用户名: 密码: 验证码:
人胚胎绒毛滋养层细胞在子宫脉管系统逆血流迁移的血流动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人胎盘发育过程中,滋养层细胞对子宫内膜血管的入侵至关重要,它是子宫的脉管系统进行重构的必须条件,而子宫脉管系统的重构对于确保胎儿胎盘系统得到充足的血液供应具有非常重要的意义。滋养层细胞的整个入侵过程是先进入毛细血管、再迁移至子宫螺旋动脉并在此过程中对子宫动脉血管系统进行重构。这一迁移过程提示,滋养层细胞的迁移方向是与血液的流动方向相反的,即滋养层细胞是逆血流而上的。为了弄清滋养层细胞在妊娠过程中的生理作用以及入侵子宫脉管系统的机理,学术界已做了大量卓有成效的工作,但是关于滋养层细胞在血管系统中逆流迁移机制的研究却极其有限。在体内,血流环境作为滋养层细胞生物学行为和生理功能的重要潜在调节因素对其迁移行为的调节具有举足轻重的意义;同时,环境因素对细胞分裂/增殖、分化、凋亡和迁移等行为的影响也是当前细胞生物学和生物力学中的一个研究热点。因此,为了深入了解和认识体内滋养层细胞逆血流迁移行为和调节机制,本文以平板流动腔为加载方式模拟子宫脉管系统血流环境,从血流动力学角度对两个问题进行了初步的探讨:1)滋养层细胞在血管中移动的方向性是由什么决定的?2)它们逆血流而上的动力或者说它们逆血流而上的方式是什么?并从细胞粘附分子的角度分析了滋养层细胞β1整合素的表达与其迁移行为的相关性。本论文的具体研究工作和结论如下:
     首先,本文建立了一种简单稳定的人体滋养层细胞原代培养方法。结果表明:采用胰酶+DNA酶辅助消化的方法可显著提高原代培养滋养层细胞的产量;同时,通过Percoll非连续梯度离心以及相应的差速贴壁和机械刮除等纯化步骤后得到的滋养层细胞纯度相对较高,可达95 %以上,且细胞形态单一,生长稳定,细胞活力强。这说明本文采用的方法适合滋养层细胞的分离、纯化和体外培养。
     其次,本文研究了流动剪切应力对滋养层细胞迁移行为的影响。结果表明:在无流动条件下,滋养层细胞表现出持续无方向性的位置变化,但并未发现在单一方向上的显著性迁移现象。在7.5、15和30dyne/cm2的剪切应力作用下,滋养层细胞的平均运动速度和X轴(剪切应力方向)上的绝对位移都随剪切应力水平的增加而呈显著的线性增加趋势。同时,滋养层细胞在X轴垂直方向上的位移却并未为零,特别是在6-12h这段时间内细胞运动趋于稳定,表现出了一定的自主性迁移行为。在剪切应力作用下,细胞膜流动性的改变和敏感离子信号通道的阻断可显著的下调滋养层细胞的迁移速度和在X轴垂直方向上的净位移。这些结果表明剪切应力调控了人体滋养层细胞的迁移行为。但与体内的情况相反的是,剪切应力作用下滋养层细胞的迁移方向并不是逆流而上却是顺流而下的。
     尔后,本文研究了剪切应力作用下与内皮细胞共培养对滋养层细胞迁移行为的影响。结果表明:在不同大小的剪切应力作用下,虽然仍未观察到滋养层细胞在逆流方向上的显著性迁移现象,但与滋养层细胞单独培养时明显不同的是,共培养后,滋养层细胞的平均迁移速度和X轴向上的绝对位移不再随剪切应力的变化而发生显著性变化,而是几乎保持一致。这些结果暗示,与内皮细胞共培养时,剪切应力作用下滋养层细胞抵抗流体冲击引起位移的抗逆性行为增强,细胞粘附性和在X轴上运动的稳定性增加。同时,在用抗β1型整合素抗体处理后,滋养层细胞在15dyne/cm2剪切应力作用下的平均迁移速度有所减少但在X轴上的绝对位移却有所增加;非特异性对照组的结果与正常对照组的差异不显著。这些结果表明β1整合素在滋养层细胞的迁移过程中起着重要的调节作用。
     本文还采用微管吸吮技术对滋养层细胞的粘附力学特性进行了研究。结果表明:滋养层细胞的粘附力随I型鼠尾胶原浓度的增加而呈显著的线性增加趋势,表现出明显的浓度依赖关系。当与内皮细胞接触时,滋养层细胞表现出较高的粘附力,表明与内皮细胞的接触可显著增强滋养层细胞的粘附力学行为。此外,本文还从粘附分子的角度对滋养层细胞与胶原和内皮细胞的粘附力学特征进行了分析,结果提示在滋养层细胞的粘附过程中,β1整合素也起着重要的调节作用。
     最后,本文研究了体内绒毛组织和体外培养的滋养层细胞整合素表达的特性。结果表明:β1整合素在迁移显型滋养层细胞上高度表达。在剪切应力作用下,滋养层细胞β1整合素的表达随剪切应力作用的时间的延续而显著变化,剪切应力增强了滋养层细胞β1整合素的表达。当滋养层细胞与内皮细胞共培养时,β1整合素的表达较单独培养时显著增强。这些结果提示,β1整合素在滋养层细胞对内皮细胞的粘附和迁移过程中有着重要的关系。
     本文的研究结果提示我们,滋养层细胞在体内的逆流迁移行为可能并不是一种细胞直接从子宫毛细血管移动到螺旋动脉的逆血流运动,而可能是一种定向分裂/增殖行为。即,在与血管内皮细胞接触时,滋养层细胞通过上调粘附分子的表达而拥有足够强的粘附力对抗血流冲击并稳定地粘附于血管内壁;尔后,细胞通过逆血流方向的定向分裂/增殖,达到逆血流迁移的目的。
During the development of human placenta, trophoblast cells (TCs) invasion of, and migration within the uterine vasculature is an essential process for the remodeling of the uterine vasculature, which is important in assuring an adequate blood supply to the developing fetal-placental unit. In vivo, the courses of cell migration are that TCs firstly invade into the capillary vessels, then migrate within uterine vasculature, and eventually reside within the spiral arteries. This indicates that the direction of TC migration within the uterine vasculature is against the blood stream. In order to understand the physiological roles of TCs in the pregnancy process and the mechanism of TC invasion into the uterine vasculature, a great amount of studies have been carried out. However, little has been known about the hemodynamic mechanism of TC migration against the blood stream. Apparently, local blood flow environment must be of paramount importance and involved in regulating biological behaviors and functions of TCs in the migratory process of TCs within the uterine vasculature. The effects of environmental factors on cell division/proliferation, differentiation, apoptosis and motility have become one of the hottest topics in cell biology and biomechanics. Using a 2-D flow chamber technique to mimic the local blood flow environment of the uterine vasculature, the present thesis studied the migratory behaviors of human TCs from the hemodynamic point of view and tried to understand what decides the direction of TC motility and what is the power or mode of TC motility against the blood stream. Meanwhile, the correlation between integrinβ1 and the migratory behaviors of TCs was analyzed on the adhesion molecule level.
     First, a simple and stable protocol for human trophoblast cell culture was established. The results revealed that the population of isolated human TCs were significantly augmented using the digesting method of trypsin and DNase at 37℃. The purification of TCs was carried out by serial progress, and cytokeratin positive of TCs was greater than 95%. Configuration of the TCs isolated and cultured were singularity and the growth was stable with stronger viability.
     Then, the effect of the flow-induced shear stress on the motility of TCs cultured on collagen I was studied. The results demonstrated that TCs were highly dynamic with continuous non-directional or dominant shifting with little net displacement in the direction of flow (x-coordinate) under the static conditions (0 dyn/cm2). Average cell migration velocity and net displacement of TCs in the direction of flow increased almost linearly with increasing shear stress. It was also found that the displacement of TCs in the perpendicular direction of flow is not zero. Remarkably, the velocity ratio, Vx/Vy was slowly decreased and the motility of TCs was stable with the cells’own initiative during the 6-12h period. Changes of cell membrane fluidity and interdiction of flow-sensitive ion channels regulated the migration of TCs under different shear stresses was studied. These results demonstrated that shear stress regulated the motility of TCs, however the migration direction of TCs was not against the flow direction but generally in the direction of flow.
     Then, the migration of TCs co-cultured with HUVECs under different shear stresses was studied. The results revealed that the average velocity and the absolute displacement of TCs in the direction of flow remained essentially unchanged at all levels of shear stress. Again, no apparent counter-flow migration of TCs was observed. These results suggested that the interaction between TCs and endothelial cells up-regulated the adhesion of TCs, hence enhanced their resistance against the displacement by flow. Meanwhile, under the shear stress of 15dyne/cm2, when monoclonal mouse anti-human integrinβ1 was used to block the action of integrinβ1, the average migration velocity of TCs was significantly reduced and their absolute displacement (x-coordinate) was increased when compared with the control group. However, there was no significant difference between the nonspecific antibody group and the control group. These results suggested that integrinβ1 played an important role in regulating the migration of TCs co-cultured with endothelial cells.
     Using a micropipette aspiration technique, the adhesive mechanical properties of TCs were measured. The results revealed that the adhesion forces of TCs to type I rat collagen increased with increasing concentration of collagen I. When contacted with HUVECs, the adhesion force of TCs was significantly enhanced. Moreover, from the point of view of adhesion molecules, the adhesive mechanical properties of TCs to collagen I was compared with those of TCs to HUVECs. The results suggested that trophoblast integrinβ1 played an important role in the adhesion of TCs.
     Finally, integrinβ1 expression of TCs on the tissue sections and the isolated TCs were analyzed. The results demonstrated that migratory TCs was accompanied by higher integrinβ1 expression when compared to the non-migratory TCs. Shear stress up-regulated the integrinβ1 expression of TCs, and expression of integrinβ1 of TCs significantly changed with time. TCs co-cultured with endothelial cells increased the expression of integrinβ1 when compared with the TCs cultured alone, suggesting again that trophoblast integrinβ1 played a role in the adhesion and migration of TCs.
     In conclusion, the present in vitro study demonstrated that by contact with endothelial cells, the adhesion force of human TCs might be regulated according to local flow environment to ensure a stable adhesion of TCs in uterus spiral arteries. So long as the adhesion force of the TCs can resist displacement by blood flow, there is a reason to believe that migratory trophoblasts may reach the spiral arteries not by the actual movement of the cells but by a mechanism of directional cell division/proliferation.
引文
[1] J C Cross, M Hemberger. Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta[J]. Molecular and Cellular endocrinology, 2002, 187:207-212.
    [2] J D Boyd, W J Hamilton. The Human Placenta[M]. W. Heffer and Sons Ltd., Cambridge, 1970.
    [3] A C Enders, B F King. Early stages of trophoblastic invasion of the maternal vascular system during implantation in the macaque and baboon[J]. Am J Anat, 1991, 192:329-346.
    [4] G C Douglas, T L Thirkill, T N Blankenship. Vitronectin receptors are expresses by macaque trophoblast cells and play a role in migration and adhesion to endothelium[J]. Biochimica et biophysica Acta, 1999, 1452:36-45.
    [5] C H Damsky, S J Fisher. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors[J]. Current Opinion in Cell Biology, 1998, 10:660-666.
    [6] E P Y Kam, L Gardner, Y W Loke, et al. The role of trophoblast in the physiological change in decidual spiral arteries[J]. Human reproduction, 1999, 14:2131-2138.
    [7] W Moll. Structure adaption and blood flow control in the uterine arterial system after hemochorial placentation[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2003, 110:S19-S27.
    [8] F Kara, O Cinar, E E Atabenli, B T Sabuncuoglu, et al. Ultrastructural alterations in human decidua in miscarriages compared to normal pregnancy decidua[J]. Acta Obstet Gynecol Scand, 2007, 86(9):1079-1086.
    [9] K R Horse, J Rivera, A Schanz, et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation[J]. J Clin Invest, 2006, 116(10): 2643 - 2652.
    [10] J F Larsen. Human implantation and clinical aspects[J]. Prog. Reprod. Biol., 1980, 7:284– 296.
    [11] A C Enders. Transition from lacunar to villous stage of implantation in the macaque, including establishment of the trophoblastic shell[J]. Acta Anat, 1995, 152:151–169.
    [12] G Xu, M J Guimond, C Chakraborty, et al. Control of proliferation, migration, and invasiveness of human extravillous trophoblast by decorin, a decidual product[J]. Biol Reprod, 2002, 67(2):681-689.
    [13] P Paiva, L A Salamonsen, U Manuelpillai, et al. Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation[J]. Endocrinology,2007, 148(11):5566-5572.
    [14] T N Blankenship, A C Enders, B F King. Trophoblastic invasion and the development of uteroplacental arteries in the macaque: immunohistochemical localization of cytokeratins, desmin, type IV collagen, laminin, and fibronectin[J]. Cell Tissue Res, 1993, 272:227-236.
    [15] A C Enders, T N Blankenship. Modification of endometrial arteries during invasion by cytotrophoblast cells in the pregnant macaque[J]. Acta Anat, 1997, 159:169-193.
    [16] T N Blankenship, A C Enders. Trophoblast cell-mediated modifications to uterine spiral arteries during early gestation in the macaque[J]. Acta Anat, 1997, 158:227-236.
    [17] W B Robertson, B Warner. The ultrastructure of the human placental bed[J]. Eur J Obstet Gynecol Reprod Biol, 1975, 5:47-65.
    [18] B L Sheppard, J Bonnar. An ultrastructural study of uteroplacental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation[J]. Br. J Obstet Gynaecol, 1981, 88:695-705.
    [19] G Gerretsen, H J Huisjes, J D Elema. Morphological changes of the spiral arteries in the placental bed in relation to preeclampsia and fetal growth retardation[J]. Br J Obstet Gynaecol, 1981, 88:876-881.
    [20] W B Robertson, I A Brosens, W N Landells. Abnormal placentation[J], Obstet Gynecol Annu, 1985, 14:411-426.
    [21] T Y Khong, F De Wolf, W B Robertson, et al. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants[J]. Br J Obstet Gynaecol, 1986, 93:1049- 1059.
    [22] T Y Khong, H S Liddell, W B Robertson. Defective haemochorial placentation as a cause of miscarriage: a preliminary study[J]. Br J Obstet Gynaecol, 1987, 94: 649-655.
    [23] B L Sheppard, J Bonnar. The maternal blood supply to the placenta in pregnancy complicated by intrauterine fetal growth retardation[J]. Trophoblast Res, 1988, 3: 69-81.
    [24] J W Meekins, R Pijnenborg, M Hanssens, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies[J]. Br J Obstet Gynaecol, 1994, 101(8):669-674.
    [25] T Naicker, S M Khedun, J Moodley, et al. Quantitative analysis of trophoblast invasion in preeclampsia[J]. Acta Obstet Gynecol Scand. 2003, 82(8):722-729.
    [26] M Kadyrov, J C Kingdom, B Huppertz. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure[J]. Hum Reprod, 2002,17(4):1667-1671.
    [27] S V Ashton, G S Whitley, P R Dash, et al. Uterine spiral artery remodeling involvesendothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions[J]. Arterioscler Thromb Vasc Biol, 2005, 25(1):102-108.
    [28] E Ball, J N Bulmer , S Ayis, et al. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion[J]. J Pathol, 2006, 208(4):535-542
    [29] M Kadyrov , J C Kingdom , B Huppertz. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction[J]. Am J Obstet Gynecol. 2006, 194(2):557-563.
    [30] K Handschuh, J Guibourdenche, V Tsatsaris, et al. Human Chorionic Gonadotropin Produced by the Invasive Trophoblast But Not the Villous Trophoblast Promotes Cell Invasion and Is Down-Regulated by Peroxisome Proliferator-Activated Receptor-{gamma}[J]. Endocrinology, 2007, 148(10): 5011 - 5019.
    [31] G S Whitley, P R Dash, L J Ayling, et al. Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia[J]. Am J Pathol. 2007, 170(6):1903-1909.
    [32] K R Horse, Y Zhou, O Genbacev, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface[J]. The Journal of Clinical Investigation, 2004, 144(6):744-754.
    [33] M H Johnson, C A Ziomek. The foundation of two distinct cell lineages within the mouse morula[J]. Cell , 1981, 24:71-80.
    [34] J Rossant, K M Vijh. Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives[J]. Dev Biol, 1980,76:475-482.
    [35] Y Zhou, S J Fisher, M Janatpour, et al. Human cytotrphoblasts adopt a vascular phenotype as they differentiate: a strategy for successful endovascular invasion [J]. J Clin Invest, 1997, 99:2139-2151.
    [36] W H Zhou, M R Du, L Dong, et al. Cyclosporin A increases expression of matrix metalloproteinase 9 and 2 and invasiveness in vitro of the first-trimester human trophoblast cells via the mitogen-activated protein kinase pathway[J]. Hum Reprod, 2007, 22(10):2743-1750.
    [37] P Licht, H Fluhr, J Neuwinger, et al. Is human chorionic gonadotropin directly involved in the regulation of human implantation[J]. Mol Cell Endocrinol, 2007, 269(1-2):85-92.
    [38] M Cohen, A Meisser, L Haenggeli, et al. Involvement of MAPK pathway in TNF-alpha-induced MMP-9 expression in human trophoblastic cells[J]. Mol Hum Reprod, 2006, 12(4):225-232
    [39]王晗,董旭,葛常辉,等.基质金属蛋白酶在生殖中的作用与调控[J].国外医学计划生育册, 2002, 21(3):141-144.
    [40]庞战军.参与滋养层细胞侵入调节的蛋白酶及粘附分子研究进展[J].国外医学妇幼保健分册, 2001, 12(2):49-51.
    [41] J Liu, C Chakraborty, C H Graham, et al. Noncatalytic domain of uPA stimulates human extravillous trophoblast migration by using phospholipase C, phosphatidylinositol 3-kinase and mitogen-activated protein kinase[J]. Exp Cell Res, 2003, 286(1):138-151.
    [42] G E Lash, H A Otun, B A Innes, et al. Low oxygen concentrations inhibit trophoblast cell invasion from early gestation placental explants via alterations in levels of the urokinase plasminogen activator system[J]. Biol Reprod, 2006, 74(2):403-409.
    [43]张惠静,蔡绍皙,卢晓.整合素在细胞响应机械应力中的作用[J].生物化学在生物物理进展, 2002, 29(3): 359-363.
    [44] P Merviel, J C Challier, L Carbillon, et al. The role of integrins in human embryo implantation[J]. Fetal Diagn Ther, 2001, 16(6):364-371.
    [45] C Chakraborty, L M Gleeson, T McKinnon, et al. Regulation of human trophoblast migration and invasiveness[J]. J Physiol Pharmacol, 2002, 80(2):116-124.
    [46] Q Li, Y L Wang, S X Bai, et al. Temporal and Spatial Expression of Integrins and Their Extracellular Matrix Ligands at the Maternal-Fetal Interface in the Rhesus Monkey During Pregnancy[J]. Biology of Reproduction, 2003, 69:563-571.
    [47] C H Damsky, C Librach, K H Lim, et al. Integrin switching regulates normal trophoblast invasion[J]. Development, 1994, 120:3657-3666.
    [48] J D Aplin. Expression of integrinα6β4 in human trophoblast and its loss from extravillous cells[J]. Placenta, 1993, 14:203-215.
    [49] O K Hallikas, J M Aaltonen, H Koskull, et al. Indentification of antibodies against HAI-1 and integrin alpha6beta4 as immunohistochemical markers of human villous cytotrophoblast[J]. J Histochem Cytochem, 2006, 54(7):745-752.
    [50] J D Aplin. Expressio integrin of integrin alpha 6 beta 4 in human trophoblast and its loss from extravillous cells[J]. Placenta,1993,14(2):203-215.
    [51] S Shiokawa, Y Yoshimura, S Nagamatsu, et al. Function ofβ1 integrins on human decidual cells during implantation[J]. Biol Reprod, 1996, 54:745-752.
    [52] J A Irving, P K Lala. Fuctional role of cell surface integrins on human trophoblast cell migration: regulation by TGT-β、IGF-Ⅱand IGFBP-I[J]. Exp Cell Res, 1995, 217:419-427.
    [53] L Sülz, J P Valenzuela, A M Salvatierra, et al. The expression of alpha(v) and beta3 integrin subunits in the normal human Fallopian tube epithelium suggests the occurrence of a tubalimplantation window[J]. Hum Reprod, 1998, 13(10):2916-2920.
    [54] M Creus, F Ordi, F Fabregues, et al.αvβ3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and in fertile women[J]. Hum Reprod, 2002, 17:2279-2286.
    [55] J D Aplin, T Haigh, C J Jones, et al. Development of cytotrophoblast columns from explanted first-trimester human placental villi: role of fibronectin and integrin alpha5beta1[J]. Biol Reprod, 1999, 60(4):828-838.
    [56] P Bischof, M Redard, P Gindre, et al. Localization of alpha 2, alpha 5 and alpha 6 integrins in human endometrium, decidua and trophoblast[J]. European J Obstet Gynecol Reprod Biol, 1993, 51:217-226.
    [57] J D Aplin, T Haigh, C J P Jones, et al. Development of Cytotrophoblast Columns from Explanted First-Trimester Human Placental Villi: Role of Fibronectin and Integrin a5b1[J]. Biology of Reproduction, 1999, 60:828-838.
    [58] C W Pugh, P J Ratcliffe. Regulation of angiogenesis by hypoxia: role of the HIF system[J]. Nat Med, 2003, 9:677-684.
    [59] O Genbacev, K D Jensen, S S Powlin, et al. In vitro differentiation and ultrastructure of human extravillous trophoblast (EVT) cells[J]. Placenta, 1993, 14:463-475.
    [60] T Zdravkovic, O Genbacev, A Prakobphol, et al. Nicotine downregulates the l-selectin system that mediates cytotrophoblast emigration from cell columns and attachment to the uterine wall[J]. Reprod Toxicol, 2006,22(1):69-76.
    [61] A Prakobphol, OGenbacev, M Gormley, et al. A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta[J]. Developmental Biology, 2006, 298:107-117.
    [62] O Genbacev, A Prakobphol, R A Foulk, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface[J]. Science, 2003, 299:405-408.
    [63] A Soghomonians, A Barakat, T Thirkill, et al. Effect of shear stress on migration and integrin expression in macaque trophoblast cells[J]. Biochimica et biophysica Acta, 2002,1589:233-246.
    [64] A Soghomonians1, A I Barakat1, T L Thirkill, et al. Trophablast migration under flow is regulated by endothelial cells[J]. Biology of Reproduction, 2005, 73: 14-19.
    [65] A Y Strongin, I Coller, G Bannikov, et al. Mechanism of cell surface activation of 72-kDa type collagenase. Isolation of the activated form of the membrane metalloprotease[J]. J Biol Chem, 1995, 270: 5331-5338.
    [66] G S Hamilton, J J Lysiak, V K Han, et al. Autocrine paracrine regulation of human trophoblastinvasiveness by insulin like growth factor(IGF) and IGF binding protein (IGFBP)1[J]. Exp Cell Res, 1998, 244(1):147-156.
    [67] K H Lim, Y Zhou, M Janatpour, etal. Human cytotrophoblast differentiation/invasion is abnormal in pre eclampsia[J]. Am J Pathol, 1997, 151(6): 1809-1818.
    [68]曹立环,查锡良.整合素研究新进展[J].生物化学在生物物理进展, 1995, 22(5): 390-393.
    [69] B Reuss, P Hellmann, E Dahl, et al. Connexins and E-cadherm are differentially expressed during trophoblast invasion and placenta differentiation in the rat [J]. Dev Dyn, 1996, 205(2):172-182.
    [70] B C Paria, X Zhao, S K Das, et al. Zonula occiudens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization [J]. Dev Biol, 1999, 208(2):488-501.
    [71] G Coukos, A Makrigiannakis, K Amin, et al. Platelet-endothelial cell adhesion molecule-1 is expressed by a subpopulation of human trophoblasts: a possible mechanism for trophoblast-endothelial interaction during haemochorial placentation[J]. Mol Hum Reprod, 1998, 4(4):357-367.
    [72] M Zygmunt, D Hahn, K Munstedt. Invasion of cytotrophoblastic JEG3 cells is stimulated by hCG invitro[J]. Placenta, 1998, 19(8): 587-593.
    [73] J E Cartwright, D P Holden, G S Whitley. Hepatocyte growth factor regulates human trophoblast motility and invasion[J]. Br J Pharmacol, 1999, 128(1):181-189.
    [74] E Maltepe, M C Simon. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development[J]. J Mol Med, 1998, 76:391-401.
    [75] E Jauniaux, A L Watson, J Hempstock, et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure[J]. Am J Pathol, 2000, 157:2111-2122.
    [76] E Jauniaux, B Gulbis, G J Burton. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus—a review[J]. Placenta, 2003, 24(Suppl. A):86–93.
    [77] O Genbacev, Y Zhou, J W Ludlow, et al. Regulation of human placental development by oxygen tension[J]. Science, 1997, 277:1669-1672.
    [78] D M Adelman, M Gertsenstein, A Nagy et al. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses[J]. Genes Dev, 2000, 14:3191-3203.
    [79] R M Douglas, G G Haddad. Genetic models in applied physiology: invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest[J]. J Appl Physiol, 2003, 94:2068-2084.
    [80] T E Fitzpatrick, C H Graham. Stimulation of plasminoge nactivator inhibitorl expression inimmortalized human trophablast cells cultured uder low levels of oxygen[J]. Exp Cell Res, 1998, 245(1):155-162.
    [81] S Quenby, C Brazeau, A Drakeley, et al. Oncogene and tumours uppress orgene products during trophoblast differentiation in the first trimester[J]. Mol Hum Reprod, 1998, 4(5):477-481.
    [82] R S Even, B Uziely, P Cohen, et al. Thrombin receptor over expression in maligant and physiological invasion processes[J]. Nat Med, 1998, 4(8):909-914.
    [83] G C Kundu, G Mantile, L Miele, et al. Recombinant human uteroglobin suppresses cellular invasiveness via a novel class of high affinity cell surface binding site[J]. Proc Natl Acad Sci USA, 1996, 93(7):2915-2919.
    [84] H Hager, J Gliemann, D S Hamilton. Developmental regulation of tissue transglutaminase during human placentation and expression in neoplastic trophoblast[J]. J pathol,1997, 181(1):106-110.
    [85]王红兵,黄岂平,卢晓,等.机械拉伸对血管平滑肌细胞粘附及生长的影响[J].生物化学与生物物理进展, 2001, 28(1):103-107.
    [86] T M Lynch, P M Lintilhac. Mechanical signals in plant development: a new method for single cell studies[J]. Dev Biol, 1997, 181:246-256.
    [87] H J Kliman, J E Nestler, E Sermasi, et al. Purification,characterization,and in vitro differentiation of cytotrophoblast from human term placenta[J]. Endocrinology, 1986, 118(4):1567-1582.
    [88] J P Qu, S Y Ying, K Thomas. Inhibin production and secretion in human pacental cells culture in vitro[J]. Obstetrics and Gynecology, 1992, 79(5):705-712.
    [89] J Qu, K Thomas. Prostaglandins stimulate the secretion of inhibin from human placental cells[J]. J Clin Endocrinol Metab. 1993, 77(2):556-564.
    [90] D Szukiewicz, G Szewczyk, R Zaczek. Culture of human trophoblast cells in vitro as a research method--review of techniques (Part I)[J]. Ginekol Pol. 2001, 72(7):583-591.
    [91] R H Li, S Y Luo, L Z Zhang. Establishment and characterization of a cytotrophoblast cell line from normal placenta of human origin[J]. Human Reprod, 1996, 11:1328-1333.
    [92] A Tarrade, K R Lai, A Malassiné, et al. Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta[J]. Lab Invest, 2001, 81(9):1199-1211.
    [93]李荣皓,庄临之.人胎盘的生殖内分泌学研究-1.人细胞滋养层细胞的无血清培养与生长因子的作用[J].中国科学(B辑), 1990, (9):963-969.
    [94] H G Frank, D W Morrish. Cell culture models of human trophoblast: primary culture of trophoblasta work shop report[J]. Placenta, 2001, 22(Supp l A): 107-109.
    [95]蒋立艳,李真,成娅,等.早孕绒毛细胞滋养层细胞分离培养的实验研究[J].第三军医大学学报, 2004, 26(14):1248-1251.
    [96] X P Wang, D Z Xu, Y G Li, et al. In vitro culture of human trophoblasts[J]. J Fourth Mil Med Univ, 2002, 23(22):2023-2026.
    [97] M Y Choy, G Whitley, I T Manyonda. Efficient, rapid and reliable establishment of human trophoblast cell lines using poly-L-ornithine[J]. Early Pregnancy, 2000, 4(2): 124 - 143.
    [98] A Trundley, L Gardner, J Northfield, et al. Methods for isolation of cells from the human fetal-maternal interface[J]. Methods Mol Med, 2006, 122:109-122.
    [99] J L James, P R Stone, L W Chamley. The isolation and characterization of a population of extravillous trophoblast progenitors from first trimester human placenta[J]. Hum Reprod, 2007, 22(8):2111-2119.
    [100]王雪萍,徐德忠,李远贵,等.组织块法培养人绒毛膜滋养层细胞[J].第一军医大学学报, 2001,21(1):57-59.
    [101] S Yura,N Sagawa,Y Ogawa, et al. Augmentation of leptin synthesis and secretion through activation of protein kinases A and C in cultured human trophoblastic cells[J]. J Clin Endocrinol Metab, 1998, 83(10):3609-3614.
    [102] A Tarrade , K R Lai , I Laurendeau, et al . Ultrastructural aspects and gene pattern expression of villous and extravillous human cytotrophoblasts[J]. Plcenta, 1999, 20: A65.
    [103] D C Chappell, S E Varner, R M Nerem, et al. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium[J]. Circ Res, 1998, 82:532-539.
    [104] T Nagel, N Resnick, W J Atkinson, et al. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells[J]. J Clin Invest, 1994, 94:885-891.
    [105] J Ando, H Tsuboi, R Korenaga, et al. Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression[J]. Am J Physiol, 1994, 267:C679-C687.
    [106] M Papadaki, S G Eskin. Effects of fluid shear stress on gene regulation of vascular cells[J]. Biotech Prog, 1997, 13:209-221.
    [107] M Morigi, C Zoja, M Figliuzzi, Foppolo M, et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells[J]. Blood, 1995, 85:1696-1703.
    [108] H Kato, I Uchimura, C Nawa, A Kawakami, et al. Fluid shear stress suppresses interleukin 8 production by vascular endothelial cells[J]. Biorheology, 2001, 38:347-353.
    [109] C G Galbraith, R Skalak, S Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton[J]. Cell Motil Cytoskeleton, 1998, 40:317-330.
    [110] J J Chiu, P L Lee, C N Chen, et al. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells[J]. Arter Thromb Vasc Biol, 2004, 24:73-79.
    [111] A I Barakat. Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review) [J]. Int J Mol Med, 1999, 4:323-332.
    [112] H Ariyoshi, N Yoshikawa, Y Aono, et al. Localized activation of m-calpain in migrating human umbilical vein endothelial cells stimulated by shear stress[J]. J Cell Biochem, 2001, 81:184-192.
    [113]韩亚刚,张莉,蔡绍皙.流动腔系统的研究进展[J].医用生物力学, 2005, 20(2): 127-131.
    [114]姜伟元,李惜惜,覃开荣.平行平板流动腔的合理设计和利用[J].医用生物力学,1996,12.2
    [115]张西正,匡震邦,蔡绍皙,等.一种平板流动腔重力灌流系统的力学分析.医用生物力学, 1998, 13(3):129-134.
    [116] H P Greisler, E D Endean, J J Klosak, et al. Hemodynamic effects on endothelial cell monolayer detachment from vascular prostheses[J]. Arch Surg, 1989, 124(4):429-433.
    [117] R Ross. Atherosderosis[J]. N Engl J Med, 1986,314:488-490.
    [118] A A Ucuzian, H P Greisler. In vitro models of angiogenesis[J]. World J Surg, 2007, 31(4):654-63.
    [119] J A Frangos, L V McIntire, S G Eskin. Shear induced stimulation of mammalian cell metabolism[J]. Biotechnol and Bioeng, 1988,32:1053-1060.
    [120]王贵学,欧阳克清,蔡绍皙,等.剪切应力对毛细血管内皮细胞代谢的影响[J].生物物理学报, 1999,15(1):178-185.
    [121] R F Viggers, A R Wechezak. An apparatus to study the response of culture endothelium to shear stress[J]. I Biomech Eng, 1986, 108:332-337.
    [122] P J Butler, G Norwich, S Weinbaum, et al. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity[J]. Am J Physiol Cell Physiol, 2001, 280:C962-C969.
    [123] M A Haidekker, L N Heureux, J A Frangos. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence[J]. Am J Physiol Heart Circ Physiol, 2000, 278:H1401-1406.
    [124] A I Barakat, D K Lieu. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress[J]. Cell Biochem Biophys, 2003, 38:323-343.
    [125] S Chien. Molecular basis of rheological modulation of endothelial functions: Importance of stress direction, Biorheology, 2006, 43: 95-116.
    [126] A Gojova, A I. Barakat. Vascular endothelial wound closure under shear stress: role ofmembrane fluidity and flow-sensitive ion channels[J]. J Appl Physiol, 2005, 98:2355-2362.
    [127] A I Barakat, E V Leaver, P A Pappone, et al. A flow-activated chloride-selective membrane current in vascular endothelial cells[J]. Circ Res, 1999, 85:820-828.
    [128] D K Lieu, P A Pappone, A I Barakat. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells[J]. Am J Physiol Cell Physiol, 2004, 286:C1367-C1375.
    [129] S P Olesen, D E Clapham, P F Davies. Haemodynamic shear stress activates a K+ current in vascular endothelial cells[J]. Nature, 1988, 331:168-170.
    [130]白灵,樊瑜波,张明,等.离体培养细胞的力学实验方法[J].物医学工程学杂志, 2002,19(2): 324-328.
    [131] C L Ives, S O Eskin, L V McIntire. Mechanical effects on endothelial cell morphology: In vitro assessment[J], In Vitro Cellular & Developmental Biology, 1986. 22(9):500-507
    [132]刘肖珩,陈槐卿.流室系统的流体动力学模拟[J].生物医学工程学杂志, 1999, 16(4): 441-444.
    [133] T J Pedley. The fluid mechanics of large blood vessel[M]. UK: Cambridge University Press, 1980.
    [134] J A Irving, P K Lala. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-h, IGF-ll, and IGFBP-1[J]. Exp Cell Res, 1995, 217:419-427.
    [135] L A Salamonsen, N J Hannan, E Dimitriadis. Cytokines and Chemokines during Human Embryo Implantation: Roles in Implantation and Early Placentation[J]. Semin Reprod Med, 2007, 25(6):437-444.
    [136] C Coutifaris, A Omigbodun, G Coukos. The fibronectin receptor alpha5 integrin subunit is upregulated by cell-cell adhesion via a cyclic AMP-dependent mechanism: implications for human trophoblast migration[J]. American Journal of Obstetrics Gynecology, 2005, 192 (4): 1240-1253.
    [137] M A Jaleel, A C Tsai, S Sarkar, et al. Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cellsurvival[J]. Molecular Human Reproduction, 2004,10 (8):1-9.
    [138] E Dejana, M G Lampugnani, E O Martinez, et al. The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability[J]. Int J Dev Biol, 2000, 44 (6):743-748.
    [139] D Kaiser, M A Freyberg, P Friedl. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells[J]. Biochem Biophys Res Commun, 1997, 231: 586-590.
    [140] J N Topper, J Cai, D Falb, et al. Identification of vascular endothelial genes differentiallyresponsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress[J]. Proc1 Nat Acad Sci, 1996, 93:10417-10422.
    [141] R Nitzank, Y Hava, S S Ayelet. Fluid shear stress and the vascular endothelium: for better and for worse[J]. Progress in Biophysics & Molecular Biology, 2003, 81:177-199.
    [142]赖西南,刘荫秋.血流因素作用下血管内皮细胞结构和功能的变化[J].生物医学工程学杂志. 1997, 14(1):87-91.
    [143]黄华,王贵学.血管内皮细胞迁移及相关影响因素研究进展[J].国际生物医学工程杂志, 2006, 29(6): 357-361.
    [144] Y T Shiu, S Li, A M William, et al. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation[J] . Biophys J, 2004, 86: 2558- 2565.
    [145] D A Beacham, J Lian, G Wu, et al. Arterial shear stress stimulates surface expression of the endothelial glycoprotein Ib complex[J]. J Cell Biochem, 1999, 73:508-521.
    [146] S Li, M Kim, Y L Hu, et al. Fluid shear stress activation of focal adhesion kinase: linking to mitogen-activated protein kinases[J]. J Biol Chem, 1997, 272:30455- 30462.
    [147] P P Hsu, S Li, Y S Li, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation[J]. Biochem Biophys Res Commun, 2001, 285(3):751-759.
    [148] K D Chen, Y S Li, M Kim, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc[J]. J Biol Chem, 1999, 274:18393-18400.
    [149]宋关斌,刘保安,秦建,等.肝癌细胞与内皮细胞粘附力学特性研究[J].生物物理学报, 2003, 19(1):84-87.
    [150] C W Smith, T K Kishimoto, O Abbassi, et al. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro[J]. J Clin Invest, 1991, 87: 609-618.
    [151] R E Seftor, E A Seftor, M J Hendrix. Molecular role(s) for integrins in human melanoma invasion[J]. Cancer Metastasis Rev, 1999,18:359-375.
    [152] I M Padura, G Bazzoni, A Zanetti S, et al. A novel mechanism of colon carcinoma cell adhesion to the endothelium triggered by beta 1 integrin chain[J], J Biol Chem, 1994, 269:6124-6132.
    [153] N A Kefalides. The Goodpasture antigen and basement membranes: the search must go on[J]. Lab Invest, 1987, 56:1-3.
    [154] S M Albelda. Role of integrins and other cell adhesion molecules in tumor progression and metastasis[J]. Lab Invest, 1993,68:4-17.
    [155] R H Goldbrunner, H K Haugland, C E Klein, et al. ECM dependent and integrin mediatedtumor cell migration of human glioma and melanoma cell lines under serum-free conditions[J]. Anticancer Res, 1996, 16:3679-3687.
    [156] C H Damsky, M L Fitzgerald, S J Fisher. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo[J]. J. Clin. Invest. 89 (1992) 210-222.
    [157] M P Gawaz, J C Loftus, M L Bajt, et al. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions[J]. J Clin Invest, 1991,88(4): 1128-1134.
    [158] L Qin, Y L Wang, S X Bai. Expression of integrins and extracellular matrix proteins at the maternal-fetal interface during tubal implantation[J]. Reproduction, 2003, 126(3):383-391.
    [159] A Echarri, O Muriel, M A Delpozo. Intracellular trafficking of raft/caveolae domains: Insights from integrin signaling[J]. Semin Cell Dev Biol, 2007, 18(5):627-637.
    [160] M A Arnaout, S L Goodman, J P Xiong. Structure and mechanics of integrin-based cell adhesion[J]. Curr Opin Cell Biol, 2007, 19(5):495-507.
    [161] I J Salanueva, A Cerezo, M C Guadamillas, et al. Integrin regulation of caveolin function[J]. J Cell Mol Med, 2007, 11(5):969-980.
    [162] J H Chon, H S Wang, E L Chaikof. Role of fibronectin and sulfated proteoglycans in endothelial cell migration on a cultured smooth muscle layer[J]. J Surg Res. 1997, 72(1):53-59.
    [163] C S Wallace, S A Strike, G A Truskey. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture[J]. Am J Physiol Heart Circ Physiol. 2007, 293(3):H1978-1986.
    [164]王伟铭,周同.粘附分子与信号传导[J].生命科学, 1997, 9(5): 214-217.
    [165]高咏梅,朱广瑾.肿瘤坏死因子和血管紧张素II对人血管内皮细胞组织因子表达的影响[J].基础医学与临床, 2000, 20, (2): 30-33.
    [166] M Yoshida, W F Westlin, N Wang, et al., Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton[J]. J Cell Biol, 1996, 133:445-455.
    [167] B W Metcalf, B J Dalton, G Poste, et al. Cellular adhesion, molecular definition to therapeutic potential[M]. NewYork, Plenum press, 1994.
    [168] S Chien, K L P Sung, R Skalak, et al. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane[J]. Biophys J, 1978, 24: 463-487.
    [169] K L P Sung, G W S Schonbein, R Skalak, et al. Influence of physicochemical factors on rheology of human neutrophils[J]. Biophys J, 1982, 39: 101-106.
    [170] G B Song, Q Luo, J Qin, et al. Expression of integrinβ1 and its roles on adhesion between different cell cycle hepatocellular carcinoma cells (SMMC-7721) and human umbilical vein endothelial cells[J]. Colloids and Surfaces B: Biointerfaces, 2004,34:247-252.
    [171]吴泽志,李志清,龙勉,等.烧伤大鼠粒细胞与内皮细胞粘附力学特性研究[J].生物医学工程学杂志, 1996, 13(3):219-222.
    [172]宋关斌.肝癌细胞力学特性及其与细胞周期的关系研究[M].重庆大学博士论文. 2002.
    [173]王芳,高进.小鼠肺腺癌体内外生长、运动和侵袭与细胞外基质相关性研究[J].中华病理学杂志, 1994, 23(2):107-110.
    [174]王芳,高进.恶性肿瘤体内外生长和发展过程与细胞外基质相关性研究[J].中华肿瘤杂志, 1998, 20 (2):112-115.
    [175]王宪航,龙勉,王晓军,等.肝癌细胞与胶原蛋白I裱衬表面粘附特性[J].生物物理学报, 1996, 12(4): 686-689.
    [176] C L Librach, S L Feigenbaum, T Y Bass, et al. Interleukin-1? Regulates Human Cytotrophoblast Metalloproteinase Activity and Invasion in Vitro[J]. The Journal of Biological Chemistry, 1994,269(25):17125-17131.
    [177] T L Thirkill, S R Hendren, Soghomonians A, et al. Regulation of trophoblast beta1-integrin expression by contact with endothelial cells. Cell Commun Signal, 2004, 2[1]:1-11.
    [178] W Timens. Cell adhesion molecular express and homing of hematologic malignancies[J]. Critical Reviews in Oncology/Hematology, 1995, 19: 111-129.
    [179] J D Aplin. Expression of integrin alpha 6 beta 4 in human trophoblast and its loss from extravillous cells[J]. Placenta, 1993, 14:203-215.
    [180] T L Thirkill , L Kimberly , V Hemamalini, et al. Macaque trophoblast migration is regulated by RANTES[J]. Experimental Cell Research, 2005, 305:355-364.
    [181] C Das, S Basak. Expression and regulation of integrin receptors in human trophoblast cells: role of estradiol and cytokines[J]. Indian J Exp Biol, 2003, 41(7):748-755.
    [182] C Coutifaris, A Omigbodun, G Coukos. The fibronectin receptor alpha5 integrin subunit is upregulated by cell-cell adhesion via a cyclic AMP-dependent mechanism: implications for human trophoblast migration[J]. Am J Obstet Gynecol. 2005, 192(4):1240-1253.
    [183] P J Stroeken, E A Rijthoven, Boer E, et al. Cytoplasmic domain mutants of beta1 integrin, expressed in beta 1- knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis[J]. Oncogene, 2000, 19:1232-1238.
    [184] M Morini, M Mottolese, N Ferrari, et al. The alpha3beta1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity[J]. Int J Cancer, 2000, 87:336-342.
    [185] J C Irwin, L C Giudice. Insulin-like growth factor binding protein-1 binds to placental cytotrophoblast alpha5beta1 integrin and inhibits cytotrophoblast invasion into decidualized endometrial stromal cultures[J]. Growth Horm IGF Res, 1998, 8:21-31.
    [186] T Tsuj, Y Kawada, M K Murozono, et al. Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3) [J]. Clin Exp Metastasis, 2002, 19:127-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700