用户名: 密码: 验证码:
半胱胺对动物生产性能及其营养生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以大鼠和肥育猪为实验模型,利用营养代谢小分子(分子量小于1000道尔顿)的组学技术和生物大分子的基因表达技术,研究了半胱胺在营养代谢和生理二个层次上的生物效应和分子基础。研究包括三个实验。
     试验一,以Sprague-Dawley大鼠为模型,采用一次性腹腔注射150mg/kgBW半胱胺后,收集0-8,8-24h的尿液以及24h血清,测定1H核磁共振谱和采用PCA或OSC-PLS的实验资料分析法,研究了短期外源半胱胺补充(一次性引入)对大鼠体内物质代谢的影响,结果表明:
     ①短期外源半胱胺(一次性引入)影响大鼠肠道微生物代谢。明显促进血清乙酸浓度,增加了尿液中二甲胺浓度,降低了0-8h尿液中马尿酸的浓度。
     ②短期外源半胱胺(一次性引入)影响大鼠三羧酸循环代谢。明显表现为0-8h尿液a-酮戊二酸浓度增加、葡萄糖水平降低。半胱胺也降低尿液琥珀酸和柠檬酸浓度。
     ③短期外源半胱胺(一次性引入)影响氮代谢。引起尿液中肌酐、二甲基甘氨酸(0-8h)、肌酸(8-24h)浓度以及血清中甘氨酸含量明显增加,肌酸(0~8h)浓度降低。
     ④短期外源半胱胺(一次性引入)影响脂质代谢。明显降低血清脂蛋白、HDL、VLDL、FA、PUFA、UFA、磷酰胆碱浓度。
     结论:短期外源半胱胺(一次性引入)影响机体和内源微生物代谢过程。短期半胱胺补充(一次性引入)降低了能量代谢强度,促进了氮代谢,降低了脂肪代谢。
     试验二,以Sprague-Dawley大鼠为模型,采用多次(共8次,一周2次,星期一四各一次)腹腔注射150mg/kg BW半胱胺后收集0~8,8~24h的尿液以及24h血清,测定1H核磁共振谱和采用PCA或者OSC-PLS的实验资料分析法,研究了长期外源半胱胺补充(多次性引入)对大鼠体内物质代谢的影响。结果表明:
     ①长期外源半胱胺(多次性引入)影响肠道微生物代谢。降低血清乙酸、乙醇、氧化三甲胺、甜菜碱、尿液氧化三甲胺及马尿酸浓度,增加尿液中二甲胺的浓度。
     ②长期外源半胱胺(多次性引入)影响三羧酸循环代谢。减少尿液琥珀酸浓度,降低尿液柠檬酸(8-24h)及尿液中葡萄糖浓度。
     ③长期外源半胱胺(多次性引入)影响氮代谢。提高尿液中二甲基甘氨酸、肌酐(0-8h)、肌酸(8-24h)、尿液以及血清甘氨酸浓度,降低尿液肌酐(8~24h)浓度以及三甲基组氨酸浓度。
     ④长期外源半胱胺(多次性引入)影响脂肪代谢。提高血清HDL水平,降低血清UFA、VLDL和脂蛋白水平。
     结论:长期外源半胱胺(多次性引入)影响大鼠生理生化参数和小分子物质代谢。减少了三羧酸循环能量代谢强度,降低了蛋白质的降解。刺激微生物的氨基酸和碳水化合物代谢。
     试验三,选用24头PIC肥育猪(初始体重为60.05±1.24公斤、阉公猪和母猪各半),随机分成3组,分别饲喂基础日粮(对照),70和140 mg/kg半胱胺的实验处理饲粮,实验47天,研究了外源半胱胺对肥育猪生产性能和类胰岛素生长因子系统的影响。
     结果表明:
     ①饲料添加70 mg/kg外源半胱胺,显著提高肥育猪平均日增重(19.5%)和日采食量(15.2%),不影响料重比。高剂量(140 mg/kg)半胱胺对肥育猪生产性能没有显著影响。
     ②饲料添加70 mg/kg外源半胱胺显著(P<0.05)提高血清生长激素(GH)水平(43.1%)和类胰岛素生长因子-I(IGF-I)含量(55.2%);显著上调上调肝脏、胃、肌肉生长激素受体(GHR)的mRNA的表达量,分别可达到90%、140%、120%;显著上调肝脏、胃、肌肉IGF-I的mRNA的表达量,分别可达到66%、65%、62%;显著上调胃、十二指肠、肌肉中类胰岛素生长因子-I受体(IGF-IR)的mRNA表达量(分别可达到31%、346%、38%)和肝脏中类胰岛素生长因子结合蛋白-3 (IGFBP-3)的mRNA表达量(119%);下调胃、十二指肠、肌肉中IGFBP-3的mRNA表达量可达到41%、42%、48%。不影响肝脏、胃、十二指肠、肌肉中胰岛素受体(IR)的mRNA表达;也不影响肝脏IGF-IR和十二指肠中GHR、IGF-I的mRNA表达。
     ③饲料添加140 mg/kg外源半胱胺显著(P<0.05)上调肝脏、胃、十二指肠、肌肉中IGFBP-3的mRNA表达量(114%、212%、196%、194%);显著下调十二指肠中GHR的水平(22%)以及肝脏、胃、十二指肠、肌肉中IGF-I的mRNA表达量(分别达到46%、51%、42%、54%)和IGF-IR的mRNA表达量(82%、69%、63%、64%)。不影响血清GH、IGF-I水平和肝脏、胃、肌肉GHR的mRNA表达。
     结论:外源半胱胺调控动物生长、血清IGF-I浓度以及GHR, IGF-I, IGF-IR, IGFBP-3, IR mRNA水平存在显著剂量效应关系。半胱胺调控GHR, IGF-I, IGF-IR, IGFBP-3 mRNA水平有明显地组织特异性。半胱胺促进肥育猪生长,与GH-IGF轴的生理作用有关。
     综上所述:调控微生物代谢,外源半胱胺长期使用优于短期使用。外源半胱胺通过GH-IGF生理轴介导,减少了三羧酸循环能量代谢强度,降低了脂肪代谢和蛋白质的降解,调控了微生物的氨基酸和碳水化合物代谢,促进了动物生长。
Three experiments were conducted to investigate growth performance, nutritional and physiological effects of cysteamine in animals.
     Exp.l A total of 14 female Sprague-Dawley rats were randomly assigned to one of two groups, with 7 rats per group. One group was given doses of 150 mg/kg body weight cysteamine intraperitoneally. The other group was given physiological saline as control. Collections of urine were made at 0-8 and 8-24 hours and collections of blood were made at 24 hours after the last injection. The 1H NMR spectra were acquired for each sample. PC A or OSC-PLS was performed on all data. The results indicated that
     ①Acute CS supplementation also changed microbial metabolites concentration (increasing the concentrations of serum acetate and urine dimethylamine, and reducing urine hippuric acid concentration (0~8 hours)).
     ②Acute CS also changed TCA metabolites (increasing the concentration of urine a-ketoglutaric acid (0~8 hours), reducing the concentration of urine succinic acid, citric acid), decreased the concentration of urine glucose(0~8 hours)).
     ③Acute CS also affected the metabolism of nitrogen (increasing the concentration of urine creatinine,2-methylglycine (0-8 hours), creatine (8~24 hours) and serum glycine and reducing the concentration of creatine in urine (0~8 hours)).
     ④Acute CS also affected the fat metabolism (reducing the concentration of serum lipoprotein, HDL, VLDL, FA, PUFA, UFA, phosphorylcholine) Conclusion:Acute CS supplementation changed animal and microorganisms metabolism, decreased energy metabolism, increased nitrogen metabolism and decreased fat incretion.
     Exp.2 A total of 20 female SD rats were randomly assigned to one of two groups, with 10 rats per group for 25 days. One group was given doses of 150 mg/kg body weight cysteamine intraperitoneally (biweekly, Monday and Thursday). The other group was given physiological saline intraperitoneally as control. Collections of urine were made at 0-8 and 8-24 hours and collections of blood were made at 24 hours after the last injection. The1H NMR spectra were acquired for each sample. PCA or OSC-PLS was performed on all data. The results indicated that
     ①Chronic CS supplementation changed microbial metabolites concentration (decreasing serum concentrations of acetate, ethanol, trimethylamine oxide, betaine hippuric acid and urine concentration of trimethylamine oxide; increasing the concentration of dimethylamine in urine).
     ②Chronic CS changed TCA metabolites (decreasing the concentration of urine succinic acid and reducing the concentration of urine citric acid (8~24 hours)) and decreased the glucose in urine.
     ③Chronic CS affected the metabolism of nitrogen (increasing the concentration of urine dimethylglycine, creatinine (0 to 8 hours), creatine (8~24 hours) and glycine in urine or serum; reducing the concentration of urine creatinine (8~24 hours) and 3-methylhistidine).
     ④Chronic CS affected the metabolism of fat (increasing concentration of serum HDL and decreasing the concentration of UFA, VLDL, lipoprotein in urine or serum). Conclusion:Chronic CS changed serum and urine metabolome in rats. Chronic CS decreased energy metabolism (Tricarboxylic acid cycle) and protein breakdown rate. CS can modulate amino acid and carbohydrates metabolism from microbes in animals.
     Exp.3 A total of 24 finishing pigs (60.05±1.24 kg; 12 gilts and 12 barrows) were assigned randomly to one of the three dietary groups, with four pens/group (per pen:one gilt, one barrow). The pigs were fed a basal diet containing 0 (control),70 or 140 mg/kg cysteamine feed additive for 47 days. The results indicated that
     ①the ADG and ADFI (70 mg/kg) were increased (P<0.05) by 19.5%,15.2%, respectively; however, the ADG and ADFI (140 mg/kg) and feed efficiency were not affected.
     ②CS supplementation (70 mg/kg) increased serum IGF-I level, upregulated mRNA levels of GHR and IGF-I (liver, stomach, muscle), IGF-IR (stomach, duodenum, muscle) and IGFBP-3 (liver), but downregulated IGFBP-3 (stomach, duodenum, muscle). CS supplementation (70 mg/kg) did not affect mRNA levels of GHR and IGF-I (duodenum), IGF-IR (liver), and IR (liver, stomach, duodenum, muscle).
     ③CS supplementation (140 mg/kg) downregulated GHR (duodenum), IGF-I and IGF-IR mRNA (liver, stomach, duodenum, muscle), but upregulated IGFBP-3 and IR mRNA (liver, stomach, duodenum, muscle) and did not affect ADG, and serum IGF-I concentration.
     Conclusion:the results suggest that dietary CS supplementation modulates the growth rate, serum IGF-I concentrations, and the gene expression of GHR, IGF-I, IGF-IR, IGFBP-3, and IR in a dose-dependent manner. CS supplementation has tissue-specific regulation of GHR, IGF-I, IGF-IR, and IGFBP-3 mRNA levels. Moreover, the results also imply the physiologic role of the GH-IGF axis in mediating the dietary CS supplementation-supported growth of finishing pigs.
     Collectively, Chronic CS is better than acute CS in modulating microbe metabolism. CS can decrease energy metabolism (Tricarboxylic acid cycle), decrease fat incretion and protein breakdown rate, modulate amino acid and carbohydrates metabolism from microbes and thus mediate the dietary CS supplementation-supported growth of animals through GH-IGF axis.
引文
[1]Millard WJ, Sagar SM, Martin JB. Cysteamine induced depletion of somatostatin and prolactin. Federation Proceedings,1988,44:2546-2550.
    [2]EMEA. Committee for veterinary medicinal products mercaptamine hydrochloride summary report. EMEA/MRL/518/98-FINAL,1998,1-4.
    [3]Lee HS, Kim KH, Kim CD, et al. Exogenous cysteamine increases basal pancreatic exocrine secretion in the rat. J Korean Med Sci,1999,14(1):52-56.
    [4]洪奇华,吴林友,陈安国.半胱胺不同补充方式对生长肥育猪生长性能的影响.养猪,2003,(3):22-23
    [5]吴建设,黄建国,李军等.半胱胺对中华宫廷黄鸡生长及相关生理生化指标影响的研究.动物营养学报,2001,13(4):24-27.
    [6]McLeod KR, Bauer ML, Harmon DL, et al. Effects of exogenous somatostatin and cysteamine on net nutrient flux across the portal-drained viscera and liver of sheep during intraduodenal infusion of starch hydrolysate and casein.J Anim Sci,1997,75:3026-3037.
    [7]Hall TR, Harvey S, Scanes CG Control of growth hormone secretion in the vertebrates:a comparative survey. Comp Biochem Phsiol,1986,84A:231-253.
    [8]Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev,1998,19:717-797.
    [9]Muller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev,1999,79:511-607.
    [10]Tse MCL, Cheng CHK, Chan KM. Effects of chronic cysteamine treatment on growth enhancement and insulin-like growth factor Ⅰ and Ⅱ mRNA levels in common carp tissues. Br J Nutr,2006,96:650-659.
    [11]Dunshea FR. Porcine somatotropin and cysteamine hydrochloride improve growth performance and reduce back fat in finisher gilts. Aust J Exp Agr,2007,47:796-800.
    [12]Yang, CB, Li AK, Yin YL, et al. Effects of dietary supplementation of cysteamine on growth performance, carcass quality, serum hormones and gastric ulcer in finishing pigs. J Sci Food Agric, 2005,85:1947-1952.
    [13]Spencer GS. New approach to regulation of growth using immunization against somatostatin. J R Soc Med,1984,77:496-500.
    [14]McLeod KR, Harmone DL, Mitchell GE. Cysteamine-induced depletion of somatostatin in sheep: time course of depletion and changes in plasma metabolites, insulin, and growth hormone. J Anim Sci,1995b,73:77-87.
    [15]McLeod KR, Harmone DL, Schillo KK, et al. Effects of cysteamine on pulsatile growth hormone release and plasma insulin concentrations. Comp Biochem Physiol,1995a,112B:523-533.
    [16]Xiao D, Lin HR. Effects of cysteamine-a somatostatin-inhibiting agent-on serum growth hormone levels and growth in juvenile grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol, 2002,134A:93-99.
    [17]Xiao D, Lin HR. Effects of cysteamine-a somatostatin-inhibiting agent-on serum growth hormone levels and growth in juvenile grass carp (Ctenopharyngodon idellus). Gen Comp Endocrinol,2003, 134:285-295.
    [18]Mommsen TP. Growth and metabolism. In The Physiology of Fishes; Evans, D. H., ed.; CRC Press: Boca Raton, FL,1998, pp 65-77.
    [19]Kostyo JL. The endocrine system. In Hormonal Control of Growth; Goodman, H. M., ed.; Oxford University Press:New York,1999, pp 849-906.
    [20]D'Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations of somatomedin C:further evidence for mulTiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA,1984,81:935-939.
    [21]Daughaday WH. Somatomedins:a new look at old questions. In Molecular and Celllular Biology of Insulin-Like Growth Factors and Their Receptors; LeRoith, D., Raizada, M. K., eds.; Plenum Press:New York,1989, pp 1-4.
    [22]Nissley P, Lopaczynski W. Insulin-like growth factor receptors. Growth Factors,1991,5:29-43.
    [23]Clemmons DR. Insulin-like growth factor-binding proteins:roles in regulating IGF physiology. J Dev Physiol,1991,15:105-110.
    [24]Huxtable RJ. Physiological actions of taurine. Physiological Reviews,1992,72 (1):101-163.
    [24]陈新谦,金有豫.新编药物学.第14版.北京:人民卫生出版社,1999,614.
    [25]Georgieva R, Tsevi R, Kossev K, et al. Immobilization of aminothiols on poly(oxyalkylene phosphate). Formation of poly(oxyethylene phosphates)/cysteamine complexes and their radioprotective efficiency. J Med Chem,2002,45(26):5797-5801.
    [26]Rosa TG, De Souza Wyse AT, et al. Cysteamine prevents and reverses the inhibition of pyruvate kinase activity caused by cystine in rat heart.Biochim Biophys Acta,2004,1689(2):114-119.
    [27]Decuypere E, Buyse J, Robimi G, et al. Comparative study of endocrinological parameters in the genetic lines of broiler:An overview. European Poultry Science (Special edition),1995,68.
    [28]Brazeau P, Vale W, Burgos R,et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science,1973,179:77-79.
    [29]Millard WJ, Sager SM. Cysteamine induced depletion of somatostatin and prolactin. Fedetation Proc,1985,44:2546-2550.
    [30]McLean E, Donaldson EM. The role of growth hormone in the growth of poikilotherms. In The Endocrinology of Growth, Development and Metabolism in Vertebrates; Schrreibman, M. P.; Scanes, C. G.; Pang, P. K. T., eds.; Academic Press:New York,1993, pp 43-71.
    [31]Terry LC, Craig R. Cysteamine effects on monoamines, dopamine-beta-hydroxylase and the hypothalamic-pituitary axis. Neuroendocrinology,1985,41(6):467-475.
    [32]艾晓杰,韩正康.半胱胺对小鹅血浆中β-END和某些激素的影响.畜牧兽医学报.1998,29(3): 285-288.
    [33]Bryant HU, Holabay JW, Bernton EW. Cysteamine produccs doserelated bidirectional immunomodulatory effects in mice. Pharmacol Exp Ther,1989,249(2):424-429.
    [34]王恩秀,陈伟华,李燕等.半胱胺对大鼠生长及免疫的影响.畜牧兽医学报,2002,33(6):555-558.
    [35]王恩秀,陈伟华,李燕等.半胱胺和几种激素对大鼠免疫功能的影响.中国兽医杂志,2003,39(5):10-11.
    [36]沈赞明,解红梅.半胱胺烟酸盐和蛋氨酸赖氨酸对山羊细胞免疫的影响.中国兽医科技,2004,34(11):27-32.
    [37]Salam OMEA. Modulation of inflammatory paw oedema by cysteamine in the rat. Pharmacol Res, 2002,45(4):275-284.
    [38]杨倩,练高建,黄国庆等.半胱胺对鸡小肠黏膜中分泌型IgA细胞和上皮内淋巴细胞的影响.南京农业大学学报,2002,25(2):89-92.
    [39]Ho WZ, David K, Li S, et al. Cysteamine inhibits human immunodeficiency virus-1 replication in cord blood-derived mononuclear phagocytes and lymphocytes. Blood,1996,88(3):928-933.
    [40]石志敏,张磊,韦习会等.半胱胺对断奶前后仔猪血清皮质醇、T3、T4和IL-2水平的影响.动物学研究,2005,26(3):317-321.
    [41]沈赞明,张荣飞.半胱胺盐酸盐对高温条件下泌乳后期奶牛生产性能的影响.中国应用生理学杂志,2004,20(4):402-405.
    [42]张荣飞,沈赞明.半胱胺盐酸盐对高温季节奶牛生产性能的影响.动物营养学报,2007,19(2):153-156.
    [43]Helem wiseman. Damage to DNA by relative and nitrogen species:role in inflammatory disease and progression to cancer. Biochem J,1996,313:17-29.
    [44]de Matos DG, Nogueira D, Cortvrindt R, et al. Capacity of adult and prepubertal mouse oocytes to undergo embryo development in the presence of cysteamine. Mol Reprod Dev, 2003,64(2):214-218.
    [45]Bing YZ, Hirao Y, Takenouchi N, et al. Effects of thioredoxin on the plantation development of bovine embryos. Theriogenology,2003,59(3-4):863-873.
    [46]Matos DG, Furnus CC.The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology,2000,53(3):761-771.
    [47]Khomenko T, Deng XM, Jadus MR, et al. Effect of cysteamine on redox-sensitive thiol-containing proteins in the duodenal mucosa. Biochem and Biophys Research Commun,2003,309:910-916.
    [48]Tatsuta M, Iishi H, Baba M. Inhibition by cysteamine of hepatocarcinogenesis induced by N-nitros omorpholine in Sprague-Dawley rats.Int J Cancer,1989,44 (3):529-533.
    [49]Tatsuta M, Iishi H, Baba M, et al. Attenuating effect of bromocriptine on cysteamine anticarcinogenesis of stomach cancers induced by N-methyl-N'-nitro-N-nitrosoguanidine.Cancer Research,1990,50(17):5308-5311.
    [50]Tsilou ET, Thompson D, Lindblad AS, et al. A multicentre randomised double masked clinical trial of a new formulation of topical cysteamine for the treatment of corneal cystine crystals in cystinosis. Brit J of Ophthalmol,2003,87:28-31.
    [51]Jeitner TM, Lawrence DA. Mechanisms for the cytotoxicity of cysteamine. Toxicol Sci,2001, 63:57-64.
    [52]韦习会,夏东,高勤学.半胱胺对育肥后期猪胴体性状和肉质性状的影响.南京农业大学学报,2003,26(3):73-75.
    [53]徐瑞雪.日粮中连续补充半胱胺对肉鸡生产性能、生理生化指标和肌肉品质的影响.硕士学位论文,山东农业大学.2005.
    [54]Hayes KC, Sturman JA. Taurine in metabolism. Nutrition,1981, (1):401-425.
    [55]Young LW, Rubin P, Casarett G. Cysteamine protection against irradiation effects on growing cartilage. Radiology,1962, (79):613-617.
    [56]何天培,王玉江.牛磺酸在猫营养中的作用.中国畜牧兽医,1994,2(2):36-37.
    [57]刘皙洁,张桂春,张维生.半胱胺、大豆黄酮对肉仔鸡脂肪代谢的影响.东北农业大学学.2003,34(2):171-175.
    [58]艾晓杰,韩正康.半胱胺对鹅胰液分泌及其脂肪酶活性的影响.西北农林科技大学学报.2002,30(4): 105-108.
    [59]陈安国,洪奇华,吴林友.半胱胺对生长肥育猪胴体品质的影响及其机理探讨.中国畜牧杂志,2004,40(2):11-13.
    [60]艾晓杰,郑元林,陈伟华等.半胱胺对成年鹅糖和蛋白质代谢的影响.动物学研究,2003,24(4):302-304.
    [61]杨彩梅,陈安国,刘金松.半胱胺对肉用仔鸡生长性能和内脏器官的影响.中国畜牧杂志,2002,38(6): 16-17.
    [62]王艳玲.半胱胺对肉用仔鸡增重和生长抑素、β-内啡肽含量的影响.南京农业大学学报,1993,16(50):5-8.
    [63]司国利.不同剂量半胱胺对绵羊消化代谢和生产性能的影响.硕士论文.中国农业大学,2004.
    [64]邓玉英,曾年英,黄均宁等.半胱胺在肥育猪日粮中的应用效果研究.饲料博览,2009,(8):4-6.
    [65]刘绍能.愈疡灵对大鼠诱发性十二指肠溃疡的保护作用及机理研究.中国中医基础医学杂志,1998,4(5):24-26.
    [66]Cameron JL, Fernstrom JD. cysteamine administration on the in vivo incorporation of 35S-cysteine into somatostatin-14, somatostatin-28, arginine vasopressin, and oxytocin in rat hypothalamus. Endocrinology,1986,119:1292-1297.
    [67]Kwok Roland PS, Judy L Cameron, Douglas V Faller, et al. Effects of cysteamine administration on somatostain biosynthesis and levels in rat hypothalamus. Endocrinology,1992,131(6): 2999-3008.
    [68]范自营,王艳玲,惠参君等.不同剂量半胱胺对绵羊增重及饲料效率的影响.动物营养学报, 2000,12(1):62-64.
    [69]Davis CD, Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res,2004,551(1-2):51-64.
    [70]Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Systems Biol,2006,2:52.
    [71]Nicholson JK, Wilson ID. Understanding "global"systems biology:metabonomics and the continuum of metabolism. Nat Rev Drug Discov,2003,2(8):668-676.
    [72]Hood L, Heath JR, Phelps ME. Systems biology and new technologies enable predictive and preventative medicine. Science,2004,306(5296):640-643.
    [73]Tang H R, Wang Y L. Metabonomics:a revolution in progress. Prog Biochem Biophys,2006,33(5): 401-417.
    [74]German JB, Bauman DE, Burrin DG, et al. Metabolomics in the opening decade of the 21st century: building the roads to individualized health. J Nutr,2004,134 (10):2729-2732.
    [75]Taylor, King RD, Altmann T, et al. Bioinformatics,2002,18:241-248.
    [76]许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报,2007,29:701-711.
    [77]许国旺等.代谢组学—方法与应用.北京:科学出版社,2008.
    [78]邱德有,黄璐琦.代谢组学研究-功能基因组学研究的重要组成部分.分子植物育种,2004,2(2):165-177.
    [79]Plumb RS, Stumpf CL, Gorenstein MV, et al. Metabonomics:the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom,2002,16 (20):1991-1996.
    [80]Qiu Y, Su M, Liu Y, et al. Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Analytica Chimica Acta,2007, 583:277-283.
    [81]Gibney MJ, Walsh M, Brennan L, et al. Metabolomics in human nutrition:opportunities and challenges. Am J Clin Nutr,2005,82(3):497-503.
    [82]Rezzl S, Ramadan Z, Fay LB, et al. Nutritional metabonomics:applications and perspectives. J Proteome Res,2007,6(2):513-525.
    [83]William R. Wikoff, Andrew T. Anfora, Jun Liu, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences,2009,106 (10):3698-3703.
    [84]Martin FP, Dumas ME, Wang Y, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Systems Biol,2007, 3(112):1-16.
    [85]Lederberg J. Infectious history. Science,2000,288(5464):287-293.
    [86]Nicholson JK, Holmes E, Lindon JC, et al. The challenges of modeling mammalian biocomplexity. Nat Biotechnol,2004,22(10):1268-1274.
    [87]Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol,2005,3(5):431-438.
    [88]Xu J, Bjursell MK, Himrod J, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science,2003,299(5615):2074-2076.
    |89] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science,2001, 292(5519):1115-1118.
    [90]Solanky KS, Bailey NJC, Beckwith-Hall BM, et al. Application of biofluid1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem,2003,323(2):197-204.
    [91]Solanky KS, Bailey NJC, Holmes E, et al. NMR-based metabonomic studies on the biochemical effects of epicatechin in the rat. J Agri Food Chem,2003,51(14):4139-4145.
    [92]Wang YL, Holmes E, Tang HR, et al. Experimental metabonomic model of dietary variation and stress interactions. J Proteome Res,2006,5 (7):1535-1542.
    [93]He Q, Kong X, Wu G, et al. Metabolomic analysis of the response of growing pigs of dietary L-arginine supplementation.Amino Acids,2009,37:199-208.
    [94]Elin Chorell, Thomas Moritz, Stefan Branch, et al. Svensson. Predictive metabolomics evaluation of nutrition-modulated metabolic stress response in human blood serum during the early recovery phase of strenuous physical exercise. J Proteome Res,2009,8(6):2966-2977.
    [95]Wang YL, Tang HR, Nicholson JK, et al. Metabolomic strategy for the classification and quality control of phytomedicine:A case study of chamomile flower (Matricaria recutita L.). Plant Med, 2004,70(3):250-255.
    [96]Bailey NJC, Wang YL, Sampson J. Prediction of anTiplasmodial activity of Artemisiaannua extracts:application of1H NMR spectroscopy and chernometrics. J Pharm Biomed Anal,2004, 35(1):117-126.
    [97]Rasmussen B, Cloarec O, Tang HR, et al. Multivariate analysis of integrated and full-resolution1H NMR spectral data from complex pharmaceutical preparations:St.John's wort. Plant Med,2006, 72(6):556-563.
    [98]Wang YL, Tang HR, Nicholson J K, et al. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agri Food Chem,2005,53(2): 191-196.
    [99]Theo P Mulder, Anton G Rietveld, and Johan M van Amelsvoort. Consumption of both black tea and green tea results in an increase in the excretion of hippuric acid into urine. The Americal Journal of Clinical Nutrition,2005,81(suppl):256S-260S.
    [100]Anthony Fardet, Rafael Llorach, Alexina Orsoni, et al. Metabolomics provide new insight on the metabolism of dietary phytochemicals in rats. J Nutr,2008,138:1282-1287.
    [101]Marianne C Walsh, Lorraine Brennan, Estelle Pujos-Guillot, et al. Influence of acute phytochemical intake on human urinary metabolomic profiles. The Americal Journal of Clinical Nutrition.2007,86:1687-1693.
    [102]Anthony Fardet, Ce'cile Canlet, Gae" lle Gottardi, et al. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a1H NMR-Based metabonomic approach. J Nutr,2007,137:923-929.
    [103]Schilter B, Constable A. Regulatory control of genetically modified (GM) foods likely developments. Toxicol Letters,2002,127 (123):341-349.
    [104]Kuiper HA, Notebom HPJM, Kok EJ, et al. Safety aspects of novel foods. Food Res Int,2002,35 (223):267-271.
    [105]Catchpole GS, Beckmann M, Enot DP, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional patato crops. PNAS, 2005,102:14458-14462.
    [106]Hayashi Y. Application of the concep ts of risk assessment to the study of amino acid supplement. J Nutr,2003,133 (6):2021S-2024S.
    [107]Noguchi Y, Sakai R, Kimura T. Metabolomics and its potential for assessment of adequacy and safety of amino acid intake. J Nutr,2003,133 (6):2097S-2100S.
    [108]German JB, Watkins SM, Fay LB. Metabolomics in practice:emerging knowledge to guide future dietetic advice toward individualized health. J Am Diet Assoc,2005,105 (9):1425-1432.
    [109]German JB, Roberts MA, Watldns SM. Personal metabolomics as a next generation nutritional assessment. J Nutr,2003,133 (12):4260-4266.
    [110]Stella C, Beckwith-Hall B, Cloarec O, et al. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res,2006,5(10):2780-2788.
    [111]Hans Marquardt, Michael D. Sapozink, Morris S Zedeck. Inhibition by cysteamine-HCl of oncogenesis induced by 7,12-Dimethylbenza anthracene without affecting toxicity. Cancer Research,1974,34:3387-3390.
    [112]Richard A. Salvador, Clarke Davison, Paul K. Smith. Metabolism of cyseamine. The Journal of Pharmacology and Experimental Therapeutics,1957,121(2):258-265.
    [113]Nicholson JK, Holmes E, Lindon JC, et al. The challenges of modeling mammalian biocomplexity. Nat Biotechnol,2004,22:1268-1274.
    [114]Wang Y, Lawler D, Larson B, et al. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res,2007,6:1846-1854.
    [115]Van Dorsten FA, Daykin CA, Mulder TP, et al. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem,2006, 54:6929-6938.
    [116]Wang JJ, Wu G, Zhou HJ, et al. Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids,2009,37(1):177-186.
    [117]Crawford MA, Milne MK, Scribner BH. The effects of changes in acid-base balance on urinary citrate in the rat. J Physiol,1959,149:413-423.
    [118]Simpson DP, Angielski S. Regulation by bicarbonate ion of intramitochondrial citrate concentration in kidney mitochondira. Biochim Biophys Acta,1973,298:115-123.
    [119]汪琳仙.动物内分泌学.北京:北京农业大学出版社.1993,82-99.
    [120]程治平.内分泌生理学.北京:人民卫生出版社.1984,289-290.
    [121]上海医学化验所.临床生化检验(上册).上海:上海科学技术出版社,1979,109.
    [122]陈香美,李小玫,顾勇等.中华医学会第五次全国肾脏病学术会议纪要.中华内科杂志,1999,38(3):198-201.
    [123]Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function:new insights into old concepts. Clin Chem,1992,38:1933-1953.
    [124]Davies DF. Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest,1950,29:496-507.
    [125]Solfrizzi V, Panza F, Capurso A. The role of diet in cognitive deline. Journal of Neural Transmission,2003,110(1):95-110.
    [126]Solfrizzi V, D'Introno A, Colacicco AM, et al. Dietary fatty acids intake:possible role in cognitive decline and dementia. Exp Gerontol,2005,40:257-270.
    [127]Nonaka N, Banks WA, Mizushima H, et al. Regional differences in PACAP transport across the blood-brain barrier in mice:a possible influence of strain, amyloid beta protein, and age. Peptides 2002,23:2197-2202.
    [128]Al-Waiz M, Mikov M, Mitchell, et al. The exogenous origin of trimethylamine in the mouse. Metabolism,1992,41 (2):135-136.
    [129]Xu B, Zhao MY. Changes of metabonomic profiles of rat urine after oral administration of radix gentianae decoction. Chin J Pharmacol Toxicol,2008,22:221-226.
    [130]Phipps AN, Stewart J, Wright B, et al. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica,1998,28:527-537.
    [131]Liu GM, Wang ZS, Wu D, et al. Effects of dietary cysteamine supplementation on growth performance and whole-body protein turnover in finishing pigs. Livestock Science, 2009,122:86-89.
    [132]Rezzi S, Ramadan Z, Martin FP, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res,2007,6(11):4469-4477.
    [133]Martin FP, Verdu EF, Wang Y, et al. Transgenomic metabolic interactions in a mouse disease model:interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. J Proteome Res,2006,5(9):2185-2193.
    [134]Nicholls AW, Mortishire-Smith RJ, Nicholson JK. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol,2003, 16:1395-1404.
    [135]Delaney J, Neville WA, Swain A, et al. Phenylacetylglycine, a putative biomarker of phospholipidosis:its origins and relevance to phospholipids accumulation using amiodarone treated rats as a model. Biomarkers,2004,9:271-290.
    [136]Daykin CA, Van Duynhoven JP, Groenewegen A, et al. Nuclear magnetic resonance spectroscopic based studies of the metabolism of black tea polyphenols in humans. J Agric Food Chem,2005,53:1428-1434.
    [137]Wei L, Liao PQ, Wu HF, et al. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol,2008,227:417-429.
    [138]Baker JR, Chaykin S. The biosynthesis of trimethylamine-Noxide. J Biol Chem,1962,237: 1309-1313.
    [139]Smith JL, Wishnok JS, Deen WM. Metabolism and excretion of methlamines in rats. Toxicol Appl Pharmacol,1994,125:296-308.
    [140]Sugita Y, Takao K, Toyama Y, et al. Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids,2007,33:253-260.
    [141]Tannock GW. A special fondness for lactobacilli. Appl Environ Microbiol,2004,70:3189-3194.
    [142]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA,2004,101:15718-15723.
    [143]Fang ZF, Luo J, Qi ZL, et al. Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino acids,2009,36(3):501-509.
    [144]Ley RE, Tumbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity. Nature,2006,444:1022-1023.
    [145]Cornell HJ, Stelmasiak T. A unified hypothesis of celiac disease with implications for management of patients. Amino Acids,2007,33:43-49.
    [146]Li P, Yin YL, Li DF, et al. Amino acids and immune function. Br J Nutr,2007,98:237-252.
    [147]Robert A Anderson, Kenneth Feathergill JR, Risa Kipkpartrick, et al. Characterization of cysteamine as a potential contraceptive anti-HIV agent. Journal of Androlopy,1998.19 (1): 37-49.
    [148]Yen JT, Nienaber JA, Pond WG, et al. Effect of carbadox on growth, fasting metabolism, thyroid function and gastrointestinal tract in young pigs. J Nutr,1985,115:970-979.
    [149]Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature,2006,444:1027-1031.
    [150]National Research Council (NRC). Nutrient Requirements for Swine,10th ed.; National Academic Press:Washington, DC,1998.
    [151]Livak, KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001,25:402-428.
    [152]Machlin LJ. Effect of porcine growth hormone on growth and carcass composition of the pig. J Anim Sci.1972,35:794-800.
    [153]Brameld JM, Atkinson JL, Saunders JC, et al. Effects of growth hormone administration and dietary protein intake on insulin-like growth factor I and growth hormone receptor mRNA expression in porcine liver, skeletal muscle, and adipose tissue. J Anim Sci,1996,74:1832-1841.
    [154]Lupu F, Terwilliger JD, Lee K, et al. Roles of growth hormone and insulin-like growth factor I in mouse postnatal growth. Dev Biol,2001,229:141-162.
    [155]Coleman ME, Russell L, Etherton TD. Porcine somatotropin (pST) increases IGF-I mRNA abundance in liver and subcutaneous adipose tissue but not in skeletal muscle of growing pigs. J Anim Sci,1994,72:918-924.
    [156]Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocr Rev,1995,16:3-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700