74]Ghosh S, Henry M. P, Sajjad A. Pilot-scale gasification of municipal solid waste by high rate and two-phase anaerobic digestion(TAPD)[J]. Water Sci Tech,2000,41(3):101-110.
    [75]Connaughton S, Collins G, Flaherty O. Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18℃[J]. Water Res,2006,40(5):1009-1017.
    [76]Eastman J. A, Ferguson J. F. Solubilization of particulate organic matter during the acid-phase of anaerobic digestion[J]. Water Pollut Control Fed,1981,53(3):352-36.
    [77]金儒霖.污泥处置[M].1982,北京:建筑工业出版社.
    [78]隋军,王宝贞.污水厌氧消化体系中的pH及其测定[J].中国给水排水,1994,10(6):9-11,2.
    [79]Zhu Y, Yang S. T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum[J]. J Biotechnol,2004,110:143-157.
    [80]Stephen R. H, Frederick G. P. Recent development in hydrogen management during anaerobic biological wastewater treatment[J]. Biotechnol Bioeng,1986,28(3):585-602.
    [81]Horiuchi J, Shimizu T, Tada K. Selective production of organic acids in anaerobic acid reactor by pH control[J]. Bioresource Technol,2002,82(3):209-213.
    [82]Yu H. Q, Zheng X, Hu J. High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor[J]. Water Sci Tech,2003,48(4):69-75.
    [83]Gomec C. Y, Speece R. E. The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion[J]. Water Sci Tech,2003,48(3):143-150.
    [84]Macias-Corral M, Samani Z, Hanson A. Producing Compost and Biogas from Cattle Manure[J]. ProQuest Agriculture Journals,2004,45(3):55-56.
    [85]赵庆祥.污泥资源化技术[M].2002,北京:化学工业出版社.
    [86]Kayhanian M, Rich D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements [J]. Biomass and Bioen,1995,8: 433-444.
    [87]张自杰.排水工程下册(第四版)[M].2000,北京:中国建筑工业出版社.
    [88]Lay J, Li J, Etal. Analysis of environmental factors affecting methane Production from high-solids organic waste[J]. Water Sci Tech,1997,36(6-7):493-500.
    [89]张碧波,曾光明,张盼月,等.高温厌氧消化处理城市有机垃圾的正交试验研究[J].环境污染与防治,2006,28(2):87-89,115.
    [90]冯孝善,方士.厌氧消化技术[M].1989,杭州:浙江科学技术出版社.
    [91]Wiegant G, Lettinga M. Thermophilic anaerobic digestion of sugars in UASB reactors[J]. Biotechnology and Bioengineering,1985,27:1603-1607.
    [92]潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响的研究[J].农机化研究,2004(1):187-188,192.
    [93]马传杰,花日茂,郭亮.接种量对牛粪厌氧干发酵的影响[J].家畜生态学报,2008,29(5):81-84.
    [94]潘立章,蔡建平.粪草混合沼气发酵工艺研究[J].中国沼气,1992,10(3):23-24.
    [95]Dinopoulou G, Rudd T, Lester J. Anaerobic acidogenesis of a complex wastewater:1.The influence of operational parameters on reactor performance [J]. Biotechnol Bioeng,1988, 31:958-968.
    [96]Fang H. H. P, Yu H. Q. Mesophilic acidification of gelatinaceous wastewater[J]. J Biotechnol,2002,93:99-108.
    [97]Penaud V, Delgenes J, Torrijos P. Definition of optimal conditions for the hydrolysis and acidogenesis of a pharmaceutical microbial biomass[J]. Proc Biochem,1997,125: 515-521.
    [98]Sarada R, Riehard Joseph. Studies on factors influencing menthane production from tomato-proeessing waste[J]. BioresourceTechnol,1993,47:55-57.
    [99]Elefsiniotis P, Oldham W. K. Anaerobic acidogenesis of primary sludge:the role solids retention time[J]. Biotech.Bioeng,1994,44(1):7-13.
    [100]Skalsky D. S, Daigger G. T. Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal[J]. Water Environ Res,1995,67:230-237.
    [101]蒋展鹏.环境工程学[M].2001,北京:高等教育出版社.
    [102]Stroot P. G, Memahon K. D, Mackie I. R. Anaerobic digestion of municipal solid waste and biosolids under various mixing conditions-1. digestion performance[J]. Water Res,2001, 35(7):1804-1816.
    [103]Vavilin V. A. Angelidaki I. Anaerobic degradation of solid material:Importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model[J]. Biotechnology and Bioengineering,2005,89(1):113-122.
    [104]鲍士旦.土壤农化分析(第三版)[M].2000,北京:中国农业出版社.
    [105]国家环境保护总局.水和废水监测分析方法(第四版)[M].2002,北京:中国环境科学出版社.
    [106]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].1990,北京:中国环境科学出版社.
    [107]魏明蓉,姜应和,张华,等.南湖表层沉积物中有机质·氮和磷的污染现状与评价[J].安徽农业科学,2010,38(4):2004-2005,2024.
    [108]朱敏,王国祥,王建,等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报(工程技术版),2004,4(2):66-69.
    [109]刘伟,徐南妮,刘振宇.巢湖清淤合肥项目区域污染底泥调查研究[J].环境导报,2000(2):30-31.
    [110]隋桂荣.太湖表层沉积物中OM、TN、TP的现状与评价[J].湖泊科学,1996,8(4):319-324.
    [111]袁旭音,许乃政,陶于祥,等.太湖底泥的空间分布和富营养化特征[J].资源调查与环境,2003,24(1):20-28.
    [112]金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].1990,北京:中国环境科学出版 社.
    [113]乔胜英,蒋敬业,向武,等.武汉地区湖泊沉积物重金属的分布及潜在生态效应评价[J].长江流域资源与环境,2005,12(3):353-357.
    [114]乔胜英,蒋敬业,向武,等.武汉市湖泊中重金属污染状况[J].水资源保护,2007,23(1):45-48.
    [115]陈春华,万昆.武汉东湖底泥中Pb、Cd、Cu、Fe垂直分布研究[J].江汉大学学报(自然科学版),2006,34(3):27-29.
    [116]王雨春,万国江,黄荣贵,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002(4):301-309.
    [117]吴丰昌.云贵高原湖泊沉积物和水体氮、磷和硫的生物地球化学作用和生态环境效应(摘要)[J].地质地球化学,1996,(6):88-89.
    [118]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001,13(3):272-279.
    [119]陈文新.土壤和环境微生物学[M].1990:北京:北京农业大学出版社.75-78.
    [120]Vollenweider R. A. Elemental and biochemical composition of plankton biomass; some comments and explorations[J]. Archiv fur Hydrobiologie,1985(105):11-29.
    [121]李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002(2):63-68.
    [122]张征,程祖锋,王恩祥,等.岩土参数随机场空间最优估计精度分析与特异值研究[J].岩土工程学报,1999,21(5):586-590.
    [123]刘素美,张经.沉积物间隙水的几种制备方法[J].海洋环境科学,1999,18(2):66-71.
    [124]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366.
    [125]魏明蓉,姜应和,叶舟,等.南湖底泥污染物垂直分布及释放潜力初探[J].武汉理工大学学报,2010,32(8):68-71.
    [126]金相灿.中国湖泊环境:第1册[M].1995:北京:海洋出版社.
    [127]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学(D辑:地球科学),2005:1-10.
    [128]窦鸿身,朱松泉,等.洪泽湖[M].1995:合肥:中国科学技术大学出版社.
    [129]孙顺才,黄漪平.太湖[M].1993:北京:海洋出版社.
    [130]Muller G. Index of geoaccumulation in sedimenst of the Rhine river[J]. Geojournal,1969, 2(3):108-118.
    [131]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):82-87.
    [132]中国国家环境保护局.中国土壤元素背景值[M].1990:北京:中国环境科学出版社.
    [133]Hakanson L. An ecological risk index for aquatic pollution control-A sediment biological approach [J]. Water Research,1980,14:975-1001.
    [134]张记市.城市生活垃圾厌氧消化的关键生态因子强化研究[D].昆明理工大学,2007.
    [135]夏传涛,袁秉祥.无空列正交试验的设计及SPSS软件的数据处理[J].数理医药学杂志,2006,19(1):91-92.
    [136]刘贵云.河道底泥资源化—新型陶粒滤料的研制及其应用研究[D].东华大学,2002.
    [137]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [138]中华人民共和国建设部.GB50014-2006室外排水设计规范[S].北京:中国计划出版社, 2006-1-18.
    [139]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:建筑工程出版社,2003.
    [140]唐川东.浓缩消化一体化反应器处理低有机质污泥的中试研究[D].重庆大学,2010.
    [141]赵庆良,胡凯.城市污水处理厂污泥处理的能耗分析[J].科研动态:给水排水动态,2009,(4):15-20.
    [142]陈荷生.太湖底泥的生态疏浚工程[J].水利水电科技进展,2004,24(6):34-37,54-72.
    [143]李世杰.中国湖泊的变迁[J].科学大观园,2008(20):4-8.
    [144]刘克锋.土壤、植物营养与施肥[M].北京:气象出版社,2006.
    [145]朱祖祥.土壤学(上、下册)[M].北京:农业出版社,1983.
    [146]张辉.土壤环境学[M].2006,北京:化学工业出版社.
    [147]陶俊杰.城市污水处理厂剩余污泥农用技术的研究[D].西安建筑科技大学,2006
    [148]王朴,胡红青,丁昭全.武汉城市园林绿地土壤现状分析[J].湖北农业科学,2009,48(1):78-80.
    [149]Lindsay W. L. And Norvell. Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society ofAmerica Journal,1978,42:421-428.
    [150]中华人民共和国国家质量监督检验检疫总局.GB18406.1-2001农产品安全质量无公害蔬菜安全要求[S].北京:中国标准出版社,2001-08-06
    [151]中国人民共和国卫生部,中国国家标准化管理委员会.GB2762-2005食品中污染物限量[S].北京:中国标准出版社,2005-1-25
    [152]Silva S, Baffi C, Anguissola Scotti I. Effects of fly ash ph on the uptake of heavy metals by chicory [J]. Water, Air, and Soil Pollution,1999,109:397-406.
    [153]Eriksson J. E. A study on factors influencing Cd levels in soils and in grain of oats and winter wheat [J]. Water, Air and Soil Pollution,1990,53(1-2):69-81.
    [154]Almas A, Singh B. R, Salbu B. Mobility of Cd-109 and Zn-65 in soil influenced by equilibrium time, temperature, and organic matter [J]. J Environ Qual,1999,28: 1742-1750.
    [155]华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):8-12.
    [156]余贵芬,蒋新,和文祥,等.腐殖酸对红壤中铅镉赋存形态及活性的影响[J].环境科学学报,2002,22(4):508-513.
    [157]陕红,李书田,刘荣乐.秸秆和猪粪的施用对土壤镉有效性的影响和机理研究[J].核农学报,2009,23(1):139-144.
    [158]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [159]曹军,谭云飞,邢磊,等.污泥中重金属在厌氧消化前后的形态分布分析[J].河南化工,2003(6):33-34.
    [160]沈晓南,谢经良,阚薇莉,等.厌氧消化后污泥中的重金属形态分布[J].中国给水排水,2002,18(11):51-52.
    [161]林君锋,高树芳,陈伟平,等.蔬菜对土壤镉铜锌富集能力的研究[J].土壤与环境,2002,11(3):248-251.
    [162]杜应琼,何江华,陈俊坚,等.铅、镉和铬在叶类蔬菜中的累积及对其生长的影响[J].园艺学报,2003,30(1):51-55.
    [163]国家环境保护总局.HJ332-2006食用农产品产地环境质量评价标准[S].北京:中国环境科学出版社,2006-11-17
    [164]张辰,王国华,孙晓.污泥处理处置技术与工程实例[M].北京:化学工业出版社,2006.
    [165]陈涛,王新,梁仁禄,等.污泥草地利用的初步研究[J].应用生态学报.2002,13(4):463-466.
    [166]赵秀兰,卢吉文,陈萍丽,等.重庆市城市污泥中的重金属及其农用环境容量[J].农业工程学报,2008,24(11):188-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700