用户名: 密码: 验证码:
加减白虎汤散剂缓解奶牛热应激的效果及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以缓解泌乳奶牛热应激为目标,在对浙江省奶牛主产区气候条件与生产现状调研的基础上,以清热解暑中药添加剂调控泌乳奶牛热应激为切入点,构建并筛选出加减白虎汤中药方剂,并通过其对奶牛采食行为和体外瘤胃发酵的效果试验,明确了较佳的用药时机;在此基础上,研究该复方散剂对中国荷斯坦奶牛泌乳性能、体热平衡、代谢和免疫功能的影响,利用组合赋权法建立其缓解奶牛热应激的药效评价模型,初步确定了加减白虎汤散剂缓解奶牛热应激的主要作用靶标。
     1.浙江省奶牛主产区气候与生产现状调研
     浙江省奶牛主要分布在金华地区和杭州地区,2个产区6-9月份的温湿指数(THI)在75-80之间波动,易诱发奶牛热应激。其中,7、8月份的日最低温度在25℃以上,表明奶牛24h内处于持续热应激状态2个月左右。夏季高温对泌乳早期奶牛的产奶损失较大,其次是泌乳中期奶牛。为规避夏季高温风险,奶牛养殖者采用季节性生产策略,夏季管理重点是产奶牛的产量,其次是奶牛的健康。新建牛舍多为散栏饲养的开放自然通风牛舍,安装了风扇、水空调等降温措施,积极调整日粮配方,补充维生素、矿物质、酵母培养物和过瘤胃蛋氨酸等,但奶牛夏季生产表现仍不尽人意。因此,有必要研发缓解奶牛热应激的新型饲料添加剂。
     2.不同中草药添加剂缓解奶牛热应激的效果研究
     为筛选缓解奶牛热应激的中药添加剂,构建了2种加减白虎汤中药组方A和B,并与大青叶提取物进行比较。选择同一栋牛舍的82头泌乳中期奶牛,随机分为8个区组,分别接受4个处理,每个处理有南、北区组各1个。四个处理分别为对照组C、加减白虎汤A、加减白虎汤B、大青叶提取物T, A、B、T组每头牛每天分别补饲150克、120克、15克中草药添加剂。结果发现,加减白虎汤A、B组产奶量分别比对照组提高7.2%、7.7%,差异显著。大青叶提取物组奶产量与对照组接近。加减白虎汤具有降低奶牛直肠温度,增加呼吸频率的趋势。加减白虎汤A、B组奶牛血浆IL-2R与IL-2比值较对照组分别高87.3%和101.6%。总体来看,加减白虎汤B缓解奶牛热应激的效果较好。
     3.不同中草药添加剂对奶牛采食行为和体外瘤胃发酵的影响
     针对个别奶牛不喜食加减白虎汤的问题,进行了3种清热解暑中药复方散剂对奶牛采食行为的观测研究。将40头泌乳末期的中国荷斯坦奶牛随机分为4组,分别接受4种处理,即对照组、清热健胃组、清暑组和加减白虎汤组。对照组饲喂全混合日粮,另3个处理组每日每头分别补饲清热健胃散、清暑散和加减白虎汤散剂各150克。清热健胃散和清暑散选自中华人民共和国兽药典,加减白虎汤为筛选的B组方。结果发现,在奶牛处于轻度热应激时添加中药对奶牛采食行为影响不大,仅在第一天早饲时影响采食速度。全天采食量与牛舍各时点的温度和THI极显著负相关,而全天采食速度与气象指标相关不显著。由于试验期采食量呈持续下降趋势,试验后期产奶效率较高,所有牛在试验期体重减少20-30kg,表明奶牛在试验期间动用自身体储维持产奶。
     进一步通过体外试验,研究3种清热解暑中药复方散剂对40℃培养下瘤胃发酵参数的影响。结果发现,清热解暑中药复方散剂对瘤胃发酵后期的产气量、pH值、VFA和NH3-N浓度等参数影响不显著,仅对发酵早期的产气量、pH值和VFA浓度产生了显著负面影响。加减白虎汤可致培养3h的乙酸比例降低,丁酸和丙酸比例增加,而培养6h溶纤维丁酸弧菌和黄色瘤胃球菌比例增加,提示加减白虎汤可能通过调控瘤胃微生物区系而导致发酵产物的变化。
     4.加减白虎汤散剂对中国荷斯坦奶牛泌乳性能与生理生化的影响
     利用筛选到的加减白虎汤方剂,系统研究了该复方以散剂形式补饲对中国荷斯坦奶牛泌乳性能、体热平衡、代谢模式和免疫性状的影响。采用随机区组设计,将20头泌乳中期的中国荷斯坦奶牛分为对照组和加减白虎汤散剂组。所有牛饲喂相同的TMR日粮,处理组每天每头添加120克加减白虎汤。加减白虎汤对热应激奶牛的采食量没有影响,可显著提高牛乳脂率。处理组3.5%乳脂校正产奶量较对照组每天提高1.1kg,组间差异不显著。加减白虎汤可显著增加热应激奶牛呼吸频率和心率,而对直肠温度影响不大。虽然处理组的全血和血浆粘度、红细胞聚集指数等血流变指标有低于对照组趋势,但统计上差异不显著。加减白虎汤具有提高血浆游离脂肪酸的趋势,对血糖、尿素氮和相关激素的分泌影响不显著。加减白虎汤显著降低血浆中的羟自由基和红细胞中过氧化氢的含量,对总抗氧化能力和脂质过氧化产物等指标影响不显著。加减白虎汤具有减少外周血红细胞数和白细胞数的趋势,对血红蛋白浓度和红细胞压积影响不大。加减白虎汤可显著提高外周血浆cGMP勺浓度,对cAMP影响不显著,cAMP/cGMP比值基本不变。加减白虎汤具有降低外周血浆IL-1的趋势,对血浆IL-6、PGE2浓度影响不大。综上,加减白虎汤对热应激奶牛产奶性能、体热平衡、氧化应激和免疫性状均有正向调控效果。
     5.加减白虎汤散剂缓解奶牛热应激的机理研究
     利用组合赋权法,选择4个准则(产奶性能、生理指标、代谢模式、免疫性状)支配下的16个指标(产奶量、3.5%FCM、干物质采食量、直肠温度、呼吸频率、心率、血浆尿素氮、血浆游离脂肪酸、超氧化物歧化酶、羟自由基、丙二醛、白细胞、红细胞、IL-1、IL-6、cGMP等),对加减白虎汤缓解奶牛热应激进行药效评价。首先用倒数法将直肠温度、血浆游离脂肪酸、羟自由基、丙二醛、白细胞、红细胞、IL-1、IL-6等逆向指标正向化,所有正向化数据除以各指标的均值,得到各指标的标准化数据。采用均方差法对各指标进行客观赋权,采用层次分析法对准则层和指标层进行主观赋权。将客观赋权法得到的结构性权重与层次分析法得到的内涵性权重进行组合,得到各指标的组合权重,剔除掉9个权重过小指标,对7个主要指标进行归一化处理,建立加减白虎汤缓解奶牛热应激线性评价模型。利用该模型对处理组和对照组的7个指标进行综合评分,发现加减白虎汤缓解奶牛热应激的主要靶标在于减少外周血白细胞数,其次是降低血浆中的羟自由基、提高3.5%乳脂校正产奶量。
     综上所述,浙江省6-9月份易诱发奶牛热应激,其中7、8月份奶牛处于持续热应激状态。构建并筛选的加减白虎汤散剂可改善热应激奶牛产奶性能,降低血细胞浓度,缓解血液氧化应激状态,并增加呼吸频率和心率,提高血管舒张因子cGMP浓度,以促进牛体散热。加减白虎汤散剂缓解奶牛热应激的主要靶标在于减少外周血白细胞数,降低血浆中的羟自由基。加减白虎汤散剂适宜在奶牛处于轻度热应激时添加。
This study was conducted to alleviate heat stress in lactating cows. Based on the investigation of meterological data and dairy production in Zhejiang Province, heat-alleviating decoction was chosen to improve the heat tolerance of dairy cattle. One modified Baihu-decoction powder (BDP) was constructed and selected as the dietary additive. The suitable applying time was investigated through eating behavior and rumen fermentation trial in vitro. Further study was conducted to detect effects of BDP on lactating performance, thermal and metabolism status, and immune traits in heat-stressed cows. A method to integrate subjective and objective weighting was used to evaluate the main effect of BDP under heat stress. The targets through which BDP alleviates heat stress was made clear in lactating cows.
     1. Survey on meterological data and dairy production in main milk-producing areas in Zhejiang Province
     In Zhejiang Province, dairy cows are mainly distributed in Jinhua and Hangzhou Prefectures. Daily temperature and humidity index (THI) ranged from75to80from June to September in these regions. The minimum temperature is above25℃in July and August, suggesting that the dairy cows would endure heat stress in the whole days during these two months. Milk yield declines sharply in the early-lactation cows when exposed to summer heat, followed by mid-lactation cows. To alleviate heat stress, dairy farmers have adopted seasonal production strategy. In summer, milk production is the first management focus, and the health of the cows is considered. Natural ventilation barns are built and installed with fans, sometimes water air conditioners. Total mixed ration (TMR) is reformulated to account for the reduced dry matter intake (DMI) and increased nutrient requirements. Some vitamins and minerals are also supplemented. Although various measures are applied, milk production level is still unsatisfactory. DMI by dairy cows in June is similar to that in May, but milk yield would decline by10percent. In July, DMI is reduced to the lowest, while the cows mobilize body reserve to maintain milk production. In August and September, DMI recovers gradually, but feed efficiency keeps low.
     2. Effects of different Chinese medicine additives on alleviation heat stress in cows
     This study was conducted to select optimal Chinese medicine additives to alleviate the heat stress in dairy cows. Two BDP additives were built and compared with Indigowoad Leaf extract. Eighty-two mid-lactating cows were randomly allocated into eight blocks to receive four treatments, one south and one north block for each treatment. Dietary treatments included control and three treatment diets containing150g BDP-A,120g BDP-B, or15g Indigowoad Leaf extracts, respectively. Addition of BDP A and B could increase milk yield by7.2and7.7%, respectively. The BDPs tended to depress the rectal temperature and increase the respiration rate. Ratio of plasma IL-2R to IL-2was87.3and101.6%higher in the BDP-A and B added treatments, respectively. Overall, BDP-B was superior to other additives to alleviate heat stress for dairy cows.
     3. Feeding behavior and rumen fermentation in vitro in dairy cows influenced by different Chinese medicine additives
     In the above feeding trial, some cows did not prefer to BDP. In this trial, three heat-clearing decoctions were used to detect their effects on feeding behavior of lactating cows. Forty late-lactating Holstein cows were randomly allocated to four groups to receive four treatments:control, heat-clearing and stomachic decoction, summer-heat clearing decoction and BDP. All cows were fed the same basal TMR and added without or with one of the three decoctions at a dose of150g per day per head. The DMI was negatively correlated to barn temperature and THI (P<0.01). No significant response was observed of feed behavior to heat-clearing herb decoctions addition when the cows were in weak heat stress. Because of constantly decreased DMI with the trial period, feed efficiency was higher in the latter period, and all the cows lost their body weight of20to30kg during the trial, suggesting that cows mobilized body reserve to maintain milk production.
     An in vitro trial was conducted to evaluate the effects of the above3heat-clearing decoction on rumen fermentation and microflora. Heat-clearing decoctions decreased gas and volatile fatty acid production and increased pH in early fermentation stage, while fermentation parameters did not change from12to24h. Addition of BDP significantly decreased acetate proportion in rumen fluid at3h, with the increased propionate and butyric acid proportion, while Butyrivibrio fibrisolvens and R. flavefaciens proportion at6h was increased in BDP group. It seems that BDP may change fermentation pattern via regulating rumen microflora.
     4. Lactation performance and physiological function of Chinese Holstein cows influenced by BDP
     Using the selected BDP, a study was conducted to evaluate its effects on lactation performance, thermal status and immune traits in lactating cows during hot season. Twenty mid-lactating cows were used in a randomized block design. The cows in each group were fed the same basal diet and added without or with120g BDP. Addition of BDP had no effect on DMI and milk yield, but significantly increased milk fat percent, with1.1kg more fat corrected milk (FCM) higher in the BDP-group. Rectal temperature did not change in cows fed BDP, while respiration rate and heart rate were significantly increased by BDP. There were no significant differences in the peripheral blood rheology and whole hemacyte indexes between two treatments, but all the indices were numerically lower in the cows fed BDP. Addition of BDP significantly increased plasma concentration of non-esterisfied fatty acids (NEFA), while there were no changes in plasma concentration of urea nitrogen (PUN), glucose and some related hormones. No significant differences were detected for total anti-oxidant capacity and MDA assay between two treatments, while concentration of hydroxyl in plasma and peroxide in erythrocyte significantly decreased by addition of BDP. BDP tended to decrease WBC and RBC in peripheral blood, while PCV and HGB not changed. Concentration of cGMP was significantly improved by addition of BDP, while cAMP to cGMP ratio did not change. Addition of BDP tended to decrease IL-1β concentration. No significant differences were observed for IL-6and prostaglandin E2assay between two treatments. From the results in this study, it is indicated that BDP could alleviate the negative effects of environment-induced hyperthermia on lactating cows.
     5. Comprehensive evaluation of BDP as anti-heat stress additive for dairy cows
     A method to integrate subjective and objective weighting was used to evaluate the main effect of BDP under heat stress. Based on the data in dairy feeding trial,16indices were chosen to evaluate BDP effects on cows'heat stress. These indices included milk yield,3.5%FCM, DMI, rectal temperature, respiration rate, PUN, NEFA, superoxide dismutase, MDA, hydroxyl, white blood cell, red blood cell, IL-1, IL-6and cGMP. For reverse indices such as rectal temperature, PUN, NEFA, H2O2, MDA, IL-1and IL-6, their reciprocal was taken before standardized processing. All the forward indices data were divided by the individual average to obtain non-dismentionized data. The Analytic Hierarchy Process (AHP) was employed to give objective weight based on4guidelines (lactation performance, thermal status, metabolic state and immune traits). Subjective weight was calculated by mean square method. Factors weights were calculated by combination of the subjective with objective weight. Nine indices were rejected for too low weight. Finally, a lineal model was built with seven indices.The score for BDP and control group was calculated by applying the linear model. It is observed that the first target through which BDP alleviated heat stress was white blood cell in peripheral blood, and followed by hydroxyl in plasma.
     Above all, weather conditions from June to September probably induce heat stress in dairy cows in Zhejiang Province, while cows may endure constant heat load during July and August. Addition of BDP could increase respiration rate and heart rate, and reduce blood cell content along with increased cGMP. The selected BDP may improve lactation performance and alleviate blood oxidative stress. The BDP is suitable for addition in diet for dairy cows in weak heat stress.
引文
AOAC,1990. Official methods of analysis.Vol.1.15th ed. Association of official analytical Chemists, Arlington, VA, pp.69-90.
    Babior B.M., Lambeth J.D., Nauseef W.,2002. The neutrophil NADPH oxidase, Arch. Biochem. Biophys.,397 (2):342-344.
    Barash H, Silanikove N, Shamay A.2001.Inter relationships among ambient temperature, daylength, and milk yield in dairy cows under a Mediterranean climate.[J]. J. Dairy Sci. 84(10):2314-2333.
    Baumgard L H,Wheelock J B,Shwartz Qetal.2006.Effects of heat stress on nutritional requirements of lactating dairy cattle[C].In Proceedings of the 5th Annual Arizona Dairy Production Conference. Arizona,USA:The University of Arizona,8-16.
    Behl R, Behl J,Joshi, BK.2010. Heat tolerance mechanisms in cattle-status in zebu cattle: A review. Indian Journal of Animal Sciences,80(9):891-897.
    Belibasakis, N. G., P. Ambatzidis, P. Aktsali, and D.Tsirgogianni.1995. Effects of degradability of dietary protein on milk production and blood components of dairy cows in hot weather. World Rev. Anim. Prod,30:21-26.
    Benchaar C.,Petit H.V.,Berthiaume R.,et al.2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage[J]. Journal of Dairy Science, 90(2):886-897.
    Benjamin, M. M.1981. Fluid and electrolytes. In Outline of Veterinary Clinical Pathology. Iowa State Univ. Press, Ames.
    Berman, A., Y. Folman, M. Kaim, M. Mamen, Z. Herz, D. Wolfenson,Arieli, and Y. Graber. 1985. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. J. Dairy Sci.68:1488-1495.
    Bernabucci U., Ronchi B., Lacetera N, and Nardone A.2002. Markers of Oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci., 85:2175-2179.
    BlazquezN.B., Long, S.E., Mayhew, T.M., Perry, G.C., Prescott, N.J., Wathes, C.M.,1994. Rate of discharge and morphology of sweat glands in the perineal, lumbodorsal and scrotal skin of cattle. Res. Vet. Sci.,57:277-284.
    Bohmanova J.I.,Misztal, J.B.Cole.2007. Temperature-humidity indices as indicators of milk production losses due to heat stress[J].J.Dairy Sci.,90:1947-1956.
    Calamari L., Petrera F., Abeni F., Bertin G.,2011. Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest. Sci.142 (2):128-137.
    Caroprese M., Marzano A., Entrican G., Wattegedera S., Albenzio M., Sevi A.,2009. Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures. J. Dairy Sci.92:2796-2803.
    Chen, K. H., J. T. Huber, C. B. Theurer, D. V. Armstrong, R. C.Wanderly, J. M. Simas, S. C. Chan, and J. L. Sullivan.1993. Effect of protein quality and evaporative cooling on lactational performance of Holstein cows in hot weather. J. Dairy Sci.,76:819-825.
    Clapperton M., Bishop S.C., Cameron N.D., Glass E.J.,2005. Associations of weight gain and food intake with leukocyte sub-sets in Large White pigs. Livest. Prod. Sci.96: 249-260.
    Colditz I.G.,2002. Effects of the immune system on metabolism:implications for production and disease resistance in livestock. Livest. Prod. Sci.,75:257-268.
    Cole, J. A., and P. J. Hansen.1993. Effects of administration of recombinant bovine somatotropin on the responses of lactating and nonlactating cows to heat stress. J. Amer. Vet. Med. Assoc.203:113-117.
    Collier, R. J., D. K. Beede, W. W. Thatcher, L. A. Israel, and C. J.Wilcox.1982. Influences of environment and its modification on dairy animal health and production. J. Dairy Sci. 65:2213-2227.
    Collier, R. J., R. M. Eley, A. K. Sharma, R. M. Pereira, and D. E. Buffington.1981. Shademanagement in subtropical environment for milk yield and composition in Holstein and Jersey cows. J.Dairy Sci.64:844-849.
    Coppock,C.E.1985.Energy nutrition andmetabolismof the lactating dairy cow. J. Dairy Sci. 68:3403-3410.
    Coppock, C. E., W. P. Flatt, L. A. Moore, and W. E. Stewart.1964. Effect of hay to grain ratio on utilization of metabolizable energy for milk production by dairy cows. J. Dairy Sci.47:1330-1338.
    Danfaer, A., I. Thysen, and V. Ostergaard.1980. The effect of the level of dietary protein on milk production.1. Milk yield, live weight gain and health. Beret. Statens Husdyrbrugsfors.492.
    Dickinson BC,Chang CJ.2011. Chemistry and biology of reactive oxygen species in signaling or stress responses[J].Nat Chem Biol,7:504-511.
    Dikmen S., P.J.Hansent.2009. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a sub-tropical environment?[J].J.DairySci.,92:109-116.
    Elvinger F, Hansen PJ, Natzke RP.1991. Modulation of function of bovine polymorphonuclear leukocytes and lymphocytes by high temperature in vitro and in vivo. Am J Vet Res,52:1692-1699.
    Espinoza, J; Ortega, R; Palacios A, Guillen A.2011. Tolerance to heat and atmospheric humidity of different breeds groups of cattle. Revista Mvz Cordoba,16(1):2302-2309.
    Finch, V. A.1986. Body temperature in beef cattle:its control and relevance to production in the tropics. J. Anim. Sci.62:531-542.
    Finch, V. A.,1985. Comparison of nonevaporative heat transfer in different cattle breeds. Aust. J. Agric. Res.36:497-508.
    Finch, V. A., I. L. Bennett, and C. R.Holmes.1982. Sweating response in cattle and its relation to rectal temperature, tolerance of sun and metabolic rate. J. Agric. Sci. Camb. 99:479-487.
    Flamenbaum, I., D. Wolfenson, M. Mamen, and A. Berman.1986.Cooling dairy cattle by a combination of sprinkling and forced ventilation and its implementation in the shelter system. J. Dairy Sci.69:3140-3147.
    Fossum C.1998. Cytokines as markers for infections and their effect on growth performance and well-being in the pig. Domest. Anim. Endocrin.15,439-444.
    Guabiraba R., Campanha-Rodrigues A. L., Souza A.L.S., Santiago H. C., Lugnier C., Alvarez-Leite J., Lemos V. S., Teixeira M. M.,2010. The flavonoid dioclein reduces the production of pro-inflammatory mediators in vitro by inhibiting PDE4 activity and scavenging reactive oxygen species. Eur. J. Pharmacol.633(1),85-92.
    Hall,David M., Kirk R. Baumgardner,Terry D.Oberley,and Carl V. Gisolfi.1999. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia [J]. Am. J. physiol.276(Gastrointest.Liver Physiol.39):1195-1203.
    Hansen, P. J.1990. Effects of coat color on physiological responses to solar radiation in Holsteins. Vet. Rec.,127:333-334.
    Hassan, A., and J. D. Roussel.1975. Effect of protein concentration in the diet on blood composition and productivity of lactating Holstein cows under thermal stress. J. Agric. Sci. (Camb.),85:409-415.
    Her, E., D. Wolfenson, I. Flamembaum, Y. Folman, M. Kaim, and A. Berman.1988. Thermal, productive, and reproductive responses of high yielding cows exposed to short-term cooling in summer. J. Dairy Sci.,71:1085-1092.
    Holter, J. B., J. W. West, and M. L. McGilliard.1997. Predicting ad libitum dry matter intake and yield of Holstein cows. J. Dairy Sci.80:2188-2199.
    Holter, J. B., J. W. West, and M. L. McGilliard, and A. N. Pell.1996. Predicting ad libitum drymatter intake and yields of Jersey cows.J. Dairy Sci.,79:912-921.
    Huber, J. T., G. Higginbotham, R. A. Gomez-Alarcon, R. B. Taylor,K. H. Chen, S. C. Chan, and Z.Wu.1994. Heat stress interactions with protein, supplemental fat, and fungal cultures. J. Dairy Sci.,77:2080-2090.
    Huber J. T.,1996. Amelioration of heat stress in dairy cattle. Progress in Dairy Science. C. J. C. Philips, ed. CAB Int., Wallingford, UK. pp.211-243.
    Igono, M. O., G. Bjotvedt, and H. T. Sanford-Crane.1992. Environmental profile and critical temperature effects onmilk production of Holstein cows in desert climate. Int. J. Biometeorol.36:77-87.
    Igono, M. O., H. D. Johnson, B. J. Steevens, G. F. Krause, and M. D. Shanklin.1987. Physiological, productive, and economic benefits of shade, spray, and fan system versus shade for Holstein cows during summer heat. J. Dairy Sci.70:1069-1079.
    Ingraham R. H., Gilleae D D, Wagner W.D.1974.Relation of temperature and humidity to conception rate of Holstein cows in subtropical climate. J Dairy Sci.,57:476-481.
    Jenkinson, D. M., and R. M. Mabon.1973. The effects of temperature and humidity on skin surface pH and the ionic composition of skin secretions in Ayrshire cattle. Br. Vet. J.,129:282-295.
    Johnson, H. D., P. S. Katti, L. Hahn, and M. D. Shanklin.1988. Short-term heat acclimation effects on hormonal profile of lactating cows. Missouri Agri. Exp. Sta. Bui. 1061. Columbia.
    Johnson R.W.,1997. Inhibition of growth by pro-inflammatory cytokines:an integrated view. J. Anim. Sci.75,1244-1255.
    Kadzere C. T., Murphy M. R., Silanikove N., Maltz E.,2002. Heat stress in lactating diary cows:A review. Livest. Prod. Sci.77,59-91.
    Kamwanja LA, Chase Jr CC, Gutierrez JA, Guerriero Jr V, Olson TA, Hammond AC, Hansen PJ.1994. Response of bovine lymphocytes to heat shock as modified by breed and antioxidant status. J Anim Sci.,72:438-446.
    Kelley R O, Mar tz F A, Johnso n H D.1967.Effect of environmental temperature on r uminal volatile fatty acid levels with controlled feed intake [J]. Journal of dairy sc ience,50(4):531-533.
    Kibler, H. H., and S. Brody.1950. Environmental physiology with special reference to domestic animals. X. Influence of temperature,5° to 95°F, on evaporative cooling from the respiratory and exterior surfaces in Jersey and Holstein cows. Missouri Agr. Exp.Sta. Res. Bul.461. Columbia.
    Krist Ensen T N, Vendahl P L. Physiological responses to heat stress and their potential use as in dicators of reduced animal welfare in Jersey calves. Acta Zoologica Sinica, 2006,52(4):681-689.
    Kyoung Hoon Kim, Do-Hyung Kim, Young-Kyoon oh, Sung-Sill Lee, Hyun-Jeong Lee, Dong-Woon kim, Yong-Joo Seol and Nobuhiro Kimura.2010.Productivity and energy partition of late lactation dairy cows during heat exposure. Animal Science Journal,81: 58-62.
    Lacetera N, Bernabucci U, Scalia D, Barisico L, Morera P, Nardone A.2006. Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J Dairy Sci,89:4606-4617.
    Lacetera N, Bernabucci U, Ronchi B, Scalia D, Nardone A.2002. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows. Int J Biometeorol,46:33-40.
    Lacetera N, Bernabucci U, Scalia D, Ronchi B, Kuzminsky G, Nardone A.2005. Lymphocyte function in dairy cows in hot environment. Int J Biometeorol.,50:105-10.
    Lacetera N., Bernabucci U., Scalia D., Ronchi B., Kuzminsky G., Nardone A.,2005. Lymphocyte function in dairy cows in hot environment. Int. J. Biometeorol.50, 105-114.
    Lambert, G.P., C.V.Gisolfi, D.J.Berg, P.L.Moseley, L.W.Oberley, and K.C.Kregel.2002. Molecular biology of thermoregulation:selected contribution:hyperthermia induced intestinal permeability and the role of oxidative and nitrosative stress[J]. J. Appl.Physiol.,92:1750-1761.
    Lee, D. H. R.1965. Climatic stress indices for domestic animals. Int. J. Biometeorol.9:29.
    Lin, J. C, B. R. Moss, J. L. Koon, C. A. Flood, R. C. Smith III, K. A. Cummins, and D. A. Coleman.1998. Comparison of various fan, sprinkler, and mister systems in reducing heat stress in dairy cows.14:177-182.
    Lough, D. S., D. K. Beede, and C. J. Wilcox.1990. Effects of feed intake and thermal stress on mammary blood flow and other physiological measurements in lactating dairy cows. J. Dairy Sci.73:325-332.
    Machado-Neto, R., C.N. Graves, and S. E. Curtis.1987. Immunoglobulins in piglets from sows heat-stressed prepartum. J. Anim. Sci.65:445-455.
    McDowellR.E. Improvement of livestock production in warm climates[M]. W.H. Freemanand Co., San Francisco,1972,66-110.
    Magdub, A., H. D. Johnson, and R. L. Belyea.1982. Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows. J. Dairy Sci.65:2323-2331.
    Mallonee, P. G, D. K. Beede, R. J. Collier, and C. J. Wilcox.1985. Production and physiological responses of dairy cows to varying dietary potassiumduring heat stress. J. Dairy Sci.68:1479-1487.
    Manalu,W.,H.D. Johnson, R. Li, B.A. Becker, and R. J.Collier.1991. Assessment of thermal status of somatotropin-injected lactating Holstein cows maintained under controlled-laboratory thermoneutral,hot and cold environments. J.Nutr. 121:2006-2019.
    Marai, I. F. M, A. A. Habeeb, A. H. Daader, and H. M. Yousef.1995. Effects of Egyptian subtropical summer conditions and the heat stress alleviation technique of water spray and a diaphoretic on the growth and physiological functions of Friesian calves. J. Arid.Envir.30:219-225.
    McGuire, M. A., D. K. Beede, R. J. Collier, F. C. Buonomo, M. A.DeLorenzo, C. J. Wilcox, G. B. Huntington, and C. K. Reynolds.1991. Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor (IGF-I) and IGF-Ⅱ, and thyroid hormones in plasma of lactating Holstein cows. J. Anim. Sci. 69:2050-2056.
    McGuire, M. A., D. K. Beede, M. A. DeLorenzo, C. J. Wilcox, G. B. Huntington, C. K. Reynolds and R. J. Collier.1989. Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows. J. Anim. Sci.67:1050-1060.
    McManus C, Prescott E, Paludo GR,et al. Heat tolerance in naturalized Brazilian cattle breeds. Livestock Science,2009,120(3):256-264.
    McManus C, Castanheira M, Paiva SR, Louvandini H, Fioravanti MC, Paludo GR, Bianchini E, Correa PS.Use of multivariate analyses for determining heat tolerance in Brazilian cattle. Trop Anim Health Prod.2011,43(3):623-630.
    Means, S. L., R. A. Bucklin, R. A. Nordstedt, D. K. Beede, D. R. Bray,C. J. Wilcox, and W. K. Sanchez.1992. Water application ratesfor a sprinkler and fan dairy cooling system in hot, humid climates. App. Eng. Agric.8:375-379.
    Milam, K. Z., C. E. Coppock, J. W. West, J. K. Lanham, D. H. Nave,J.M. LaBore, R. A. Stermer, and C. F. Brasington.1986. Effects of drinking water temperature on production responses in lactating Holstein cows in summer. J. Dairy Sci. 69:1013-1019.
    Moe, P. W.1981. Energy metabolism of dairy cattle. J. Dairy Sci.64:1120-1139.
    Moore, R. B., J. W. Fuquay, and W. J. Drapala.1992. Effects of late gestation heat stress on postpartum milk production and reproduction in dairy cattle. J. Dairy Sci. 75:1877-1882.
    Murphy, M. R., C. L. Davis, and G. C. McCoy.1983. Factors affecting water consumption by Holstein cows in early lactation. J. Dairy Sci.66:35-38.
    National Research Council.1981. Effect of Environment on Nutrient Requirement of Domestic Animals. National Academy Press.Washington, DC.
    National Research Council.2001. Nutrient requirements of dairy cattle.7th ed. National Academy Press. Washington, DC.
    Oldham, J. D.1984. Protein-energy inter-relationships in dairy cows. J. Dairy Sci. 67:1090-1114.
    Olson TA, Lucena C, Chase CC Jr, Hammond AC.Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci.2003 Jan;81 (1):80-90.
    Padilla L., Matsui T., Kamiya Y., Kamiya, M. Tanaka M., Yano H.,2006. Heat stress decreases plasma vitamin C concentration in lactating cows. Livest. Sci.101,300-304.
    Purwanto, B. P., Y. Abo, R. Sakamoto, F. Furumoto, and S. Yamamoto.1990. Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agric Sci. (Camb.).114:139-142.
    Ravagnolo, O., and I.Misztal.2000. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci.83:2126-2130.
    Ravagnolo, O., I. Misztal, and G. Hoogenboom.2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci.83:2120-2125.
    Rhoads M. L., Rhoads R. P., VanBaale M. J., Collier R. J., Sanders S. R., Weber W. J., Crooker B. A., Baumgard L. H.,2009. Effects of heat stress and plane of nutrition on lactating Holstein cows:I. production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci.92,1986-1997
    Reynolds, C. K., H. F. Tyrrell, and P. J. Reynolds.1991. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers:whole body energy and nitrogen balance and visceral heat production. J. Nutr.121:994-1003.
    Scharf B, Carroll JA, Riley DG, Chase CC Jr, Coleman SW, Keisler DH, Weaber RL, Spiers DE.2010.Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge. J Anim Sci.,88(7):2321-2336.
    Schneider, P. L., D. K. Beede, and C. J.Wilcox.1988. Nycterohemeral patterns of acid-base status,mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J. Anim. Sci.66:112-125.
    Scott, I. M., H. D. Johnson, and G. L. Hahn.1983. Effect of programmed diurnal temperature cycles on plasma thyroxine level, body temperature, and feed intake of Holstein dairy cows. Int.J. Biometeor.27:47-62.
    Seath, D. M., and G. D. Miller.1948. Effect of water sprinkling with and without air movement on cooling dairy cows. J. Dairy Sci.31:361-366.
    Serrano B., S. Almeria, I. Garcia-Ispierto, J.L. Yaniz, A.Abdelfattah-Hassan, F. Lopez-Gatius.2010.Peripheral white blood cell counts throughout pregnancy in non-aborting Neospora caninum-seronegative and seropositive high-producing dairy cows in a Holstein Friesian herd. Research in Veterinary Science,1-5.
    Sordillo L. M., Aitken S. L.,2009. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunop.128,104-109.
    Strickland, J. T., R. A. Bucklin, R. A. Nordstedt, D. K. Beede, and D. R. Bray.1988. Sprinkling and fan evaporative cooling for dairy cattle in Florida. ASAE Paper 88-4042. Amer. Soc. Agric. Engr.,Rapid City, SD.12 pages.
    Tajima K.,Nonaka I.,Higuchi K.,et al. Influence of high temperature and humidity on
    rumen bacterial diversity in Holstein heifers[J].Anaerobe,2007,13(2):57-64.
    Taylor, S. E., D. E. Buffington, R. J. Collier, and M. A. DeLorenzo.1986. Evaporative cooling for dairy cows in Florida. ASAE paper no.86-4022.
    Tucker, W. B., G. A. Harrison, and R. W. Hemken.1988. Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J. Dairy Sci. 71:346-354.
    Turner, H. G.1982. Genetic variation of rectal temperature in cows and its relationship to fertility. Anim. Prod.35:401-412.
    Tyrrell, H. F., P. W. Moc, and W. P. Flatt.1970. Influence of excess protein intake on energy metabolism of the dairy cow. Pages 69-71 in Fifth Symp. Energy Metab. Farm Anim.
    Umphrey, J. E., B. R. Moss, C. J. Wilcox, and H. H. Van Horn.2001. Interrelationships in lactating Holsteins of rectal and skin temperatures, milk yield and composition, dry matter intake, body weight, and feed efficiency in summer in Alabama. J. Dairy Sci. 84:2680-2685.
    Van Soest P. J., Robertson J. B., Lewis B. A.,1991. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci.74,3583-3597.
    Weldy, J. R., McDowell, R. E., Van Soest, P. J., and Bond, J.1964. Influence of heat stress on rumen acid levels and some blood constituents in Cattle. J. Anim Sci.,23: 147.
    West J. W.,2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci.86, 2131-2144.
    West, J. W.1994. Interactions of energy and bovine somatotropin with heat stress. J. Dairy Sci.77:2091-2102.
    West, J. W., K. D. Haydon, B. G. Mullinix, and T. G. Sandifer.1992. Dietary cation-anion balance and cation source effects on production and acid-base status of heat-stressed cows. J. Dairy Sci.75:2776-2786.
    West, J. W., G. M. Hill, J. M. Fernandez, P. Mandebvu, and B. G. Mullinix.1999. Effects of dietary fiber on intake, milk yield, and digestion by lactating dairy cows during cool or hot, humid weather. J. Dairy Sci.82:2455-2465.
    West, J. W., B. G. Mullinix, and T. G. Sandifer.1991. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J. Dairy Sci.74:1662-1674.
    Wiersma F.1990.Temperature-humidity index table for dairy producers to estimate heat stress for dairy cows[J].Dept.Agric.Eng.,Univ. Arizona,Tucson.
    Wolfenson, D., I. Flamenbaum, and A. Berman.1988. Dry period heat stress relief effects on prepartum progesterone,calf birth weight,and milk production. J.Dairy Sci. 71:809-818.
    Yutaka Uyeno.Yuji Sekiguchi,Kiyoshi Tajima,Akio Takenaka,Mitsunori Kurihara,Yoichi Kamagata.2010. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe,16(1):27-33.
    安代志.高温环境的评定及其高产奶牛体温调节特性[J].南京农业大学硕士学位论文.2005.
    蔡亚非,李莲,刘庆华,杜娟,徐世永,刘红林,王根林.热应激奶牛外周血淋巴细胞凋亡 和bax基因表达[J].南京农业大学学报,2005,28(1):66-70.
    常玲玲,杨章平,陈仁金等.南方集约化饲养条件下荷斯坦奶牛乳脂率和乳蛋白率变化规律的初步研究[J].中国畜牧杂志,2010,46(1):43-47.
    杜瑞平.绵羊瘤胃乙酸和丁酸的产生、吸收何利用规律及可代谢生脂物质MLS的测定[D].内蒙古农业大学,2006.
    樊红艳,刘学录.基于综合评价法的各种无量纲化方法的比较和选择[J].湖南农业科学,2010,(17):163-166.
    冯仰廉.反当动物营养学[M].北京:科学出版社,2004:335-336.
    冯艳秋,聂迎利,赵京颐等.全国奶业主产区规模奶牛场生产管理状况调查报告(四)[J].中国乳业,2009,(9):26-36.
    冯艳秋,聂迎利,赵京颐等.全国奶业主产区规模奶牛场生产管理状况调查报告(五)[J].中国乳业,2009,(10):28-34.
    冯艳秋,聂迎利,赵京颐等.全国奶业主产区规模奶牛场生产管理状况调查报告(六)[J].中国乳业,2009,(11):28-30.
    冯艳秋,聂迎利,赵京颐等.全国奶业主产区规模奶牛场生产管理状况调查报告(七)[J].中国乳业,2009,(12):20-25.
    傅玲玉,周庆堂,张怀云等.高温对产蛋鸡的血液生化反应[J].中国畜牧杂志,1988,(6):11-14.
    高民,杜瑞平,温雅俐.热应激对奶牛生产的影响及应对策略.发展低碳农业应对气候变化低碳农业研讨会论文集.2010年.
    顾小卫,赵国琦,金晓君等.中草药添加剂对奶牛干物质采食量及瘤胃内环境的影响[J]..中国奶牛,2010,(4):18-21.
    韩兆玉.过瘤胃蛋氨酸对奶牛夏季生产性能及淋巴细胞凋亡调控的影响[D].南京农业大学,2007.
    何德肆.热应激对奶牛微量元素及部分生化成分影响的研究[M].湖南农业大学,2004.
    胡美华.抗热应激中草药饲料添加剂对奶牛泌乳性能影响的研究[M].福建农林大学,2003.
    胡艳欣,肖冲,佘锐萍,张发明,郭延军,罗冬梅,刘凤华.热应激对猪肠道结构及功能的影响.科学技术与工程,2009,9(3):581-586,
    黄妍,严广乐.中医临床诊疗疗效的定量评价系统.上海理工大学学报,2011,33(1):53-59.
    黄建晖.中草药添加剂对奶牛抗热应激和提高产奶量的影响[M].福建农林大学,2009.
    霍小凯.日粮过瘤胃淀粉和脂肪水平对热应激奶牛产奶性能和能量平衡的影响[M].新疆农业大学,2009.
    江汪洋.不同技术措施对夏季荷斯坦奶牛生产性能的影响[J].南京农业大学硕士学位论文.2007.
    贾亚伟.甜菜碱和酵母铬对牛抗热应激效应的研究[M].西南大学,2011.
    焦玉兰.抗奶牛热应激中药组方的筛选及其机理研究[M].河北农业大学,2010.
    金兰梅,伍清林,金保方,方光远,刘宏波,林志平,王明海,马高民,戴卉.抗热应激中草药添加剂(夏安散)对奶牛产奶量和血液生化指标的影响.中国兽医学报,2008(7):
    赖登明等.红细胞钾含量对奶牛耐热性的影响[J].中国奶牛,1997(2):15-16.
    雷帆,陶佳林,苏慧等.利用层次分析法对石榴叶鞣质及主要成分减肥降脂活性的综合评价.世界科学技术一中医药现代化,2007,9(4):46-50.
    李旦,王加启,卜登攀等.应用Real-time PCR方法测定瘤胃液功能菌群数量[J].农业生物技术学报.2008,16(5):787-791.
    李高凯,奶牛热应激缓解剂作用机理初探[J].福建农林大学硕士学位论文.2005.
    李建国,桑润滋,张正珊,等.热应激对奶牛血液生化指标及生产性能的影响[J].中国畜牧杂志,1999,35(2):25-26.
    李连结,姚建刚,龙立波等.组合赋权法在电能质量模糊综合评价中的应用[J].电力系统自动化,2007,31(4):56-60.
    刘海林.中草药及复合添加剂对奶牛热应激生产性能、生理和血浆生化指标的影响研究[J].湖南农业大学硕士学位论文.2010.
    刘庆华,王根林.热应激对奶牛血液流变学指标及血浆无机离子浓度和酶活性的影响[J].福建农林大学学报(自然科学版),2007,36(3):284-287.
    刘强,黄应祥,张栓林,王聪.中草药对奶牛泌乳性能和血液生化指标的影响[J].中国畜牧杂志,2004,(9):37-39.
    马瑞娟,苗明三.一种中药药效的多指标评价新方法—综合权重法[J]..中药新药与临床药理,2011,22(5):569-572.
    齐智利.玉米不同加工处理对泌乳奶牛瘤胃发酵和小肠消化以及能氮同步代谢影响的研究[D].内蒙古农业大学,2004.
    沈亚诚,印鉴,王小云等.多变量序列模式挖掘在中医疗效评价的应用[J].计算机应用研究,2009,26(6):2633-2635.
    施能,马丽,袁晓玉,顾骏强.近50 a浙江省气候变化特征分析[J].南京气象学院学报,2001,24(2):207-213.
    孙齐英.奶牛中草药抗热应激添加剂剂量的对比试验[J].乳业科学与技术,2004,(2):87-90.
    唐娇玉,屈孝初.奶牛热应激的研究与应对[J].当代畜禽养殖业,2005,(7):47-48.
    陶佳林,赵玉男,王笑等.利用“分层法”评价中药复杂体系药效时有关权重设立的讨论.世界科学技术一中医药现代化,2005,7(1):33-37.
    吴德峰,胡美华,黄建晖,翁顺太,李金明,池雪林,颜文卿,刘晨.抗热应激中草药添加剂对奶牛血液生化指标和小白鼠热应激模型ACTH指标的影响.福建农林大学学报(自然科学版),2005,34(2):255-259
    汪湛,窦红,赵康.奶牛体细胞评分与乳成分及季节的关系.中国奶牛,2012,(18):51-52
    王洪荣,徐爱秋,王梦芝,等.氨基酸对体外培养瘤胃微生物生长及发酵的影响[J].畜牧兽医学报,2010,41(9):1109-1116.
    王梦芝.山羊瘤胃原虫与细菌吞噬关系和微生物AA变化机制的研究[D].扬州大学,2008.
    王建平,王加启,卜登攀等.高温条件下高产和中产奶牛产奶性能及瘤胃发酵的研究[J].动物营养学报.2010,22(1):51-56.
    王立志.热应激对奶牛,奶山羊体内内毒素含量的影响及缓解热应激的营养技术研究[D].四川农业大学,2010.
    王前,林玲,陈惠珍.主要气候因子对广州地区黑白花奶牛产奶量的影响[J].中国畜牧杂志,1993,29(2):25-27.
    王祖新.不同季节温湿度指数对奶牛生产性能和生理生化指标的影响[J].四川农业大学硕士学位论文.2009.
    温雅莉.热应激对奶牛生产性能及生理机能的影响[M].内蒙古农业大学,2011.
    谢宝昌,东彦新,吉增福.30种中药对瘤胃细菌的影响.中兽医医药杂志,1999,(6):11-13.
    许燕,陆任云.应激时几个脏器中氧化和抗氧化作用变化的实验研究,苏州医学院学报,2000,20(12):1112-1114.
    熊本海.生长育肥羊瘤胃内VFA产生、吸收规律和模型参数研究[D].中国农业科学院 博士论文,1998.
    熊本海,卢德勋,高俊.绵羊瘤胃VFA吸收效率及模型参数的研究[J].动物营养学报.1999,11:248-255.
    薛白,王之盛,李胜利,王立志,王祖新.温湿指数与奶牛生产性能的关系[J].中国畜牧兽医.2010.37(03):153-157
    严学余译.奶牛热应激及奶牛平均体温[J].中国奶牛,1994.(3):3
    杨毅,梁荣嵘,刘庆华,梁学武.轻微至中度热应激对荷斯坦奶牛生理指标及产奶性能的影响[J].中国农学通报.2009,25(24):28-31。
    叶宗裕.关于多指标综合评价中指标正向化和无量纲化方法的选择[J].浙江统计,2003(4):24-25.
    张洪德,杜健,仝军.加减白虎汤对热应激奶牛心钠素含量的影响[J].江苏农业科学,2010(3):265-266.
    张荣飞.半胱胺盐酸盐对高温季节高产奶牛生产性能的影响[M].南京农业大学,2004.
    张尚印,张德宽,徐祥德等.长江中下游夏季高温灾害机理及预测[J].南京气象学院学报,2005,28(6):840-846.
    张书娟,尹占娥,温家洪等.近60年我国华东地区高温灾害特征分析[J].上海师范大学学报(自然科学版),2011,40(1):95-101.
    赵焕臣,许树柏.层次分析法-一种简易的新决策方法[M].北京:科学出版社,1986,32-34.
    周玉刚.抗热应激添加剂在不同环境下对奶牛生产性能的影响[M].四川农业大学,2004.
    朱伟云.瘤胃微生物,in反当动物营养学[M].冯仰廉,Editor 2004,科学出版社:北京.1-130.
    庄万玉,凌丹,赵瑾等.关于敏捷性评价指标权重的研究.电子科技大学学报,2006,35(6):985-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700