用户名: 密码: 验证码:
聚噻吩与多糖类天然高分子复合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很多器官如神经、骨、皮肤、肝、心脏、软骨、血管、腱、韧带等都可以通过组织工程的方法再生,组织工程学家感兴趣的是那些具有良好机械和物理性能,而且具有生物活性可以促进组织细胞再生的组织工程支架。体内和体外的电刺激可以促进包括末稍神经在内的组织再生。导电聚合物,特别是聚苯胺、聚吡咯、聚噻吩和聚苯撑及其衍生物由于具有可调的光、电特性及良好的加工性能,在过去的30年间引起了科学家们的广泛关注。其中,聚3-噻吩乙酸(PTAA)和聚3,4-乙撑二氧噻吩(PEDOT)由于其自身具备的优良特性而成为最受关注、最有希望得到广泛应用的聚噻吩衍生物。
     多糖是生物体内除蛋白质和核酸以外的另一类重要的生物大分子,广泛存在于动物、植物和微生物体内,发挥着重要的生理功能。多糖是由单糖通过糖苷键连接而成的一种天然高分子,多糖与导电高分子的复合材料融合了多糖固有的生物活性、生物相容性及生物可降解性以及导电高分子的导电性,是一类具有电活性的、生物相容的,而且可以生物降解的新型组织工程材料,可促进末梢神经等组织的再生。
     本文制备了三类多糖与聚噻吩的复合物,分别是(1)甲基纤维素(MC)与PTAA的铵盐(PTAA-NH4)或钠盐(PTAA-Na)的混合溶液,(2)可德胶(Curdlan)与PEDOT的水分散液以及可德胶与PEDOT的复合膜,(3)羧甲基纤维素、透明质酸钠、黄原胶、果胶及结冷胶等聚阴离子掺杂的PEDOT膜,并对上述三类复合物进行了系统的研究,主要内容及结论如下:
     1.制备了MC与PTAA-NH4或PTAA-Na的混合溶液,系统研究了PTAA-NH4和PTAA-Na对MC溶液的流变学及热力学性质的影响。为了更好地描述MC与PTAA-NH4或PTAA-Na混合溶液的稳态剪切性质,采用指数定律和Cross模型对实验数据进行了模拟,所有的样品均能较好地符合指数定律和Cross模型。MC与PTAA-NH4或PTAA-Na混合溶液的剪切变稀性质比MC溶液更显著,且体系的假塑性随PTAA-NH4或PTAA-Na浓度的增加而增强。PTAA-NH4或PTAA-Na对MC溶液有显著的协同增粘作用,这种增粘作用与剪切速率的大小有关,表明PTAA-NH4或PTAA-Na与MC之间存在特殊的相互作用。PTAA-NH4与MC之间的协同作用要强于PTAA-Na与MC之间的协同作用。流变学和DSC测试都表明,向MC溶液中加入PTAA-NH4或PTAA-Na不会改变MC凝胶或解凝胶(degelation)的本质,但会抑制MC的凝胶,随PTAA-NH4或PTAA-Na浓度的增加,凝胶转变温度升高。当PTAA-NH4的浓度大于0.15%或PTAA-Na的浓度大于0.35%时,在低温下也可以观察到混合溶液的弱凝胶(weak-gel like)行为。
     2.制备了Curdlan与PEDOT的水分散液以及Curdlan与PEDOT的复合膜。Curdlan与PEDOT的水分散液表现出显著的剪切变稀性质,表观粘度低于相同浓度的Curdlan悬浮液,但随PEDOT加入量的增加,表观粘度有所增加。流变学和DSC测试都表明,由Curdlan与PEDOT的水分散液制得的低强度凝胶(low-set gel)的热可逆性要低于从相同浓度的Curdlan水分散液制备的低强度凝胶,但随PEDOT加入量的增加,其热可逆性有所增加。在较低湿度下,Curdlan膜电阻很大,加入PEDOT能有效地降低其表面电阻率。湿度较高时,Curdlan膜本身有很好的导电性,湿度越高,加入PEDOT对其表面电阻率的影响越不显著。Curdlan膜及PEDOT-Curdlan复合膜的表面电阻率具有湿度依赖性,有望用作湿度传感器。
     3.以羧甲基纤维素、透明质酸钠、黄原胶、果胶及结冷胶等聚阴离子多糖作为电解质及掺杂剂,并选用聚对苯乙烯磺酸钠、聚丙烯酸钠等聚阴离子以及硝酸钾、硫酸钾等无机盐作对比,在水体系中通过电化学聚合的方法制备了不同电解质掺杂的PEDOT。采用线性扫描伏安法(LSV)研究了聚合时电极、pH值、聚合电位及掺杂阴离子种类对3,4-乙撑二氧噻吩(EDOT)电化学聚合的影响。实验表明氧化铟锡(ITO)导电玻璃适合于作为EDOT聚合的电极;合适的聚合电位应该在EDOT在各种电解质溶液中的氧化电位和过氧化电位之间,约为1.2 V;在酸性条件下,EDOT具有较低的聚合开始电位和过氧化电位,本文采用的9种电解质溶液合适的pH范围在6~8之间,但聚丙烯酸钠溶液必须调节至酸性才能使用。红外光谱分析表明本文采用的所有种类的阴离子都可以成功掺杂PEDOT。采用循环伏安法研究了各种阴离子掺杂的PEDOT膜的电化学性质,结果表明阴离子掺杂的PEDOT膜的氧化还原过程的重现性都很好,具有很好的电化学稳定性。各种电解质掺杂的PEDOT膜的氧化峰及还原峰电流均与扫描速率成正比,证明其是电活性的而且能够很好地附着在ITO导电玻璃电极表面。扫描电镜分析和划格实验表明与无机盐和合成的聚阴离子相比,天然聚阴离子多糖掺杂的PEDOT膜更光滑致密,与ITO导电玻璃的附着力更好。
There are many tissues that have been targeted for regeneration, including nerve, bone, skin, liver, heart, cartilage, vascular, tendon, and ligament. Tissue engineers are interested in making interactive scaffolds that not only perform a mechanical and physical role, but also a biological function. It is known that electrical stimulation in vivo and in vitro leads to enhanced regeneration of some tissues include peripheral nerves. Conducting polymers, especially those based on polyanilines, polypyrroles, polythiophenes and polyphenylenes, have received significant attention throughout the course of the past three decades owing to their tunable electro-optical properties and high degree of processability. Among the conducting polymers that have been developed, poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-thiophene acetic acid) (PTAA) have been considered as the two of the most successful polythiophene derivatives because of their interesting properties.
     Polysaccharide is one of the three important biomacrmolecules besides protein and nucleic acid. It widely exists in the body of animal, plant and microorganism and possessing important physiological functions. Polysaccharides are naturally produced polymers of simple sugar building blocks with inherently desirable bioactivity, biocompatibility and biodegradability. It has been reported that conducting polymer-polysaccharides composites could be electroactive, biodegradable, and biocompatible materials and used to enhance the regeneration of severed peripheral nerves and other tissues.
     In this work, three kinds of blends were prepared and systematically studied. The first one was the aqueous mixtures of methylcellulose (MC) and the salts of PTAA, the second was the aqueous dispersion and the composite film of curdlan and PEDOT, and the last one was the PEDOT film doped with polyanionic polysaccharides such as carboxymethylcellulose, hyaluronan, xanthan, pectin and gellan gum. The main contents and conclusions are listed as follows.
     1. The aqueous mixtures of polysaccharide of MC and two kinds of salts of PTAA, ammonium poly(3-thiophene acetic acid) (PTAA-NH4) and sodium poly(3-thiophene acetic acid) (PTAA-Na) were prepared. The effects of PTAA-NH4 and PTAA-Na on the rheological and thermal properties of MC solution were investigated. The ?ow curves could be satisfactorily ?tted by the power law and Cross model. The mixture solutions of MC and PTAA-NH4 or PTAA-Na showed more remarkable shear thinning behavior than pure MC solutions at low temperatures. The pseudoplastic character of the mixtures became more pronounced as the concentration of PTAA-NH4 or PTAA-Na increased. Significant viscous synergism depending on shear rate and concentration of PTAA-NH4 or PTAA-Na was found for the mixtures, indicating a special interaction between the two amphiphilic polymers of MC and PTAA-NH4 or PTAA-Na. PTAA-NH4 has more significant synergistic effect with MC than PTAA-Na. In comparison with pure MC solutions, the mixtures showed much more evident shear thinning characteristics. When the concentration of PTAA-NH4 added was higher than 0.15%, or the concentration of PTAA-Na added was higher than 0.35%, weak gel-like behavior of the mixtures was also observed at low temperatures. In addition, though the gelation and degelation patterns of MC were not changed by the addition of PTAA-NH4 or PTAA-Na, both rheological and calorimetric measurements showed that the presence of PTAA-NH4 or PTAA-Na shifted the sol-gel transition temperature of MC solution to higher temperature with increasing of the concentration of PTAA-NH4.
     2. The aqueous dispersion and the composite film of curdlan and PEDOT were prepared. The aqueous dispersion of curdlan and PEDOT showed remarkable shear thinning behavior. The apparent viscosity and storage modulus of the aqueous dispersion of curdlan and PEDOT were lower than the curdlan aqueous suspension of the same concentration of curdlan, but increased with the concentration of PEDOT. Both rheological and calorimetric measurements showed that the thermal reversibility of the low-set gel formed from the aqueous dispersion of curdlan and PEDOT were lower than the low set-gel formed from the curdlan aqueous suspension of the same concentration of curdlan, but the thermal irreversibility increased with the concentration of PEDOT. Under low relative humidity, the resistance of the curdlan film was very big, and the presence of PEDOT could reduce resistance obviously. With the increase of relative humidity, the influence of PEDOT on the resistance of the curdlan film getting smaller. The resistance of the curdlan film and the composite film of curdlan and PEDOT changes with the relative humidity, so the films could be used as humidity sensor.
     3. PEDOT doped with polyanionic polysaccharides such as carboxymethyl cellulose, sodium hyaluronate, xanthan gum, pectin, gellan gum were prepared by electropolymerization in aqueous solutions. Some other dopants of potassium nitrate, potassium sulfate, sodium poly(styrenesulfonate) and sodium polyacrylate were used in comparison with the polyanionic polysaccharides. The optimum working electrodes, potential range and pH to obtain the electroactive PEDOT films were determined from the experiments of linear sweep voltammetry. The experiments indicated that indium tin oxid (ITO) conductive glass was suitable for the electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) in aqueous solution and the potential should be about 1.2 V which was between the oxidation potential and the overoxidation potential of EDOT in the solutions used. It was found that at acidic conditions, EDOT had lower polymerization and overoxidation potentials; the optimum pH range for film forming was 6-8 except sodium polyacrylate system, in which PEDOT film can only be formed under acidic conditions. The infrared spectra confirmed that all the anions were successfully doped into the PEDOT films. The electrochemical properties and stability of the obtained PEDOT films were also investigated. Results showed that the dopant had a great influence on the electrochemical synthesis and property of the PEDOT film. The PEDOT films doped with natural polyanionic polysaccharides were smoother and denser than those doped with inorganic salts and synthetic polyanions. In addition, the PEDOT films doped with natural polyanionic polysaccharides were of more stable electrochemical properties and better adhesion properties to the ITO conductive glass.
引文
[1]孙毅,姚康德,张西正,等.聚吡咯在组织工程中的应用[J].功能材料, 2003, (06): 612-614.
    [2] Griffith L G, Naughton G. Tissue engineering--current challenges and expanding opportunities[J]. Science, 2002, 295(5557): 1009-1014.
    [3] Stock U A, Vacanti J P. Tissue engineering: current state and prospects[J]. Annual Review of Medicine, 2001, 52(1): 443-451.
    [4] Brevet A, Pinto E, Peacock J, et al. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures[J]. Science, 1976, 193(4258): 1152-1154.
    [5] Zrenner E, Stett A, Weiss S, et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors?[J]. Vision Research, 1999, 39(15): 2555-2567.
    [6] Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link?[J]. Trends in Neurosciences, 1993, 16(6): 206-214.
    [7] Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials, 2001, 22(10): 1055-1064.
    [8] Svennersten K, Bolin M H, Jager E W H, et al. Electrochemical modulation of epithelia formation using conducting polymers[J]. Biomaterials, 2009, 30(31): 6257-6264.
    [9] Green R A, Lovell N H, Poole-Warren L A. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties[J]. Acta Biomaterialia, 2010, 6(1): 63-71.
    [10] Onoda M, Abe Y, Tada K. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures[J]. Thin Solid Films, 2009, 518(2): 743-749.
    [11] Xiao Y, Li C M, Wang S, et al. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity[J]. Journal of Biomedical Materials Research - Part A, 2010, 92(2): 766-772.
    [12] Cui X, Wiler J, Dzaman M, et al. In vivo studies of polypyrrole/peptide coated neural probes[J]. Biomaterials, 2003, 24(5): 777-787.
    [13] Guimard N K, Gomez N, Schmidt C E. Conducting polymers in biomedical engineering[J]. Progress in Polymer Science, 2007, 32(8-9): 876-921.
    [14]孙小杰.新型导电聚合物的制备及其应用于生物传感器的研究[D].南京理工大学, 2006.
    [15] Yamamoto T, Sanechika K, Yamamoto A. Preparation of thermostable and electric-conducting poly(2,5-thienylene)[J]. Journal of Polymer Science: Polymer Letters Edition, 1980, 18(1): 9-12.
    [16] Lin J W P, Dudek L P. Synthesis and properties of poly(2,5-thienylene)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(9): 2869-2873.
    [17] Sugimoto R i, Takeda S, Gu H B, et al. Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property[J]. Chemistry Express, 1986, 1(11): 635-638.
    [18]佟拉嘎.含烷基、烷氧基侧基聚噻吩的合成、表征与发光性能[D].大连理工大学, 2003.
    [19] Tang H, Zhou Z, Zhong Y, et al. Electropolymerization of 3-methylthiophene in the presence of a small amount of bithiophene and its usage as hole transport layer in organic light emitting diodes[J]. Thin Solid Films, 2006, 515(4): 2447-2451.
    [20] Türkarslan O, B?yükbayram A E, Toppare L. Amperometric alcohol biosensors based on conducting polymers: Polypyrrole, poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxypyrrole)[J]. Synthetic Metals, 2010, 160(7-8): 808-813.
    [21] Sahin E, Camurlu P, Toppare L. Dual-type electrochromic devices based on both n- and p-dopable poly(dithieno[3,4-b,3',4'-e]-[1,4]-dithiine)[J]. Synthetic Metals, 2006, 156(16-17): 1073-1077.
    [22]刘香兰.聚噻吩衍生物的合成、发光性能及结构的同步辐射研究[D].中国科学技术大学, 2008.
    [23]王炜.聚噻吩及其衍生物在生物医学领域的应用[J].高分子通报, 2009, (9): 12.
    [24] Tóth P S, Janáky C, Hiezl Z, et al. Electrosynthesis and comparative studies on carboxyl-functionalized polythiophene derivatives[J]. Electrochimica Acta, 2011, 56(10): 3447-3453.
    [25] Abasiyanik M F, ?enel M. Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application[J]. Journal of Electroanalytical Chemistry, 2010, 639(1-2): 21-26.
    [26] Nien P C, Chen P Y, Ho K C. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid) and Cholesterol Oxidase[J]. Sensors, 2009, 9(3): 1794-1806.
    [27] Lin M, Cho M S, Choe W S, et al. Electrochemical analysis of copper ion using a Gly-Gly-His tripeptide modified poly(3-thiopheneacetic acid) biosensor[J]. Biosensors & Bioelectronics, 2009, 25(1): 28-33.
    [28] Kim S H, Oh J H, Yoo B, et al. Fabrication of chemiluminescence sensor based on the functionalized MWCNT-Nafion composite film[J]. Advanced Materials Research, 2008, 47-50: 1474-7.
    [29] Kuwahara T, Ohta H, Kondo M, et al. Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell[J]. Bioelectrochemistry, 2008, 74(1): 66-72.
    [30] Klein T, Dullweber F, Brehm C, et al. Characterization of Eltenac and novel COX-2 selective thiopheneacetic acid analogues in vitro and in vivo[J]. Biochemical Pharmacology, 2008, 76(6): 717-725.
    [31] Kim H J, Choi S H, Lee K P, et al. Fabrication of functional poly(thiophene) electrode for biosensors[J]. Ultramicroscopy, 2008, 108(10): 1360-4.
    [32] Liu C J, Kuwahara T, Yamazaki R, et al. Covalent immobilization of glucose oxidase on films prepared by electrochemical copolymerization of 3-methylthiophene and thiophene-3-acetic acid for amperometric sensing of glucose: Effects of polymerization conditions on sensing properties[J]. European Polymer Journal, 2007, 43: 3264-3276.
    [33] Kuwahara T, Oshima K, Shimomura M, et al. Properties of the enzyme electrode fabricated with a film of polythiophene derivative and its application to a glucose fuel cell[J]. Journal of Applied Polymer Science, 2007, 104(5): 2947-2953.
    [34] Kuwahara T, Oshima K, Shimomura M, et al. Glucose sensing with glucose oxidase immobilized covalently on the films of thiophene copolymers[J]. Synthetic Metals, 2005, 152(1-3): 29-32.
    [35] Kuwahara T, Oshima K, Shimomura M, et al. Immobilization of glucose oxidase and electron-mediating groups on the film of 3-methylthiophene/thiophene-3-acetic acid copolymer and its application to reagentless sensing of glucose[J]. Polymer, 2005, 46(19): 8091-8097.
    [36] Kiralp S, Toppare L, Yagci Y. Determination of phenolic compounds in wines with enzyme electrodes fabricated by immobilization of polyphenol oxidase in conducting copolymers[J]. Designed Monomers and Polymers, 2004, 7(1-2): 3-10.
    [37] Cirpan A, Alkan S, Toppare L, et al. Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole[J]. Designed Monomers and Polymers, 2003, 6(3): 237-243.
    [38] Kim Y G, Samuelson L A, Kumar J, et al. Carboxylated polythiophenes: Polymer biosensors in liquid and solid states[J]. Journal of Macromolecular Science-Pure and Applied Chemistry, 2002, A39(10): 1127-1136.
    [39] Shimomura M, Kojima N, Oshima K, et al. Covalent immobilization of glucose oxidase on film prepared by electrochemical copolymerization of thiophene-3-acetic acid and 3-methylthiophene for glucose sensing[J]. Polymer Journal, 2001, 33(8): 629-631.
    [40] Mukherjee P, Dawn A, Nandi A K. Biomolecular hybrid of poly(3-thiophene acetic acid) and double stranded DNA: Optical and conductivity properties[J]. Langmuir, 2010, 26(13): 11025-11034.
    [41] Nilsson K P R, Herland A, Hammarstrom P, et al. Conjugated polyelectrolytes: Conformation-sensitive optical probes for detection of arnyloid fibril forrnation[J]. Biochemistry, 2005, 44(10): 3718-3724.
    [42] Friedrich J, Gerhard H, Werner S, et al. Polythiophenes, process for their preparation and their use[P]. EP 0339340, 1989.
    [43] Groenendaal L B, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future[J]. Advanced Materials, 2000, 12(7): 481-494.
    [44]吴隽.微结构可控的聚乙撑二氧噻吩的化学合成及其性能研究[D].天津大学, 2007.
    [45] Aasmundtveit K E, Samuelsen E J, Pettersson L A A, et al. Structure of thin films of poly(3,4-ethylenedioxythiophene)[J]. Synthetic Metals, 1999, 101(1-3): 561-564.
    [46] Carlberg C, Chen X, Ingan?s O. Ionic transport and electronic structure in poly(3,4-ethylenedioxythiophene)[J]. Solid State Ionics, 1996, 85(1-4): 73-78.
    [47] Ocampo C, Oliver R, Armelin E, et al. Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) on Steel Electrodes: Properties and Characterization[J]. Journal of Polymer Research, 2006, 13(3): 193-200.
    [48] Yan J, Sun C, Tan F, et al. Electropolymerized poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 390-394.
    [49] Granstr?m M, Berggren M, Ingan?s O. Micrometer- and nanometer-sized polymeric light-emitting diodes[J]. Science, 1995, 267(5203): 1479-1481.
    [50] Vidal F, Popp J F, Plesse C, et al. Feasibility of conducting semi-interpenetrating networks based on a poly(ethylene oxide) network and poly(3,4-ethylenedioxythiophene) in actuator design[J]. Journal of Applied Polymer Science, 2003, 90(13): 3569-3577.
    [51] Patra S, Munichandraiah N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate[J]. Journal of Applied Polymer Science, 2007, 106(2): 1160-1171.
    [52] Liesa F, Ocampo C, Alemán C, et al. Application of electrochemically produced and oxidized poly(3,4-ethylenedioxythiophene) as anticorrosive additive for paints: Influence of the doping level[J]. Journal of Applied Polymer Science, 2006, 102(2): 1592-1599.
    [53] Santhosh P, Manesh K M, Uthayakumar S, et al. Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers[J]. Bioelectrochemistry, 2009, 75(1): 61-66.
    [54] Peng H, Zhang L, Soeller C, et al. Conducting polymers for electrochemical DNA sensing[J]. Biomaterials, 2009, 30(11): 2132-2148.
    [55] Menaker A, Syritski V, Reut J, et al. Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition[J]. Advanced Materials, 2009, 21(22): 2271-2275.
    [56] Wang X, Sj?berg-Eerola P, Eriksson J E, et al. The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: Towards the application of enzyme electrode construction in biofuel cells[J]. Synthetic Metals, 2010, 160(13-14): 1373-1381.
    [57] Isaksson J, Kjall P, Nilsson D, et al. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump[J]. Nat Mater, 2007, 6(9): 673-679.
    [58] Sarah M R-B, Jeffrey L H, David C M. Electrochemical polymerization ofconducting polymers in living neural tissue[J]. Journal of Neural Engineering, 2007, 4(2): L6.
    [59] Luo S C, Mohamed Ali E, Tansil N C, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility[J]. Langmuir, 2008, 24(15): 8071-8077.
    [60] Kim D H, Richardson-Burns S M, Hendricks J L, et al. Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response[J]. Advanced Functional Materials, 2007, 17(1): 79-86.
    [61] Green R A, Lovell N H, Poole-Warren L A. Cell attachment functionality of bioactive conducting polymers for neural interfaces[J]. Biomaterials, 2009, 30(22): 3637-3644.
    [62] Xiao Y, Li C M, Wang S, et al. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity[J]. Journal of Biomedical Materials Research Part A, 2010, 92A(2): 766-772.
    [63]赵振刚.循环超滤—溶析结晶法分离纯化凝胶多糖的研究[D].广西大学, 2005.
    [64]叶锋.凝胶多糖的发酵研究[D].新疆大学, 2008.
    [65]胡国华.功能性食品胶[M].北京:化学工业出版社, 2004.
    [66]董群.多糖在医药领域中的应用[J].中国药学杂志, 2001, 36(10): 4.
    [67] Peressini D, Bravin B, Lapasin R, et al. Starch-methylcellulose based edible films: rheological properties of film-forming dispersions[J]. Journal of Food Engineering, 2003, 59(1): 25-32.
    [68] Desbrières J, Hirrien M, Ross-Murphy S B. Thermogelation of methylcellulose: Rheological considerations[J]. Polymer, 2000, 41(7): 2451-2461.
    [69] Kato T, Yokoyama M, Takahashi A. Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels[J]. Colloid & Polymer Science 1978, 256(1): 15-21.
    [70] Haque A, Morris E R. Thermogelation of methylcellulose. Part I: molecular structures and processes[J]. Carbohydrate Polymers, 1993, 22(3): 161-173.
    [71] Cai R, Arntfield S D. Thermal gelation in relation to binding of bovine serum albumin-polysaccharide systems[J]. Journal of Food Science, 1997, 62(6): 1129-1134.
    [72] Nishinari K. Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids[J]. Colloid and Polymer Science, 1997, 275(12): 1093-1107.
    [73] Nishinari K, Hofmann K E, Moritaka H, et al. Gel-sol transition of methylcellulose[J]. Macromolecular Chemistry and Physics, 1997, 198(4): 1217-1226.
    [74] Hirrien M, Chevillard C, Desbrières J, et al. Thermogelation of methylcelluloses: New evidence for understanding the gelation mechanism[J]. Polymer, 1998, 39(25): 6251-6259.
    [75] Kobayashi K, Huang C I, Lodge T P. Thermoreversible gelation of aqueous methylcellulose solutions[J]. Macromolecules, 1999, 32(21): 7070-7077.
    [76] Li L. Thermal gelation of methylcellulose in water: Scaling and thermoreversibility[J]. Macromolecules, 2002, 35(15): 5990-5998.
    [77] Li L, Shan H, Yue C Y, et al. Thermally induced association and dissociation of methylcellulose in aqueous solutions[J]. Langmuir, 2002, 18(20): 7291-7298.
    [78] Li L, Wang Q, Xu Y. Thermoreversible association and gelation of methylcellulose in aqueous solutions[J]. Journal of the Society of Rheology , Japan, 2003, 31(5): 287-296.
    [79] Lin J, Wen Z Y, Liu Y, et al. Rheological behavior of aqueous polymer-plasticized gamma-LiAlO2 pastes for plastic forming[J]. Ceramics International, 2009, 35(6): 2289-2293.
    [80] Tang Y, Wang X, Li Y, et al. Production and characterisation of novel injectable chitosan/ methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds[J]. Carbohydrate Polymers, 2010, 82(3): 833-841.
    [81] Bhowmik M, Das S, Sinha J, et al. Methyl cellulose based sustained release thermosensitive in situ fast gelling ocular delivery of ketorolac tromethamine[J]. Asian Journal of Chemistry, 2010, 22(3): 2147-2154.
    [82] Kumar S, Haglund B O, Himmelstein K J. In situ-forming gels for ophthalmic drug delivery[J]. Journal of Ocular Pharmacology, 1994, 10(1): 47-56.
    [83]陈薇,李建平,王立群,等.甲基纤维素用于人工晶体植入术的研究[J].山东医药, 1990, (10): 24.
    [84]符辰雅,王瑞姝,远雄,等.人工晶体植入术中小剂量甲基纤维素的应用[J].眼外伤职业眼病杂志.附眼科手术, 1993, (S1): 451.
    [85]卢建香,卢艳玲,孙凌宏,等.甲基纤维素在泪道阻塞中的应用[J].眼外伤职业眼病杂志.附眼科手术, 2002, (05): 586-587.
    [86] Mueller W H, Deardorff D L. Ophthalmic vehicles: The effect of methylcellulose on the penetration of homatropine hydrobromide through the cornea[J]. Journal of the American Pharmaceutical Association, 1956, 45(5): 334-341.
    [87]陆国生,殷汝桂,黄毅群,等.甲基纤维素在人工晶体植入术中的应用[J].眼外伤职业眼病杂志.附眼科手术, 1989, (04): 196-198.
    [88]宋林,刘毅,黄红艳.甲基纤维素在外伤性前房积血注吸术中的应用[J].眼外伤职业眼病杂志.附眼科手术, 2002, (05): 567.
    [89]王素英,郑玉炎,连燕.甲基纤维素在角膜穿孔虹膜脱出修复术的应用[J].眼外伤职业眼病杂志.附眼科手术, 2002, (03): 352.
    [90] Fechner P. Methylcellulose, a viscous cushioning material in ophthalmic surgery[J]. Transactions of the ophthalmological societies of the United Kingdom, 1983, 103: 259.
    [91]张唯伟,罗志强.应用甲基纤维素修复眼球穿通伤[J].眼外伤职业眼病杂志(附眼科手术), 1996, (03): 212-213.
    [92]张晓农.应用甲基纤维素保持角膜在视网膜脱离手术中的清晰[J].临床眼科杂志, 1996, (01): 20-21+62.
    [93]白海,达万明,董国平,等.体外甲基纤维素分离骨髓后冷冻保存及其在自体骨髓移植中的应用[J].中华内科杂志, 1994, (02).
    [94]张苗,张伯龙,靳海杰,等.甲基纤维素体外分离骨髓移植物中红细胞的效果[J].中国实验血液学杂志, 2002, (06): 561-563.
    [95] Okuyama K, Otsubo A, Fukuzawa Y, et al. Single-Helical Structure of Native Curdlan and its Aggregation State [J]. Journal of Carbohydrate Chemistry, 1991, 10(4): 645-656.
    [96] Harada T, Masada, M., Fujimori, K., Meada, I. Production of forming polysaccharide by a mutant (10C3K) of alcaligenes[J]. Agricultural Biological Chemistry, 1966, 30: 196-198.
    [97] Maeda I, Saito, H., Masada, M., Harada, T. Properties of gels formed by heat treat of curdlan, a bacterialβ-1,3-glucan[J]. Agricultural Biological Chemistry, 1967, 31: 1184-1188.
    [98] Harada T, Misaki A, Saito H. Curdlan: A bacterial gel-forming [beta]-1, 3-glucan[J]. Archives of Biochemistry and Biophysics, 1968, 124: 292-298.
    [99] Harada T. The story of research into curdlan and the bacteria producing it[J]. Trends in Glycoscience and Glycotechnology, 1992, 4: 309-317.
    [100] Tada T, Matsumoto T, Masuda T. Structure of molecular association of curdlan at dilute regime in alkaline aqueous systems[J]. Chemical Physics, 1998, 228(1-3): 157-166.
    [101] Saito H, Misaki, A., Harada, T. A comparison of the structure of curdlan and pachyman[J]. Agricultural Biological Chemistry, 1968, 32: 1261-1269.
    [102] McIntosh M, Stone B A, Stanisich V A. Curdlan and other bacterial (1 -> 3)-beta-D-glucans[J]. Applied Microbiology and Biotechnology, 2005, 68(2): 163-173.
    [103]张海龙,关志炜,杨俊杰.可得然胶的性质及应用[J].中国食物与营养, 2010, (01): 36-39.
    [104] Nakata M, Kawaguchi T, Kodama Y, et al. Characterization of curdlan in aqueous sodium hydroxide[J]. Polymer, 1998, 39(6-7): 1475-1481.
    [105] Fulton W S, Atkins E D T, The gelling mechanism and relationship to molecular structure of microbial polysaccharide curdlan, in Fiber Diffraction Methods. 1980, American Chemical Society. p. 385-410.
    [106] Tada T, Tamai N, Matsumoto T, et al. Network structure of curdlan in DMSO and mixture of DMSO and water[J]. Biopolymers, 2001, 58(2): 129-137.
    [107] Numata M, Asai M, Kaneko K, et al. Curdlan and schizophyllan (beta-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure[J]. Chemistry Letters, 2004, 33(3): 232-233.
    [108] Hirashima M, Takaya T, Nishinari K. DSC and rheological studies on aqueous dispersions of curdlan[J]. Thermochimica Acta, 1997, 306(1-2): 109-114.
    [109] Kitamura S, Minami T, Nakamura Y, et al. Chain dimensions and scattering function of (1 --> 3)-[beta]-d-glucan simulated by the Monte Carlo method[J]. Journal of Molecular Structure: THEOCHEM, 1997, 395-396: 425-435.
    [110]詹晓北,韩杰,朱莉.一种新型的微生物多糖食品添加剂——热凝胶[J].冷饮与速冻食品工业, 2001, (01): 27-30+32.
    [111] Funami T, Funami M, Yada H, et al. Rheological and thermal studies on gelling characteristics of curdlan[J]. Food Hydrocolloids, 1999, 13(4): 317-324.
    [112] Konno A, Harada T. Thermal properties of curdlan in aqueous suspension and curdlan gel[J]. Food Hydrocolloids, 1991, 5(5): 427-434.
    [113] Kanzawa Y, Harada T, Koreeda A, et al. Difference of molecular association in two types of curdlan gel[J]. Carbohydrate Polymers, 1989, 10(4): 299-313.
    [114] Nakao Y, Konno A, Taguchi T, et al. Curdlan: Properties and Application to Foods[J]. Journal of Food Science, 1991, 56(3): 769-772.
    [115] Zhang H B, Nishinari K, Williams M A K, et al. A molecular description of the gelation mechanism of curdlan[J]. International Journal of Biological Macromolecules, 2002, 30(1): 7-16.
    [116] Gagnon M A, Lafleur M. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels[J]. Journal of Colloid and Interface Science, 2011, 357(2): 419-427.
    [117] Marchessault R H, Deslandes Y. Fine structure of (1-->3)-[beta]-d-glucans: curdlan and paramylon[J]. Carbohydrate Research, 1979, 75: 231-242.
    [118] Saito H, Yokoi M, Yoshioka Y. Effect of hydration on conformational change or stabilization of (1 .fwdarw. 3)-.beta.-D-glucans of various chain lengths in the solid state as studied by high-resolution solid-state carbon-13 NMR spectroscopy[J]. Macromolecules, 1989, 22(10): 3892-3898.
    [119] Funami T. Atomic force microscopy imaging of food polysaccharides[J]. Food Science and Technology Research, 2010, 16(1): 1-12.
    [120] Yotsuzuka F, Curdlan, in Handbook of Dietary Fiber, Mark L . Dreher, Susan Sungsoo Cho, Editors. 2001, CRC Press. p. 737-757.
    [121] Spicer E J F, Goldenthal E I, Ikeda T. A toxicological assessment of curdlan[J]. Food and Chemical Toxicology, 1999, 37(4): 455-479.
    [122] Williams P D, Sadar L N, Lo Y M. Texture stability of hydrogel complex containing curdlan gum over multiple freeze-thaw cycles[J]. Journal of Food Processing and Preservation, 2009, 33(1): 126-139.
    [123]丛峰松,张洪斌,张维杰.可德胶及其在食品和医药领域上的应用[J].食品科学, 2004, (11): 432-435.
    [124] Jagodzinski P P, Wiaderkiewicz R, Kurzawski G, et al. Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro[J]. Virology, 1994, 202(2): 735-745.
    [125] Yoshida T, Yasuda Y, Mimura T, et al. Synthesis of curdlan sulfates having inhibitory effects in-vitro against aids viruses HIV-1 and HIV-2[J]. Carbohydrate Research, 1995, 276(2): 425-436.
    [126] Aoki T, Kaneko Y, Stefanski M S, et al. Curdlan sulfate and HIV-1 I. in vitro inhibitory effects of curdlan sulfate on HIV-1 infection[J]. Aids Research and Human Retroviruses, 1991, 7(4): 409-415.
    [127] Havlik I, Looareesuwan S, Vannaphan S, et al. Curdlan sulphate in human severe/cerebral Plasmodium falciparum malaria[J]. Transactions of the RoyalSociety of Tropical Medicine and Hygiene, 2005, 99(5): 333-340.
    [128] Sait? H, Yoshioka Y, Uehara N, et al. Relationship between conformation and biological response for (1-->3)-[beta]--glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant[J]. Carbohydrate Research, 1991, 217: 181-190.
    [129] Usui S, Matsunaga T, Ukai S, et al. Growth suppressing activity for endothelial cells induced from macrophages by carboxymethylated curdlan[J]. Bioscience, Biotechnology, and Biochemistry 1997, 61(11): 1924-1925.
    [130] Sasaki T, Abiko N, Sugino Y, et al. Dependence on Chain Length of Antitumor Activity of (1→3)-β-d-Glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and Its Acid-degraded Products[J]. Cancer research, 1978, 38(2): 379-383.
    [131] Son H J, Park Y H, Lee J H. Development of supporting materials for microbial immobilization and iron oxidation[J]. Applied Biochemistry and Biotechnology, 2004, 112(1): 1-12.
    [132] Shimizu, Oka, Kudoh, et al. Effects of a Partially Hydrolyzed Curdlan on Serum and Hepatic Cholesterol Concentration, and Cecal Fermentation in Rats[J]. International Journal for Vitamin and Nutrition Research, 2002, 72(2): 101-108.
    [133] Shimizu J, Tsuchihashi N, Kudoh K, et al. Dietary curdlan increases proliferation of bifidobacteria in the cecum of rats[J]. Bioscience Biotechnology and Biochemistry, 2001, 65(2): 466-469.
    [134] Koumoto K, Kimura T, Kobayashi H, et al. Chemical modification of curdlan to induce an interaction with poly(C)[J]. Chemistry Letters, 2001, 30(9): 908-909.
    [135]马月飞.凝胶多糖的性质及其应用的研究进展[J].食品科技, 2007, (02): 13-17.
    [136] Coffey D G, Bell D A, Henderson A, Cellulose and cellulose derivatives, in Food polysaccharides and their applications, A. M. Stephen, G. O. Phillips, P. A. Williams, Editors. 2006, CRC Press: Abingdon, UK. p. 147-180.
    [137]张丽平,余晓琴.羧甲基纤维素钠(CMC)在食品工业应用的情况和研究动态[J].中国食品添加剂, 2006, (01): 118-125.
    [138]牛生洋,郝峰鸽.羧甲基纤维素钠的应用进展[J].安徽农业科学, 2006, (15): 3574-3575.
    [139] Gómez-Burgaz M, García-Ochoa B, Torrado-Santiago S. Chitosan-carboxymethylcellulose interpolymer complexes for gastric-specific delivery of clarithromycin[J]. International Journal of Pharmaceutics, 2008, 359(1-2): 135-143.
    [140] Martini A, Ciocca C. Drug delivery systems for cancer drugs[J]. Expert Opinion on Therapeutic Patents, 2003, 13(12): 1801-1807.
    [141] Roullin V-G, Deverre J-R, Lemaire L, et al. Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres[J]. European Journal ofPharmaceutics and Biopharmaceutics, 2002, 53(3): 293-299.
    [142] Little S, Langer R, Nonviral Delivery of Cancer Genetic Vaccines, in Gene Therapy and Gene Delivery Systems, David Schaffer, Weichang Zhou, Editors. 2005, Springer Berlin / Heidelberg. p. 93-118.
    [143] Lu J L, Wang J C, Zhao S X, et al. Self-microemulsifying drug delivery system (SMEDDS) improves anticancer effect of oral 9-nitrocamptothecin on human cancer xenografts in nude mice[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 899-907.
    [144] Jiang L, Li Y, Xiong C. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering[J]. Journal of Biomedical Science, 2009, 16(1): 1-10.
    [145] Chen H, Fan M. Chitosan/carboxymethyl cellulose polyelectrolyte complex scaffolds for pulp cells regeneration[J]. Journal of Bioactive and Compatible Polymers, 2007, 22(5): 475-491.
    [146] Lap?ik L, De Smedt S, Demeester J, et al. Hyaluronan: preparation, structure, properties, and applications[J]. Chemical Reviews, 1998, 98(8): 2663-2684.
    [147] Reed R K, Lilja K, Laurent T C. Hyaluronan in the rat with special reference to the skin[J]. Acta Physiologica Scandinavica, 1988, 134(3): 405-411.
    [148] Laurent T, Fraser J. Hyaluronan[J]. The FASEB Journal, 1992, 6(7): 2397-2404.
    [149]黄思玲,郭学平,杨桂兰,等.透明质酸近两年的应用研究进展[J].食品与药品, 2009, 11(01): 50-53.
    [150]凌沛学.透明质酸[M].北京:中国轻工业出版社, 2000.
    [151] Lambros V S. Hyaluronic acid injections for correction of the tear trough deformity[J]. Plastic and Reconstructive Surgery, 2007, 120(6S): 74S-80S 10.1097/01.prs.0000248858.26595.46.
    [152] Kane M. Treatment of tear trough deformity and lower lid bowing with iInjectable hyaluronic acid[J]. Aesthetic Plastic Surgery, 2005, 29(5): 363-367.
    [153] Steinsapir K D, Steinsapir S M G. Deep-fill hyaluronic acid for the temporary treatment of the naso-jugal groove: a report of 303 consecutive treatments[J]. Ophthalmic Plastic & Reconstructive Surgery, 2006, 22(5): 344-348 10.1097/01.iop.0000235818.54973.27.
    [154] Greenwald R A, Moy W W. Effect of oxygen-derived free radicals on hyaluronic acid[J]. Arthritis & Rheumatism, 1980, 23(4): 455-463.
    [155] Sato H, Takahashi T, Ide H, et al. Antioxidant activity of synovial fluid, hyaluronic acid, and two subcomponents of hyaluronic acid. synovial fluid scavenging effect is enhanced in rheumatoid arthritis patients[J]. Arthritis & Rheumatism, 1988, 31(1): 63-71.
    [156] Engstr?um-Laurent A, H?llgren R. Circulating hyaluronic acid levels vary with physical activity in healthy subjects and in rheumatoid arthritis patients. relationship to synovitis mass and morning stiffness[J]. Arthritis & Rheumatism, 1987, 30(12): 1333-1338.
    [157] Wang C T, Lin J, Chang C J, et al. Therapeutic effects of hyaluronic acid onosteoarthritis of the knee. a meta-analysis of randomized controlled trials[J]. J Bone Joint Surg Am, 2004, 86(3): 538-545.
    [158] Bragantini A, Molinaroli F. A pilot clinical evaluation of the treatment of hip osteoarthritis with hyaluronic acid[J]. Current Therapeutic Research, 1994, 55(3): 319-330.
    [159] Lo G H, LaValley M, McAlindon T, et al. Intra-articular hyaluronic acid in treatment of knee osteoarthritis[J]. JAMA: The Journal of the American Medical Association, 2003, 290(23): 3115-3121.
    [160] Stahl S, Karsh-Zafrir I, Ratzon N, et al. Comparison of Intraarticular Injection of Depot Corticosteroid and Hyaluronic Acid for Treatment of Degenerative Trapeziometacarpal Joints[J]. JCR: Journal of Clinical Rheumatology, 2005, 11(6): 299-302.
    [161] Jeanes A, Pittsley J E, Senti F R. Polysaccharide B-1459: A new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation[J]. Journal of Applied Polymer Science, 1961, 5(17): 519-526.
    [162] Jansson P E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282.
    [163] García-Ochoa F, Santos V E, Casas J A, et al. Xanthan gum: production, recovery, and properties[J]. Biotechnology Advances, 2000, 18(7): 549-579.
    [164] Moorhouse R, Walkinshaw M D, Arnott S, Xanthan Gum - Molecular Conformation and Interactions, in Extracellular Microbial Polysaccharides. 1977, American Chemical Society. p. 90-102.
    [165]韩冠英,凌沛学,王凤山.黄原胶的特性及其在医药领域的应用[J].生物医学工程研究, 2010, (04): 277-281.
    [166] Higiro J, Herald T J, Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution[J]. Food Research International, 2006, 39(2): 165-175.
    [167] Choppe E, Puaud F, Nicolai T, et al. Rheology of xanthan solutions as a function of temperature, concentration and ionic strength[J]. Carbohydrate Polymers, 2010, 82(4): 1228-1235.
    [168] GB 2760-2007食品添加剂使用卫生标准[S]
    [169] Santos H, Veiga F, Pina M E, et al. Compaction, compression and drug release characteristics of xanthan gum pellets of different compositions[J]. European Journal of Pharmaceutical Sciences, 2004, 21(2-3): 271-281.
    [170] Nishinari K. Physical chemistry and industrial application of gellan gum[M]. Berlin: Springer, 1999.
    [171] Valli R, Miskiel F, Gellan gum, in Handbook of Dietary Fiber. 2001, CRC Press.
    [172] Fuchigami M, Teramoto A. Texture and structure of high-pressure-frozen gellan gum gel[J]. Food Hydrocolloids, 2003, 17(6): 895-899.
    [173] Kang K S, Veeder G T, Mirrasoul P J, et al. Agar-like polysaccharide produced by a pseudomonas species: production and basic properties[J]. Appl. Environ. Microbiol., 1982, 43(5): 1086-1091.
    [174]许怀远,任向妍,王垚.结冷胶凝胶特性及在食品工业中的应用[J].中国食品添加剂, 2009, (04): 54-61.
    [175] Harris J E. GELRITE as an agar substitute for the cultivation of mesophilic methanobacterium and methanobrevibacter species[J]. Appl. Environ. Microbiol., 1985, 50(4): 1107-1109.
    [176] Shigeta J I, Sato K, Tanaka S, et al. Efficient plant regeneration of asparagus by inducing normal roots from in vitro multiplied shoot explants using gellan gum and glucose[J]. Plant Science, 1996, 113(1): 99-104.
    [177]李璠,朱家壁.新型高分子材料结冷胶的性质和应用[J].中国药业, 2007, (09): 1-3.
    [178] May C D, Pectins, in Handbook of Hydrocolloids, G. O Phillips, P. A. Williams, Editors. 2000, Woodhead Publishing Ltd.: England. p. 169-188.
    [179] Luz Fernandez M, Pectin, in Handbook of Dietary Fiber. 2001, CRC Press.
    [180]段红.果胶及其应用研究进展[J].宿州学院学报, 2006, 21(6): 4.
    [181] Tamaki Y, Konishi T, Fukuta M, et al. Isolation and structural characterisation of pectin from endocarp of Citrus depressa[J]. Food Chemistry, 2008, 107(1): 352-361.
    [182]孙元琳.果胶类多糖的研究进展[J].食品与机械, 2004, 20(6): 4.
    [183] Jackson C L, Dreaden T M, Theobald L K, et al. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure[J]. Glycobiology, 2007, 17(8): 805-819.
    [184] Wang X S, Liu L, Fang J N. Immunological activities and structure of pectin from Centella asiatica[J]. Carbohydrate Polymers, 2005, 60(1): 95-101.
    [185] Sánchez D, Muguerza B, Moulay L, et al. Highly Methoxylated Pectin Improves Insulin Resistance and Other Cardiometabolic Risk Factors in Zucker Fatty Rats[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3574-3581.
    [186] Khotimchenko M, Sergushchenko I, Khotimchenko Y. The effects of low-esterified pectin on lead-induced thyroid injury in rats[J]. Environmental Toxicology and Pharmacology, 2004, 17(2): 67-71.
    [187] Henry C, Armand F, Araspin O, et al. Structural study of a n-alkylthiophene polymer grown in an oriented ultrathin matrix of alkylcellulose[J]. Chemistry of Materials, 1999, 11(4): 1024-1029.
    [188] Goto H, Akagi K. Optically active electrochromism of poly(3,4-ethylenedioxythiophene) synthesized by electrochemical polymerization in lyotropic liquid crystal of hydroxypropyl cellulose/water: active control of optical activity[J]. Chemistry of Materials, 2006, 18(2): 255-262.
    [189] Xue C H, Luo F T, Liu H Y. Post-Polymerization Functionalization Approach for Highly Water-Soluble Well-Defined Regioregular Head-to-Tail Glycopolythiophenes[J]. Macromolecules, 2007, 40(19): 6863-6870.
    [190] Numata M. Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68(1): 25-47.
    [191] Li C, Numata M, Bae A-H, et al. Self-assembly of supramolecular chiral insulated molecular wire[J]. Journal of the American Chemical Society, 2005, 127(13): 4548-4549.
    [192] Li C, Numata M, Hasegawa T, et al. Water-soluble polythiophene as an optical probe for detection of the helicity and conformational transition in polysaccharides[J]. Chemistry Letters, 2005, 34(10): 1354-1355.
    [193] Sakurai K, Uezu K, Numata M, et al.β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles [J]. Chemical Communications, 2005, (35): 4383-4398.
    [194] Haraguchi S, Numata M, Kaneko K, et al. Immobilization of polythiophene chirality induced by a helix-formingβ-1,3-glucan polysaccharide (schizophyllan) through sol-gel reaction[J]. Bulletin of the Chemical Society of Japan, 2008, 81(8): 1002-1006.
    [195] Haraguchi S, Numata M, Li C, et al. Circularly polarized luminescence from supramolecular chiral complexes of achiral conjugated polymers and a neutral polysaccharide[J]. Chemistry Letters, 2009, 38(3): 254-255.
    [196] Haraguchi S, Tsuchiya Y, Shiraki T, et al. Control of polythiophene redox potentials based on supramolecular complexation with helical schizophyllan[J]. Chemical Communications, 2009, (40): 6086-6088.
    [197] Haraguchi S, Tsuchiya Y, Shiraki T, et al. On the helical motif of the complexes created by association of helix-forming schizophyllan (SPG) and helix-forming polythiophene derivatives[J]. Chemistry - A European Journal, 2009, 15(42): 11221-11228.
    [198] Numata M, Shinkai S, Self-Assembled Polysaccharide Nanotubes Generated fromβ-1,3-Glucan Polysaccharides, in Self-Assembled Nanomaterials II, Toshimi Shimizu, Editor. 2008, Springer Berlin / Heidelberg. p. 65-121.
    [199] Li C, Numata M, Hasegawa T, et al. Water-soluble poly(3,4-ethylenedioxythiophene) nanocomposites created by a templating effect ofβ-1,3-Glucan schizophyllan[J]. Chemistry Letters, 2005, 34(11): 1532-1533.
    [200] Sada K, Takeuchi M, Fujita N, et al. Post-polymerization of preorganized assemblies for creating shape-controlled functional materials[J]. Chemical Society Reviews, 2007, 36(2): 415-435.
    [201] Fukuhara G, Inoue Y. Highly selective oligosaccharide sensing by a curdlan-polythiophene hybrid[J]. Journal of the American Chemical Society, 2010, 133(4): 768-770.
    [202] Asplund M, von Holst H, Ingan?s O. Composite biomolecule/PEDOT materials for neural electrodes[J]. Biointerphases, 2008, 3(3): 83-93.
    [203] Asplund M, Thaning E, Lundberg J, et al. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes[J]. Biomedical Materials, 2009, 4(4): 045009.
    [204]李勇.可德胶与疏水性大分子相互作用的研究[D].上海交通大学, 2010.
    [1] Peressini D, Bravin B, Lapasin R, et al. Starch-methylcellulose based edible films: rheological properties of film-forming dispersions[J]. Journal of Food Engineering, 2003, 59(1): 25-32.
    [2] Desbrières J, Hirrien M, Ross-Murphy S B. Thermogelation of methylcellulose: Rheological considerations[J]. Polymer, 2000, 41(7): 2451-2461.
    [3] Hirrien M, Chevillard C, Desbrières J, et al. Thermogelation of methylcelluloses: New evidence for understanding the gelation mechanism[J]. Polymer, 1998, 39(25): 6251-6259.
    [4] Lin J, Wen Z Y, Liu Y, et al. Rheological behavior of aqueous polymer-plasticized gamma-LiAlO2 pastes for plastic forming[J]. Ceramics International, 2009, 35(6): 2289-2293.
    [5] Tang Y, Wang X, Li Y, et al. Production and characterisation of novel injectable chitosan/ methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds[J]. Carbohydrate Polymers, 2010, 82(3): 833-841.
    [6] Bhowmik M, Das S, Sinha J, et al. Methyl cellulose based sustained release thermosensitive in situ fast gelling ocular delivery of ketorolac tromethamine[J]. Asian Journal of Chemistry, 2010, 22(3): 2147-2154.
    [7] Kumar S, Haglund B O, Himmelstein K J. In situ-forming gels for ophthalmic drug delivery[J]. Journal of Ocular Pharmacology, 1994, 10(1): 47-56.
    [8] Martin B C, Minner E J, Wiseman S L, et al. Agarose and methylcellulose hydrogel blends for nerve regeneration applications[J]. Journal of Neural Engineering, 2008, 5(2): 221-231.
    [9] Gupta D, Tator C H, Shoichet M S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord[J]. Biomaterials, 2006, 27(11): 2370-2379.
    [10] Griffith L G, Naughton G. Tissue engineering--current challenges and expanding opportunities[J]. Science, 2002, 295(5557): 1009-1014.
    [11] Stock U A, Vacanti J P. Tissue engineering: current state and prospects[J]. Annual Review of Medicine, 2001, 52(1): 443-451.
    [12] Green R A, Lovell N H, Poole-Warren L A. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties[J]. Acta Biomaterialia, 2010, 6(1): 63-71.
    [13] Onoda M, Abe Y, Tada K. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures[J]. Thin Solid Films, 2009, 518(2): 743-749.
    [14] Xiao Y, Li C M, Wang S, et al. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity[J]. Journal of Biomedical Materials Research - Part A,2010, 92(2): 766-772.
    [15] Svennersten K, Bolin M H, Jager E W H, et al. Electrochemical modulation of epithelia formation using conducting polymers[J]. Biomaterials, 2009, 30(31): 6257-6264.
    [16] Malitesta C, Guascito M R, Mazzotta E, et al. X-Ray Photoelectron Spectroscopy characterization of electrosynthesized poly(3-thiophene acetic acid) and its application in Molecularly Imprinted Polymers for atrazine[J]. Thin Solid Films, 2010, 518(14): 3705-3709.
    [17] Mukherjee P, Dawn A, Nandi A K. Biomolecular hybrid of poly(3-thiophene acetic acid) and double stranded DNA: Optical and conductivity properties[J]. Langmuir, 2010, 26(13): 11025-11034.
    [18] Nilsson K P R, Herland A, Hammarstrom P, et al. Conjugated polyelectrolytes: Conformation-sensitive optical probes for detection of arnyloid fibril forrnation[J]. Biochemistry, 2005, 44(10): 3718-3724.
    [19] Alemán C, Teixeira-Dias B, Zanuy D, et al. A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene)[J]. Polymer, 2009, 50(8): 1965-1974.
    [20] Guimard N. Biodegradable electroactive materials for tissue engineering applications[D]. United States -- Texas: The University of Texas at Austin, 2008.
    [21] Kim D H, Wiler J A, Anderson D J, et al. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex[J]. Acta Biomaterialia, 2010, 6(1): 57-62.
    [22] Yin Y M, Zhang H B, Nishinari K. Voltammetric characterization on the hydrophobic interaction in polysaccharide hydrogels[J]. Journal of Physical Chemistry B, 2007, 111(7): 1590-1596.
    [23] Kobayashi K, Huang C I, Lodge T P. Thermoreversible gelation of aqueous methylcellulose solutions[J]. Macromolecules, 1999, 32(21): 7070-7077.
    [24] Li L, Thangamathesvaran P M, Yue C Y, et al. Gel network structure of methylcellulose in water[J]. Langmuir, 2001, 17(26): 8062-8068.
    [25] Li L. Thermal gelation of methylcellulose in water: Scaling and thermoreversibility[J]. Macromolecules, 2002, 35(15): 5990-5998.
    [26] de Souza J M, Pereira E C. Luminescence of poly(3-thiopheneacetic acid) in alcohols and aqueous solutions of poly(vinyl alcohol)[J]. Synthetic Metals, 2001, 118(1-3): 167-170.
    [27] Giglioti M, Trivinho-Strixino F, Matsushima J T, et al. Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films[J]. Solar Energy Materials and Solar Cells, 2004, 82(3): 413-420.
    [28] Zhang F X, Srinivasan M P. Cross-linked polyimide-polythiophene composite films with reduced surface resistivities[J]. Thin Solid Films, 2005, 479(1-2): 95-102.
    [29] Li L, Shan H, Yue C Y, et al. Thermally induced association and dissociation of methylcellulose in aqueous solutions[J]. Langmuir, 2002, 18(20): 7291-7298.
    [30] Albery W J, Li F B, Mount A R. Electrochemical polymerization of poly(thiophene-3-acetic acid), poly(thiophene-co-thiophene-3-acetic acid) and determination of their molar mass [J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 239-253.
    [31] Li F B, Albery W J. A novel mechanism of electrochemical deposition of conducting polymers: two-dimensional layer-by-layer nucleation and growth observed for poly(thiophene-3-acetid acid) [J]. Electrochimica Acta, 1992, 37(3): 393-401.
    [32] Li F B, Albery W J. Electrochemical deposition of a conducting polymer, poly(thiophene-3-acetic acid): the first observation of individual events of polymer nucleation and two-dimensional layer-by-layer growth[J]. Langmuir, 1992, 8(6): 1645-1653.
    [33] Hara K, Sayama K, Arakawa H. Electrochemical preparation of poly(3-thiopheneacetic acid) and its n-type semiconductor property[J]. Bulletin of the Chemical Society of Japan, 2000, 73(3): 583-587.
    [34] Liu C J, Kuwahara T, Yamazaki R, et al. Covalent immobilization of glucose oxidase on films prepared by electrochemical copolymerization of 3-methylthiophene and thiophene-3-acetic acid for amperometric sensing of glucose: Effects of polymerization conditions on sensing properties[J]. European Polymer Journal, 2007, 43: 3264-3276.
    [35] Sugimoto R i, Takeda S, Gu H B, et al. Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property[J]. Chemistry Express, 1986, 1(11): 635-638.
    [36] Kim, Chen L, Gong, et al. Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids[J]. Macromolecules, 1999, 32(12): 3964-3969.
    [37] Jiang Y, Wu P. Fabrication and elimination of PTAA/P4VP layer-by-layer films[J]. Applied Spectroscopy, 2008: 207-12.
    [38] Thipdech P, Sirivat A. Polythiophene/acrylonitrile butadiene rubber as an artificial muscle[J]. 2007 7th Ieee Conference on Nanotechnology, Vol 1-3, 2007: 591-594.
    [39] Thuwachaowsoan K, Chotpattananont D, Sirivat A, et al. Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, mordenite, beta and H-2[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(1-2): 23-30.
    [40] Zhang H Y, Li X Y, Wang X G. Hollow Capsules Constructed of Poly(thiophene-3-acetic acid) and Hyperbranched Azobenzene-containing Polymeric Diazonium Salt[J]. Chemistry Letters, 2009, 38(3): 212-213.
    [41] Jiang Y, Shen Y, Wu P Y. Self-assembly of multilayer films containing gold nanoparticles via hydrogen bonding[J]. Journal of Colloid and Interface Science, 2008, 319(2): 398-405.
    [42] Taka T, Nyholm P, Laakso J, et al. Determination of impurity effects of solubility and processability of poly(3-octyl thiophene)[J]. Synthetic Metals,1991, 41(3): 899-902.
    [43]闻韧.药物合成反应(第二版)[M].北京:化学工业出版社, 2003.
    [44] Montalbetti C A G N, Falque V. Amide bond formation and peptide coupling[J]. Tetrahedron, 2005, 61(46): 10827-10852.
    [45] Freskos J N, Morrow G W, Swenton J S. Synthesis of functionalized hydroxyphthalides and their conversion to 3-cyano-1(3H)-isobenzofuranones. The Diels-Alder reaction of methyl 4,4-diethoxybutynoate and cyclohexadienes[J]. The Journal of Organic Chemistry, 1985, 50(6): 805-810.
    [46]程能林.溶剂手册(第三版)[M].北京: 2002.
    [47] Chiu L L Y, Radisic M, Vunjak-Novakovic G. Bioactive Scaffolds for Engineering Vascularized Cardiac Tissues[J]. Macromolecular Bioscience, 2010, 10(11): 1286-1301.
    [48] Tsai S P, Hsieh C Y, Hsieh C Y, et al. Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges[J]. Journal of Applied Polymer Science, 2007, 105(4): 1774-1785.
    [49] Lam K B, Irwin E F, Healy K E, et al. Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications[J]. Sensors and Actuators B: Chemical, 2006, 117(2): 480-487.
    [50] Dickinson L E, Ho C C, Wang G M, et al. Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid[J]. Biomaterials, 2010, 31(20): 5472-5478.
    [51] Chen Y G, Lee M W, Tu Y H, et al. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen[J]. Artificial Cells, Blood Substitutes and Biotechnology, 2009, 37(5): 222-226.
    [52] Briggs L, Laird K, Boss J M, et al. Formation of the RFX gene regulatory complex induces folding of the interaction domain of RFXAP[J]. Proteins: Structure, Function, and Bioinformatics, 2009, 76(3): 655-664.
    [53] de Jong R N, Meijer L A T, van der Vliet P C. DNA binding properties of the adenovirus DNA replication priming protein pTP[J]. Nucleic Acids Research, 2003, 31(12): 3274-3286.
    [54] Lee H G, Lanier T C, Hamann D D. Chemically Induced Covalent Crosslinks Affect Thermo-Rheological Profiles of Fish Protein Gels[J]. Journal of Food Science, 1997, 62(1): 29-32.
    [55] Heaphy S, Tregear R. Stoichiometry of covalent actin-subfragment 1 complexes formed on reaction with a zero-length crosslinking compound[J]. Biochemistry, 1984, 23(10): 2211-2214.
    [56] Vaks L, Benhar I, Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of staphylococcus aureus bacteria, in Biomedical Nanotechnology, Sarah J. Hurst, Editor. 2011, Humana Press. p. 187-206.
    [57] Staros J V, Wright R W, Swingle D M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated couplingreactions[J]. Analytical Biochemistry, 1986, 156(1): 220-222.
    [58]张琦.β-(1→3)-D-葡聚糖(可德胶)衍生物的制备与表征[D].上海交通大学, 2008.
    [59] Chan H S O, Toh C S, Gan L M. Use of polythiophene and poly(thiophene-3-acetic acid) as charge-selective films for amperometric flow-cell detectors[J]. Journal of Materials Chemistry, 1995, 5(4): 631-637.
    [60] Bartlett P N, Dawson D H. Electrochemistry of poly(3-thiopheneacetic acid) in aqueous solution: evidence for an intramolecular chemical reaction[J]. Journal of Materials Chemistry, 1994, 4(12): 1805-1810.
    [61] Welzel H P, Kossmehl G, Stein H J, et al. Reactive groups on polymer covered electrodes .1. electrochemical copolymerization of thiophene-3-acetic acid with 3-methylthiophene[J]. Electrochimica Acta, 1995, 40(5): 577-584.
    [62]孟令芝,龚淑玲,何永炳.有机波谱分析(第二版)[M].武汉:武汉大学出版社, 2003.
    [63] Senadeera G K R, Nakamura K, Kitamura T, et al. Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells[J]. Applied Physics Letters, 2003, 83(26): 5470-5472.
    [64] Takeoka Y, Iguchi Y, Rikukawa M, et al. Self-assembled multilayer films based on functionalized poly(thiophene)s[J]. Synthetic Metals, 2005, 154(1-3): 109-112.
    [65] Yanagida S, Senadeera G K R, Nakamura K, et al. Polythiophene-sensitized TiO2 solar cells[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2004, 166(1-3): 75-80.
    [66] Yasar K, Kahyaoglu T, Sahan N. Dynamic rheological characterization of salep glucomannan/galactomannan-based milk beverages[J]. Food Hydrocolloids, 2009, 23(5): 1305-1311.
    [67] Haque A, Morris E R. Thermogelation of methylcellulose. Part I: molecular structures and processes[J]. Carbohydrate Polymers, 1993, 22(3): 161-173.
    [68] Diamant H, Andelman D. Self-Assembly in Mixtures of Polymers and Small Associating Molecules[J]. Macromolecules, 2000, 33(21): 8050-8061.
    [69] Dar A A, Garai A, Das A R, et al. Rheological and fluorescence investigation of interaction between hexadecyltrimethylammonium bromide and methylcellulose in the presence of hydrophobic salts[J]. Journal of Physical Chemistry A, 2010, 114(15): 5083-5091.
    [70]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社, 2003.
    [71]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社, 2004.
    [72] Zhang L M, Zhou J F. Synergistic viscosity characteristics of aqueous mixed solutions of hydroxypropyl- and carboxymethyl hydroxypropyl-substituted guar gums[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2006, 279(1-3): 34-39.
    [73] El Ghzaoui A, Trompette J L, Cassanas G, et al. Comparative rheological behavior of some cellulosic ether derivatives[J]. Langmuir, 2001, 17(5): 1453-1456.
    [74] Rojas M R, Muller A J, Saez A E. Synergistic effects in flows of mixtures ofwormlike micelles and hydroxyethyl celluloses with or without hydrophobic modifications[J]. Journal of Colloid and Interface Science, 2008, 322(1): 65-72.
    [75] TAKO M. Synergistic interaction between xanthan and konjac glucomannan in aqueous media[J]. Bioscience, Biotechnology, and Biochemistry 1992, 56 (8): 1188-1192.
    [76] Bresolin T M B, Milas M, Rinaudo M, et al. Xanthan-galactomannan interactions as related to xanthan conformations[J]. International Journal of Biological Macromolecules, 1998, 23(4): 263-275.
    [77] Donati I, Haug I J, Scarpa T, et al. Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac)[J]. Biomacromolecules, 2007, 8(3): 957-962.
    [78] Pellicer J, Delegido J, Dolz J, et al. Influence of shear rate and concentration ratio on viscous synergism. Application to xanthan-locust bean gum-NaCMC mixtures[J]. Food Science and Technology International, 2000, 6(5): 415-423.
    [79] Sovilj V, Petrovic L. Interaction and phase separation in the system HPMC/NaCMC/SDS[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2007, 298(1-2): 94-98.
    [80] Kaletunc-Gencer G, Peleg M. Rheological characteristics of selected food gum mixtures in solution[J]. Journal of Texture Studies, 1986, 17(1): 61-70.
    [81] Dolz M, Hernández M J, Pellicer J, et al. Shear stress synergism index and relative thixotropic area[J]. Journal of Pharmaceutical Sciences, 1995, 84(6): 728-732.
    [82] Jiménez M M, Fresno M J, Ramirez A. Rheological study of binary gels with Carbopol (R) Ultre (TM) 10 and hyaluronic acid[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(8): 1157-1163.
    [83] Chevillard C, Axelos M A V. Phase separation of aqueous solution of methylcellulose[J]. Colloid and Polymer Science, 1997, 275(6): 537-545.
    [84] Owen S R, Tung M A, Paulson A T. Thermorheological studies of food polymer dispersions[J]. Journal of Food Engineering, 1992, 16(1-2): 39-53.
    [85] Li L, Liu E, Lim C H. Micro-DSC and rheological studies of interactions between methylcellulose and surfactants[J]. Journal of Physical Chemistry B, 2007: 6410-16.
    [86] Xu Y, Li L. Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution[J]. Polymer, 2005, 46(18): 7410-7417.
    [87] Xu Y, Wang C, Tam K C, et al. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water[J]. Langmuir, 2004, 20(3): 646-652.
    [88] Li L, Wang Q, Xu Y. Thermoreversible association and gelation of methylcellulose in aqueous solutions[J]. Journal of the Society of Rheology , Japan, 2003, 31(5): 287-296.
    [1] Griffith L G, Naughton G. Tissue engineering--current challenges and expanding opportunities[J]. Science, 2002, 295(5557): 1009-1014.
    [2] Stock U A, Vacanti J P. Tissue engineering: current state and prospects[J]. Annual Review of Medicine, 2001, 52(1): 443-451.
    [3] Green R A, Lovell N H, Poole-Warren L A. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties[J]. Acta Biomaterialia, 2010, 6(1): 63-71.
    [4] Onoda M, Abe Y, Tada K. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures[J]. Thin Solid Films, 2009, 518(2): 743-749.
    [5] Xiao Y, Li C M, Wang S, et al. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity[J]. Journal of Biomedical Materials Research - Part A, 2010, 92(2): 766-772.
    [6] Svennersten K, Bolin M H, Jager E W H, et al. Electrochemical modulation of epithelia formation using conducting polymers[J]. Biomaterials, 2009, 30(31): 6257-6264.
    [7]王炜.聚噻吩及其衍生物在生物医学领域的应用[J].高分子通报, 2009, (9): 12.
    [8] Carlberg C, Chen X, Ingan?s O. Ionic transport and electronic structure in poly(3,4-ethylenedioxythiophene)[J]. Solid State Ionics, 1996, 85(1-4): 73-78.
    [9] Okuyama K, Otsubo A, Fukuzawa Y, et al. Single-Helical Structure of Native Curdlan and its Aggregation State [J]. Journal of Carbohydrate Chemistry, 1991, 10(4): 645-656.
    [10] Maeda I, Saito, H., Masada, M., Harada, T. Properties of gels formed by heat treat of curdlan, a bacterialβ-1,3-glucan[J]. Agricultural Biological Chemistry, 1967, 31: 1184-1188.
    [11] Funami T, Funami M, Yada H, et al. Rheological and thermal studies on gelling characteristics of curdlan[J]. Food Hydrocolloids, 1999, 13(4): 317-324.
    [12] Konno A, Harada T. Thermal properties of curdlan in aqueous suspension and curdlan gel[J]. Food Hydrocolloids, 1991, 5(5): 427-434.
    [13] Harada T, Misaki A, Saito H. Curdlan: A bacterial gel-forming [beta]-1, 3-glucan[J]. Archives of Biochemistry and Biophysics, 1968, 124: 292-298.
    [14] Kanzawa Y, Harada T, Koreeda A, et al. Difference of molecular association in two types of curdlan gel[J]. Carbohydrate Polymers, 1989, 10(4): 299-313.
    [15] Spicer E J F, Goldenthal E I, Ikeda T. A toxicological assessment of curdlan[J]. Food and Chemical Toxicology, 1999, 37(4): 455-479.
    [16] Alemán C, Teixeira-Dias B, Zanuy D, et al. A comprehensive study of theinteractions between DNA and poly(3,4-ethylenedioxythiophene)[J]. Polymer, 2009, 50(8): 1965-1974.
    [17] Guimard N. Biodegradable electroactive materials for tissue engineering applications[D]. United States -- Texas: The University of Texas at Austin, 2008.
    [18] Kim D H, Wiler J A, Anderson D J, et al. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex[J]. Acta Biomaterialia, 2010, 6(1): 57-62.
    [19]李勇.可德胶与疏水性大分子相互作用的研究[D].上海交通大学, 2010.
    [20] GB/T 22042-2008,服装防静电性能表面电阻率试验方法[S]
    [21] GB/T 3048.16-2007,电线电缆电性能试验方法第16部分:表面电阻试验[S]
    [22] OIML R 121, The scale of relative humidity of air certified against saturated salt solutions[S]
    [23]孟令芝,龚淑玲,何永炳.有机波谱分析(第二版)[M].武汉:武汉大学出版社, 2003.
    [24] Seo K I, Chung I J. Reaction analysis of 3,4-ethylenedioxythiophene with potassium persulfate in aqueous solution by using a calorimeter[J]. Polymer, 2000, 41(12): 4491-4499.
    [25] Feng W, Li Y, Wu J, et al. Improved electrical and optical properties of Poly(3,4-ethylenedioxythiophene) via ordered microstructure[J]. Journal of Physics: Condensed Matter, 2007, 19(18): 186220.
    [26] Lei Y, Oohata H, Kuroda S-i, et al. Highly electrically conductive poly(3,4-ethylenedioxythiophene) prepared via high-concentration emulsion polymerization[J]. Synthetic Metals, 2005, 149(2-3): 211-217.
    [27] Harish S, Mathiyarasu J, Phani K, et al. Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction[J]. Catalysis Letters, 2009, 128(1): 197-202.
    [28] Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive Ppoly(3,4-ethylenedioxythiophene) nanorods[J]. Advanced Materials, 2005, 17(13): 1616-1620.
    [29] Kvarnstr?m C, Neugebauer H, Blomquista S, et al. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene)[J]. Electrochimica Acta, 1999, 44(16): 2739-2750.
    [30] Han M G, Foulger S H. Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution[J]. Small, 2006, 2(10): 1164-1169.
    [31] Choi J W, Han M G, Kim S Y, et al. Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Metals, 2004, 141(3): 293-299.
    [32] Laforgue A, Robitaille L. Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization[J]. Macromolecules, 2010, 43(9): 4194-4200.
    [33]吴隽.微结构可控的聚乙撑二氧噻吩的化学合成及其性能研究[D].天津大学, 2007.
    [34] Jin Y, Zhang H B, Yin Y M, et al. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM[J]. Carbohydrate Research, 2006, 341(1): 90-99.
    [35] Funami T, Yada H, Nakao Y. Curdlan properties for application in fat mimetics for meat products[J]. Journal of Food Science, 1998, 63(2): 283-287.
    [36]金阳.可德胶(Curdlan)多糖分子构象及其衍生物的研究[D].上海交通大学, 2007.
    [37] Tako M, Hanashiro I. Evidence for a conformational transition in curdlan[J]. Polymer Gels and Networks, 1997, 5(3): 241-250.
    [38] Zhang H B, Nishinari K, Williams M A K, et al. A molecular description of the gelation mechanism of curdlan[J]. International Journal of Biological Macromolecules, 2002, 30(1): 7-16.
    [39] Funami T, Nishinari K. Gelling characteristics of curdlan aqueous dispersions in the presence of salts[J]. Food Hydrocolloids, 2007, 21(1): 59-65.
    [40] Funami T, Funami M, Yada H, et al. A rheological study on the effects of heating rate and dispersing method on the gelling characteristics of curdlan aqueous dispersions[J]. Food Hydrocolloids, 2000, 14(5): 509-518.
    [41] Tada T, Matsumoto T, Masuda T. Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels[J]. Carbohydrate Polymers, 1999, 39(1): 53-59.
    [42] Tada T, Matsumoto T, Masuda T. Influence of alkaline concentration on molecular association structure and viscoelastic properties of curdlan aqueous systems[J]. Biopolymers, 1997, 42(4): 479-487.
    [43] Funami T, Yada H, Nakao Y. Effect of curdlan on retort stability of a pork meat gel system[J]. Food Science and Technology Research, 1999, 5(1): 24-29.
    [44] Zhang H, Huang L, Nishinari K, et al. Thermal measurements of curdlan in aqueous suspension during gelation[J]. Food Hydrocolloids, 2000, 14(2): 121-124.
    [45] Nishinari K, Miyoshi E, Takaya T, et al. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan[J]. Carbohydrate Polymers, 1996, 30(2-3): 193-207.
    [46] Miyoshi E, Takaya T, Williams P A, et al. Effects of Sodium Chloride and Calcium Chloride on the Interaction between Gellan Gum and Konjac Glucomannan[J]. Journal of Agricultural and Food Chemistry, 1996, 44(9): 2486-2495.
    [47] Hirashima M, Takaya T, Nishinari K. DSC and rheological studies on aqueous dispersions of curdlan[J]. Thermochimica Acta, 1997, 306(1-2): 109-114.
    [1] Ocampo C, Oliver R, Armelin E, et al. Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) on Steel Electrodes: Properties and Characterization[J]. Journal of Polymer Research, 2006, 13(3): 193-200.
    [2] Yan J, Sun C, Tan F, et al. Electropolymerized poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 390-394.
    [3] Granstr?m M, Berggren M, Ingan?s O. Micrometer- and nanometer-sized polymeric light-emitting diodes[J]. Science, 1995, 267(5203): 1479-1481.
    [4] Vidal F, Popp J F, Plesse C, et al. Feasibility of conducting semi-interpenetrating networks based on a poly(ethylene oxide) network and poly(3,4-ethylenedioxythiophene) in actuator design[J]. Journal of Applied Polymer Science, 2003, 90(13): 3569-3577.
    [5] Patra S, Munichandraiah N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate[J]. Journal of Applied Polymer Science, 2007, 106(2): 1160-1171.
    [6] Liesa F, Ocampo C, Alemán C, et al. Application of electrochemically produced and oxidized poly(3,4-ethylenedioxythiophene) as anticorrosive additive for paints: Influence of the doping level[J]. Journal of Applied Polymer Science, 2006, 102(2): 1592-1599.
    [7] Santhosh P, Manesh K M, Uthayakumar S, et al. Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers[J]. Bioelectrochemistry, 2009, 75(1): 61-66.
    [8] Peng H, Zhang L, Soeller C, et al. Conducting polymers for electrochemical DNA sensing[J]. Biomaterials, 2009, 30(11): 2132-2148.
    [9] Menaker A, Syritski V, Reut J, et al. Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition[J]. Advanced Materials, 2009, 21(22): 2271-2275.
    [10] Wang X, Sj?berg-Eerola P, Eriksson J E, et al. The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: Towards the application of enzyme electrode construction in biofuel cells[J]. Synthetic Metals, 2010, 160(13-14): 1373-1381.
    [11] Groenendaal L B, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future[J]. Advanced Materials, 2000, 12(7): 481-494.
    [12] Brevet A, Pinto E, Peacock J, et al. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures[J]. Science, 1976, 193(4258): 1152-1154.
    [13] Zrenner E, Stett A, Weiss S, et al. Can subretinal microphotodiodessuccessfully replace degenerated photoreceptors?[J]. Vision Research, 1999, 39(15): 2555-2567.
    [14] Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link?[J]. Trends in Neurosciences, 1993, 16(6): 206-214.
    [15] Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials, 2001, 22(10): 1055-1064.
    [16] Svennersten K, Bolin M H, Jager E W H, et al. Electrochemical modulation of epithelia formation using conducting polymers[J]. Biomaterials, 2009, 30(31): 6257-6264.
    [17] Griffith L G, Naughton G. Tissue engineering--current challenges and expanding opportunities[J]. Science, 2002, 295(5557): 1009-1014.
    [18] Stock U A, Vacanti J P. Tissue engineering: current state and prospects[J]. Annual Review of Medicine, 2001, 52(1): 443-451.
    [19] Xiao Y, Li C M, Wang S, et al. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity[J]. Journal of Biomedical Materials Research - Part A, 2010, 92(2): 766-772.
    [20] Green R A, Lovell N H, Poole-Warren L A. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties[J]. Acta Biomaterialia, 2010, 6(1): 63-71.
    [21] Onoda M, Abe Y, Tada K. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures[J]. Thin Solid Films, 2009, 518(2): 743-749.
    [22] Kim D H, Wiler J A, Anderson D J, et al. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex[J]. Acta Biomaterialia, 2010, 6(1): 57-62.
    [23] Alemán C, Teixeira-Dias B, Zanuy D, et al. A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene)[J]. Polymer, 2009, 50(8): 1965-1974.
    [24] Guimard N. Biodegradable electroactive materials for tissue engineering applications[D]. United States -- Texas: The University of Texas at Austin, 2008.
    [25] Coffey D G, Bell D A, Henderson A, Cellulose and cellulose derivatives, in Food polysaccharides and their applications, A. M. Stephen, G. O. Phillips, P. A. Williams, Editors. 2006, CRC Press: Abingdon, UK. p. 147-180.
    [26] Lap?ik L, De Smedt S, Demeester J, et al. Hyaluronan: preparation, structure, properties, and applications[J]. Chemical Reviews, 1998, 98(8): 2663-2684.
    [27] Jansson P E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282.
    [28] May C D, Pectins, in Handbook of Hydrocolloids, G. O Phillips, P. A.Williams, Editors. 2000, Woodhead Publishing Ltd.: England. p. 169-188.
    [29] Nishinari K. Physical chemistry and industrial application of gellan gum[M]. Berlin: Springer, 1999.
    [30] GB/T 9286-1998色漆和清漆漆膜的划格试验[S]
    [31] ISO 2409:2007(E) Paints and varnishes - Cross-cut test[S]
    [32] Zalewska T, Lisowska-Oleksiak A, Biallozor S, et al. Polypyrrole films polymerised on a nickel substrate[J]. Electrochimica Acta, 2000, 45(24): 4031-4040.
    [33]方能虎.实验化学(下册)[M].北京:科学出版社, 2005.
    [34]方惠群,侯士峰,陈洪渊.乙撑二氧噻吩在中性水溶液中的电化学聚合及行为研究[J].化学学报, 1995, (53): 710-715.
    [35] Du X, Wang Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films[J]. Electrochimica Acta, 2003, 48(12): 1713-1717.
    [36]陈衍珍,黄海涛,田昭武.水溶液中噻吩的电化学聚合成膜[J].高等学校化学学报, 1986, 7(10): 917-922.
    [37] Sakmeche N, Aeiyach S, Aaron J J, et al. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium[J]. Langmuir, 1999, 15(7): 2566-2574.
    [38]李永舫.导电聚吡咯的研究[J].高分子通报, 2005, (4): 51-57.
    [39] Pigani L, Heras A, Colinaá, et al. Electropolymerisation of 3,4-ethylenedioxythiophene in aqueous solutions[J]. Electrochemistry Communications, 2004, 6(11): 1192-1198.
    [40] Ruiz V, Colinaá, Heras A, et al. Electropolymerization under potentiodynamic and potentiostatic conditions: Spectroelectrochemical study on electrosynthesis of poly[4,4'-bis(2-methylbutylthio)-2,2'-bithiophene][J]. Electrochimica Acta, 2004, 50(1): 59-67.
    [41]孙小杰.新型导电聚合物的制备及其应用于生物传感器的研究[D].南京:南京理工大学, 2006.
    [42] Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive Ppoly(3,4-ethylenedioxythiophene) nanorods[J]. Advanced Materials, 2005, 17(13): 1616-1620.
    [43] Seo K I, Chung I J. Reaction analysis of 3,4-ethylenedioxythiophene with potassium persulfate in aqueous solution by using a calorimeter[J]. Polymer, 2000, 41(12): 4491-4499.
    [44] Kvarnstr?m C, Neugebauer H, Blomquista S, et al. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) [J]. Electrochimica Acta, 1999, 44(16): 2739-2750.
    [45] Choi J W, Han M G, Kim S Y, et al. Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Metals, 2004, 141(3): 293-299.
    [46] Feng W, Li Y, Wu J, et al. Improved electrical and optical properties of Poly(3,4-ethylenedioxythiophene) via ordered microstructure[J]. Journal ofPhysics: Condensed Matter, 2007, 19(18): 186220.
    [47] Miller F A, Infrared Spectra of Inorganic Materials, in Course Notes on the Interpretation of Infrared and Raman Spectra, Foil A. Miller Dana W. Mayo, Robert W. Hannah Editor. 2004, John wiley & sons, Inc. . p. 297-354.
    [48] L·J·贝拉米.复杂分子的红外光谱[M].北京:科学出版社, 1975.
    [49]孟令芝,龚淑玲,何永炳.有机波谱分析(第二版)[M].武汉:武汉大学出版社, 2003.
    [50]方惠群,于俊生,史坚.仪器分析[M].北京:科学出版社, 2002: 337-345.
    [51] Jin Y, Zhang H B, Yin Y M, et al. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM[J]. Carbohydrate Research, 2006, 341(1): 90-99.
    [52]石家华,杨春和,高青雨,等.聚噻吩在离子液体中的电化学合成研究[J].化学物理学报, 2007, 17(4): 404-408.
    [53] Sara? A S, S?nmez G, Cebeci F ?. Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes[J]. Journal of Applied Electrochemistry, 2003, 33(3): 295-301.
    [54] Thomas C A, Zong K, Schottland P, et al. Poly(3,4-alkylenedioxypyrrole)s as Highly Stable Aqueous-Compatible Conducting Polymers with Biomedical Implications[J]. Advanced Materials, 2000, 12(3): 222-225.
    [55] Abidian M R, Kim D H, Martin D C. Conducting-polymer nanotubes for controlled drug release[J]. Advanced Materials, 2006, 18(4): 405-409.
    [56] Li G, Pickup P G. Ion transport in poly(3,4-ethylenedioxythiophene) -poly(styrene-4-sulfonate) composites[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1255-1260.
    [57] Xu L Y, Zhao J S, Liu R M, et al. Electrosyntheses and characterizations of novel electrochromic and fluorescent copolymers based on 2,2'-bithiophene and pyrene[J]. Electrochimica Acta, 2010, 55(28): 8855-8862.
    [58] Yue R, Xu J, Lu B, et al. Electrochemical copolymerization of benzanthrone and 3-methylthiophene and characterization of their fluorescent copolymer[J]. Journal of Materials Science, 2009, 44(21): 5909-5918.
    [59] Nie G, Qu L, Xu J, et al. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene[J]. Electrochimica Acta, 2008, 53(28): 8351-8358.
    [60]黄慰曾.电化学和电分析化学[M].北京:北京大学出版社, 1983.
    [61] Thompson M, Davis J, Compton R G. Theory of cyclic voltammetry in tubular electrodes under no flow conditions[J]. Journal of Electroanalytical Chemistry, 2006, 587(1): 56-59.
    [62] Yigitsoy B, Varis S, Tanyeli C, et al. Electrochromic properties of a novel low band gap conductive copolymer[J]. Electrochimica Acta, 2007, 52(23): 6561-6568.
    [63] Yildirim A, Tarkuc S, Ak M, et al. Syntheses of electroactive layers based on functionalized anthracene for electrochromic applications[J]. ElectrochimicaActa, 2008, 53(14): 4875-4882.
    [64] Zhang C, Xu Y, Wang N, et al. Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene [J]. Electrochimica Acta, 2009, 55(1): 13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700