用户名: 密码: 验证码:
对我国高分辨率融合降水资料的适用性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用国家气象信息中心研制的地面和卫星融合的降水资料,通过CMORPH卫星降水资料、融合降水资料与地面观测降水资料的对比,评估融合降水资料的质量,分析融合降水资料精度的时空分布特征,研究影响融合降水资料精度的主要因素,评估融合资料在各区域的降水日变化特征和对持续性降水过程的监测能力,得到以下主要结论:
     一、对融合降水误差的时空分布特征分析表明;
     融合降水资料有效利用地面观测降水和卫星降水各自的优势,在降水量值和空间分布上更为合理,误差随时问变化平缓,平均偏差在0值附近摆动,空间相关系数大多稳定在0.9以上;空间分布上,融合降水整体上低估了全国各区域的降水,但与卫星降水相比,融合降水的误差在全国范围内普遍减小,区域性差异减弱,空间一致性提高;除青藏地区外,融合降水与地面观测降水在各区域有较高的空间一致性,全国平均空间相关系数高达0.983;江淮区域的偏差改善尤为明显;与卫星资料相比,融合降水在各月份均以较小偏差占主要比例;融合降水还高估了降水日数,对2mm/d以下的小降水量存在高估,低估2mm/d以上的降水量;与卫星降水相比,融合降水对各强度降水的偏差显著减小,10mm/d以上强度的降水偏差改善明显,尤其对30mm/d以上的强降水,与卫星降水相比误差减小了4-5倍;且融合降水在不同累积时问下的误差与卫星降水相比均大幅度减小,均方根误差减小了3倍,空间相关系数提高了4倍左右。且累积时次越长,误差改善越明显。
     二、分析站点疏密和地形变化对融合降水精度的影响表明:
     稀疏区域和密集区域的融合产品质量都与站网密度有关,站网越密集融合效果越好。稀疏区和密集区域的卫星资料在融合产品中的重要性不一样:卫星资料在密集区域的融合作用不大;而在西部没有站点的地方,融合资料主要取决于卫星资料,网格内有观测站时,稀疏区域的融合资料主要取决于地面观测站资料,且网格内站点数越多,融合与地面观测的误差越小。融合效果还与地形高度变化有关,融合降水的量值在地形变化平缓区域与地面观测降水更贴近,空间一致性较好;地形变化复杂区域,低洼处的量值比山峰处的值更接近地面观测降水。CMORPH卫星降水的量值与地形关系不大,但是其空间分布特征在低洼处比山峰处更接近地面观测降水。
     三、对比融合降水与观测资料的日变化特征,发现:除青藏高原地区外,融合降水能很好的反映平均降水量在各区域的日变化情况;而CMORPH卫星降水未能体现江淮、华南的双峰特征,在其余地方的降水峰值或提前或推后。
     四、持续性降水过程个例研究表明,融合降水对江淮和华南地区的两次持续性降水过程的误差值分别为-0.016、-0.02mm/h,与CMORPH卫星降水相比偏差显著减小,对实际降水量的再现能力强,能准确反映持续性降水过程。对于超强台风“凡亚比”登陆过程,融合降水能较好再现登陆前、中、后不同时间的降水精细结构,对于定量监测降水过程具有优势。
Based on the merged precipitation observed by Automatic Meteorological Stations(AWS) and retrieved by the satellite of CMORPH, the merged precipitation product at hourly/0.1°at/lon temporal-spatial resolution is developed by National Meteorological Information Center. In this paper, the quality of the product is assessed from the points of bias temporal-spatial distribution, the diurnal cycle of precipitation over each area, monitoring capacity of the persistent precipitation process. The main factors affect the accuracy of the merged precipitation are also discussed here. The main results of this research can be summarized in the following items:
     1) The merged product is effectively used the advantages of the AWS observations and satellite product of CMORPH and more reasonable both at the precipitation quantity and spatial distribution. Bias of the merged product is decreased remarkably, the regional bias and relative error is-0.28and-4.4%respectively. The extent of change over temporal-spatial distribution is weakened meanwhile the spatial correlation coefficient reaches0.983.; Bias of merged product are smaller than CMORPH in the same precipitation order, and the quality is improved further with the precipitation order increases especially the order reaches30mm/d. Along with the increase of total time, the result of merged product gets more significant improvement.
     2) Station intensity plays an important role both in dense-stationed area and sparse-stationed area, the more gauges, the smaller bias between the merged product and the AWS observations. And terrain height affects the accuracy of the merged product, more gentle the terrain height changes, the smaller bias between the merged product and the AWS observations. While the concern between satellite product of CMORPH and topographic variation is not big.
     3) Expect the Tibetan Plateau, the merged product show the diurnal cycles of precipitation over other regions very close to the AWS observations. While the satellite product of CMORPH failed to capture the major morning peak over Yangtze Rivers and South China, and show the precipitation peak earlier or later over other regions.
     4) The merged product can capture the precipitation process very well, the mean bias of two rainfall process over Yangtze River and South China is only-0.016、-0-02mm/h, respectively. The merged product have a definite advantage in the quantitatively rainfall monitoring, can show the rainfall structure of super typhoon "FANAPI" of different landing process.
引文
[1]Cressman,G. P.,An operational objective analysis system. Mon. Wea. Rev.,1959,87:367-374.
    [2]Barnes, S.L., A technique for maximizing details in numerical weather map analysis. J.Appl. Meteor.,1964,3:396-409.
    [3]Gandin, L. S., Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations,1965:242p
    [4]Shepard, D., A two dimensional interpolation function for regularly spaced data. Proc.23rd National Conf. of the Association for Computing Machinery, Princeton, NJ, ACM,1968:517-524
    [5]张培昌,杜秉玉,等.雷达气象学[M].北京:气象出版社,2001.
    [6]Simpson, J. R. F. Adler, and G. R. North, A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer.Meteor.Soc.1988:69,278-295.
    [7]Hsu, K-L, X. Gao, S. Sorooshian, and V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteor.,1997:36,1176-119.
    [8]Huffman, G. J., R. F. Adler, E. F. Stoker, D. T. Bolvin, and E. J. Nelkin, Analyses of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time.ANS 12th conf. on Satellite Meteorology & Oceanography.2004:11-15 January, Seattle, WA
    [9]Turk, K. E., E. E. Ebert, B. J. Sohn, H. J. Oh, V. Levizzani, E. A. Smith, and R. Ferraro, Validation of an operational global precipitation analysis at short time scales. AMS 12th conf. on Satellite Meteorology & Oceanography.11-15 January,2004, Seattle, WA
    [10]Jorce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor.,2004:5,487-503.
    [11]Arkin, P.A., and P.Xie, The Global Precipitation Climatology Project: First Algorithm intercomparison Project. Bull.Amer.Meteor.Soc,1994:75,401-419.
    [12]Barrett E C and Martin D W. The Use of Satellite Data in Rainfall Monitoring [M]. Academic Press,1981:340.
    [13]Huffman, G.J., Adler, R.F., Rudolf, B., Schneider, U., and Keehn, P.R. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. Journal of Climate,1995:8,1284-1295
    [14]Xie, P., and Arkin, P.A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions, Journal of Climate,1996:9,840-858
    [15]Huffman, G.J., Robert F.Adler, Philip Arkin, Alfred Chang, Ralph Ferraro, Arnold Gruber, John Janowiak, Alan McNab, Bruno Rudolf, Udo Schneider. The Global precipitation Climatology Project (GPCP) combined precipitation Dataset. Bulletin of the American Meteorological Society, 1997:78(1),5-20
    [16]翟茂常,朱海ECMWF再分析日降水量与CMAP候降雨量在中国境内的数据整合.地球科学进展,2000.15(1):440-445
    [17]Sun, X., Manton, M.J., and Ebert, E.E. Regional rainfall estimate using double kriging of rain gauge and satellite observations. BMRC research report NO.94.December 2003
    [18]Robert F. Adler. George J. Huffman, Alfred Chang, Ralph Ferraro, Pingping Xie, John Janowiak, Bruno Rudolf, Udo Schneider, Scott Curtis, David Bolvin, Arnold Gruber, Joel Susskind, Philip Arkin, and Eric Nelkin. The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). Journal of Hydrometeorology,2003:4,1147-1167
    [19]Huffman G J, Adler R F, Bolvin D T, et al. The TRMM Multisatellite Precipitation Analysis (TMPA):quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J]. J Hydrometeor,2007,8(1):38-55.
    [20]刘洪鹏,刘文.省域卫星估测降水的资料融合技术及精度分析.山东气象.2003:23(4):22-23.
    [21]韩永,赵凤生,张鉴.卫星-地面观测数据融合方法研究.量子电子学报.2003:20(2):222-228
    [22]潘旸,宇婧婧,廖婕,余予.地面和卫星降水产品对台风莫拉克降水监测能力的对比分析[J].气象,2011,37(5):564-570.
    [23]高晓荣.多种遥感平台(雷达、卫星)资料和雨量计资料综合定量降水估计技术.中国气象科学
    研究院2010年硕士学位论文.
    [24]Tianjun Zhou,Rucong Yu, Haoming Chen, Aiguo Dai, Yang Pan. Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China:A Comparison of Satellite Data with Rain Gauge Observations. Journal of Climate.2008:21,3997-4010.
    [25]Shen Y,A.Xiong,Y.Wang,and P. Xie. Performance of high-resolution satellite precipitation products over China. Journal of geophysical research.2010,115, D02114.17 PP.
    [26]沈艳,游然,冯明农PEHRPP计划简介及在中国大陆区域的数据质量评估.第七届全国优秀青年气象科技工作者学术研讨会论文集.2010.
    [27]韩振宇,周天军APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性.大气科学(待刊).2012.
    [28]胡江林,张人和,牛涛.长江流域0.1°网格逐日降水数据集及其精度.自然资源学报.2008:23(1):136-149.
    [29]Gray W M, Jacobson Jr, R W. Diurnal variation of deep cumulus convection[J]. Mon. Wea. Rev., 1997,105(8):1171-1188
    [30]Murakami M. Analysis of the deep convective activity over the western Pacific and southwest Asia.Partl:Diurnalvariation[J]. Meteor.Soc.Japan.,1983,61(1):60-76
    [31]Yang G Y,Slingo J. The diurnal cycle in the Tropics[J]. Mon. Wea. Rev.,2001,129(4):784-801
    [32]Ohsawa T, Ueda H, Hayashi T, et al. Diurnal variations of convective activity and rainfall in tropical Asia[J]. Meteor.Soc.Japan.,2001,79(1B):333-352
    [33]Dai,A.,X..Lin,and K.The frequency, intensity and diurnal cycle of rainfall in surface and satellite observationsoverlow-andmid-latitudes,Clim.Dyn.,2007,29:727-744,doi:10.1007/s00382-007-0260-y
    [34]John E.Janowiak,Vernon E.Kousky,and Robert J.Joyce.Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitationanalysis.Journal of Geophysical research.2005,110,doi:10.1029/2005JD006156
    [35]刘德祥,李兴敏.甘肃降水日变化的气候特征.甘肃气象[J],1994,12(2):10-12
    [36]周泽英.达县降水日变化特征分析.四川气象[J],2003,23(4):47-48
    [37]戴泽军,宇如聪,陈昊明.湖南夏季降水日变化特征.高原气象.2009,28(6):1463-1470
    [38]Rudong Yu,Tianjun Zhou.,Anyuan Xiong.Diurnal variations of summer precipitation over contiguous China[J]. Geophys Res Lett,2007,34,doi:10.1029/2006GL028129
    [39]吴璐,翟盘茂CMORPH和TRMM 3B42在青藏高原及其以东的四川盆地暖季小时尺度降水分析中可用性评估.2011.第28届中国气象学会年会—S1第四届气象综合探测技术研讨会
    [40]任芝花,赵平,张强,等.2010.适用于全国自动站小时降水资料的质量控制方法[J].气象,36(7):123-132.
    [41]沈艳,冯明农,张洪政,等.我国逐日降水量格点化方法[J].应用气象学报,2010.21(3):279-286.
    [42]宇婧婧,沈艳,潘旸,赵平,周自江,PDF方法在中国地区高分辨率卫星反演降水系统误差订正中的应用.应用气象学报(待刊).2012
    [43]宇婧婧,沈艳,潘旸,徐宾.2011.基于地面观测降水订正卫星反演降水系统误差(PDF)方法在中国地区的应用[J].2011年中国气象学会气象通信与信息技术委员会暨国家信息中心科技年会论文.461-471
    [44]潘肠,沈艳,宇婧婧,赵平,基于OI方法分析的中国区域地面观测与卫星反演小时降水融合试验.气象学报(待刊),2012
    [45]白爱娟,刘长海,刘晓东TRMM多卫星降水资料揭示的青藏高原及周边地区夏季降水日变化.地球物理学报,2008,51(3):704-714.
    [46]Adler,R.F., Kidd, C., Petty, G., et al. Intercomparison of global precipitation products:The third precipitation intercomparison project (PIP23).Bulletin of the American Meteorology Society.,2001,82(7):1377-1396.
    [47]Adler,R.F,Huffman,G.J.,Chang,A.,Ferraro,R.,et al.The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). Journal of Hydrometeorology,2003,4,1147-1167.
    [48]Soden, B.J. The Sensitivity of the Tropical Hydrological Cycle to ENSO. Journal of Climate,2000,13,538-549.
    [49]Chiu, L.S., Chang, A., and Janowiak, J. E. Comparison of monthly rain rates derived from GP1 and SSM/I using probability distribution functions. Journal of Applied Meteorology, 1993,32,323-334
    [50]Xie, P., Arkin, P.A. Global Precipitation:A 17year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorology Society, 1997,78,2539-2558
    [51]徐影,丁一汇,赵宗慈.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析.应用气象学报.2001,12(3):337-347
    [52]赵天保,艾丽坤,冯锦明NCEP再分析资料和中国站点观测资料的分析和比较.气候与环境研究,2004,9(2):278-293
    [53]陈举,施平,杜岩.南海及其临近地区集中常见降雨产品的相互比较.热带海洋学报,2004,23(3):40-51
    [54]Bowman, K.P. Comparison of TRMM Precipitation Retrievals with Rain Gauge Data from Ocean Buoys. Journal of Climate,2005,18,178-190
    [55]隋玉正.多源海洋降水信息的融合与应用.中国海洋大学2006年硕士学位论文.
    [56]黄先香,施能,炎利军.1948-2001年全球陆地6-8月降水长期变化的时空特征.南京气象学报,2003,26(2):201-209
    [57]施能,陈绿文,封国林,高鸿,林振敏,郭丽娜.1920-2000年全球陆地降水气候特征与变化.高原气象,2004,23(4):435-443
    [58]沈艳,潘肠,宇婧婧,赵平,中国区域小时降水量融合产品的质量评估.大气科学学报(待刊),2012
    [59]Gray W M, Jacobson Jr, R W. Diurnal variation of deep cumulus convection [J]. Mon. Wea. Rev., 1997,105(8):1171-1188
    [60]Murakami M. Analysis of the deep convective activity over the western Pacific and southwest Asia.Partl:Diurnal variation[J]. Meteor.Soc.Japan.,1983,61(1):60-76
    [61]Yang G Y,Slingo J.The diurnal cycle in the Tropics[J].Mon.Wea.Rev,2001,129(4):784-801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700