用户名: 密码: 验证码:
油用向日葵对Na~+盐胁迫的生理生化响应及农艺性状表现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从盐胁迫对油用向日葵种子萌发、农艺性状、生物量的影响及生理生化响应等方面入手,初步明确了油用向日葵耐盐适应性范围和部分耐盐机理。
     1 NaCl、NaHCO_3、NaHCO_3+NaCl与温度对发芽势、发芽率的胁迫与协同作用:随温度升高油用向日葵种子发芽势和发芽率显著升高,随盐浓度增加发芽势和发芽率明显降低。NaCl盐浓度达到15.5g/kg,温度在15℃、25℃和35℃时,发芽势分别较对照降低86.1%、75.0%、33.3%;不同温度油用向日葵种子发芽势和发芽率受盐胁迫的降幅表现为15℃>25℃>35℃;高盐和高温互作加剧了对油用向日葵胚根和子叶的伤害。盐分对油用向日葵种子发芽势、发芽率的影响依次为NaCl>NaHCO_3+NaCl>NaHCO_3。盐胁迫对油用向日葵种子萌发的伤害主要是离子毒害。油用向日葵种子在盐环境中适宜的高温可有效增强种子的发芽势,以此可选择适宜播期,通过缩短种子萌发时间,有效减轻盐胁迫。
     2盐胁迫下不同时期不同器官及农艺性状表现:盐胁迫延长了生育期,对生育过程的影响表现为营养生长阶段大于生育生长阶段,成株期对地上部分的影响大于地下部分。随土壤含盐量的增大,油用向日葵的株高、叶面积、茎粗、盘径和粒重显著下降。当盐浓度大于5.5g/kg时根冠比、根系活力急剧下降,根系活跃吸收面积/总吸收面积减小。高盐胁迫改变了油用向日葵的库源关系,最终表现为对经济产量的影响程度大于生物产量;对干物质积累影响为灌浆期>成熟期>开花期>现蕾期>苗期;当盐浓度超过6.0g/kg时,油用向日葵的生长发育就会受到严重抑制,脱盐效果无经济意义。
     3不同NaCl+NaHCO_3浓度和生育阶段的生理生化响应:细胞膜透性苗期高于现蕾期和花期;在盐浓度大于6.0g/kg时膜透性显著增强。幼苗叶片本身的SOD活性很强,在盐浓度7.5g/kg时达最大值。幼苗根系POD酶活性在11.5g/kg时达到最大值,叶片在盐浓度9.5g/kg时达最大值。在盐胁迫下叶绿素含量表现为苗期>现蕾期>开花期,在含盐量为6.5g/kg时达到峰值。脯氨酸含量表现为现蕾期>苗期>开花期。现蕾期当盐浓度达到8.5g/kg时,脯氨酸的含量从不到100μg/g猛增到1000μg/g,是苗期和花期的十倍。苗期丙二醛的含量在在盐浓度为6.5g/kg时出现最小值后显著升高;现蕾期和花期丙二醛含量在盐浓度为6.0g/kg时出现最小值后显著升高。综合不同盐分区间细胞膜透性、叶绿素含量的出现的最大值和对应脯氨酸、丙二醛含量出现的最小值,可以初步确认:供试油用向日葵品种生理生化指标响应最敏感的土壤盐含量在6.5g/kg左右。
     4盐胁迫对含油率及脂肪酸组成的影响:盐胁迫显著抑制了子实和籽仁油份积累,对籽仁含油率的影响大于子实含油率。随土壤含盐量的增加,抑制油酸的生成,促进亚油酸的生成;含盐量对脂肪酸组成的影响表现为棕榈酸>油酸>亚油酸>硬脂酸>亚麻酸。
     5生理生化响应与抗盐机制:随盐浓度的增加细胞膜透性显著增强,半透性功能受损,造成叶绿素外渗,植株中Na~+含量增加、K~+含量减少、K~+/Na~+值降低、离子毒害加重,脯氨酸和丙二醛含量显著增加,相关正常代谢平衡与生理生化功能被破坏,产生盐分的各种次生伤害。油用向日葵在盐胁迫下受活性氧伤害后的自我修复能力很强,这主要是油用向日葵本身含有能消除盐胁迫过程中产生的有害物质-氧自由基、从而对细胞起保护作用、增强油用向日葵抗盐功能的SOD和POD酶活性比较强,特别是各时期SOD的酶活性强是提高供试油用向日葵品种抗盐能力的关键。
     6粗灰分含量与脱盐效果:植株中Na~+含量是根系Na~+含量的2-6倍,而且这种差值随盐浓度的增加进一步在拉大,说明油葵对土壤盐分的携出主要是通过植株带走的。不同生育期植株中粗灰分含量从高到低依次为苗期>现蕾期>开花期>成熟期>灌浆期。当盐浓度超过6.0g/kg时,油用向日葵的生长发育就会受到严重抑制,脱盐效果无经济意义。所以,要想有一个好的脱盐效果就必须保证其地上部有一定的生物量。
In order to define the adaptability range of salt tolerance and oil-sunflower mechanism, study the effects of salt stress on germination of seeds,main economic character, agronomical character,biological yield,and physiological and biochemical indexes of oil-sunflower.
     1.NaCl、NaHCO_3、NaHCO_3+NaCl and the temperature exert the stress and collaborated effect on the germination trend and germination rate of oil-sunflower: With the temperature increased,the seed germination trend and germination rate significantly increased,and with the increase of concentrations the seed germination trend and germination rate significantly dropped.The germination trend decreased by 86.1%, 75.0%and 33.3%compared with the contrast while the temperature was 15℃,25℃and 35℃.The germination trend and germination rate of oil-flower seed under the different temperature were harmed by the salt stress,while the order of the temperature was 15℃>25℃>35℃.The high temperature combined high salt concentrations increased the harm of the radicel length and fresh weight of cotyledon.The germination trend and germination rate of oil-flower seed were harmed under the salt stress,and the sequence of damage degree was NaCl>NaHCO_3+NaCl>NaHCO_3.The main reason of harm by salt stress on the germination of oil-sunflower seed was ion toxicity.Under salt environment,the suitable temperature can effectively increase the germination trend.Thus,the suitable sowing time can be chosed and alleviate the salt stress through shortening the germination time.
     2.The effects of the salt stress on different organs in different period:The salt stress significantly prolonged procreation period,the asexuality growing stage had more bigger effects on procreation course than on the sexual reproduction growing stage,and the salt stress had higher effect on the ground parts than on the under ground parts in adult period. With the increase of salt concentrations,plant height,leaf area,stem wide,branches diameters,and grain weight significantly decreased.When the salt concentrations exceeded 5.5g/kg,the ration of the root weight to the shoot weight and the activity of roots began to drop significantly,and ratio of living absorbance area to the total absorbance area of roots reduced.The high salt stress could change the sink-source relation,and more significantly affected the economical yield than the biomass yield.The high salt stress can also differently affected the dry matter at different growing stage,and the sequence of growing stage was filling>maturity>flowering>budding>seedling stage.When the soil salt content exceeded 6.0g/kg,the growth of oil-sunflower could be restrained seriously.
     3.The effect of NaCl+NaHCO_3 dealt with physiological and biochemical indexes under different salt range at different procreation:The cell membrane permeability in seedling stage was higher than that in squaring and flowering period,and when the salt concentrations exceed 6.0g/kg,the cell membrane permeability significantly increased.The SOD activity of leaf in oil-sunflower seedling was strong,reaching maximum at the salt concentration of 7.5 g/kg.The salt stress could influence the POD activity of root and leaf differently,and the POD activity of root peaked at the salt concentrations of 9.5g/kg,and the POD activity peaked at the salt concentrations of 11.5g/kg.The salt stress can differently affect the chlorophyll content of sprout at different growing stage,and the sequence of growing stage was seedling>budding>flowering period,and the chlorophyll content peaked at salt concentration of 6.5 g/kg.The salt stress can differently affect proline content at different growing stage,and the sequence of growing stage was budding>seedling>flowering.The proline content quickly increased from 100μg/g to 1000μg/g at the salt concentrations of 8.5g/kg in squaring period,which is ten times that of in seedling and flower period.In the salt content of 6.5g/kg,the MDA content was minimum in seedling period,then began to significantly increase;however,in squaring and flowering period,the MDA content was minimum at the content of 6.0g/kg,and then began to significantly increase.
     Based on a comprehensive analysis of the maximum value of cell membrane permeability,chlorophyll content,the corresponding minimum value of proline,and malonaldehyde content corresponding in different salinity zone,we can conclude that the most sensitive range soil salt content of oil-sunflower was about 6.5g/kg.
     4.Effects of salt stress on oil content and fatty acid of oil-sunflower:The salt stress significantly restrained the accumulation of seed and kernel;moreover,the influence to oil content of kernel was greater than did oil content of seed.With the increase of salt concentrations,the production of oleic acid was restrained,and linoleic acid was improved. The sequence of influence of soil salt content on fatty acid was:palmitic acid>oleic acid> linoleic acid> Itearic acid> linolenic acid.
     5.The effects of salt stress on the main physiological and biochemical of oil-sunflower:
     Cell membrane permeability significantly increased with the concentration of salt increasing,and the translucency function was so damaged as to make chlorophyll extravasated,the content of Na~+ increased,K~+ decreased,metabolic balance damaged,ion toxicity aggravated,and diversified secondary injuries induced,oil-sunflower self-restoration capability increased under salt stress,mainly because oil-flower contained oxygen free radical which could eliminate harmful substance during salt stress period so that the substance had a protective effect on the cells,and increased SOD and POD activity, especially in each stage.
     6.The crude ash content of plant and desalting efficiency of oil-sunflower:
     The content of Na~+ in plant was 2~6 times than that of in the root systems and the difference enlarged with the increase of salt concentration,which showed that the loss of soil salt was mainly through oil-sunflower plant absorbed.The sequence of the ash content of oil-sunflower at different growing stage was seedling period>budding>flowering>maturity>filling period.When the soil salt concentration exceeded 6.0g/kg,the oil-sunflower growth could be significantly restricted,and the effect of desalting had no economical meaning.So if we want to obtain better desalting effects,we must ensure a certain number of biomass-yield on the ground part of oil-sunflower.
引文
[1]Flowers T.J.Salinisation and horticultural production.Sci Hortic,1999,78:1-4.
    [2]黎立群.盐碱土的基本知识[M].北京:科学出版社.1986.
    [3]李彬,王志春,孙志高,陈渊,杨福.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,(23)2:154-155.
    [4]俞仁培.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):158-159.
    [5]崔云玲,王生录,陈炳东.油葵耐盐性试验研究[J].甘肃农业科技,2002(8):35-36.
    [6]魏林森.秦王川灌区土壤次生盐渍化预测及防治[J].干旱区资源与环境.,1996,10(3):31-32
    [7]王文,魏爱兰.甘肃“引大”灌区农业结构调整与草业发展[J].草业科学,2006,23(2):61-65.
    [8]赵传燕,冯兆东.秦王川灌区农业可持续发展面临的新问题[J].青海环境,2003,11(1):21-23.
    [9]刘兴元,,梁天刚.秦王川农区草业发展探讨[J].草业科学,2003,20(2):24-26.
    [10]蔺海明,郭晔红,贾恢先,李伟民.黄芪不同种植密度的耐盐抑盐效应研究[J].草业学报,2005,14(5):48-53.
    [11]安玉麟.中国向日葵产业发展的问题和对策.内蒙古农业科技,2004(4):1-4
    [12]林成谷.土壤学(北方本)[M].北京:农业出版社,1983.
    [13]周和平,张立新,禹锋,李平.我国盐碱地改良技术综述及展望.《现代农业科技》,2007(11):159-161
    [14]邢军武.盐碱环境与盐碱农业[J].地球科学进展,2001(2):257-266.
    [15]黄河三角洲启动盐碱地改良工程[N].中国海洋报,2000-10-31.
    [16]魏云杰,许模.新疆土壤盐渍化成因及其防治对策研究[D].中国地质学会工程地质专业委员会、贵州省岩石力学与工程学会2005年学术年会暨“岩溶·工程·环境”学术论坛论文集,2005.
    [17]周和平,张立新,禹锋,李平.我国盐碱地改良技术综述及展望.《现代农业科技》,2007(11):159-161
    [18]B.A.柯夫达(席承藩等译).盐渍土的发生演化[M].北京:科学出版社,1957.
    [19]王诠庄,徐树贞.麦田秸杆覆盖的作用及其节水效应的初步研究[J].干旱地区农业研究,1989,(2):7-15.
    [20]李新举,张志国.秸杆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177.
    [21]王久志.沥青乳剂改良盐碱地的效果[J].山西农业科学,1986,(5):13-14.
    [22]许慰睽,陆炳章.应用免耕覆盖法改良新垦盐荒地的效果[J].土壤,1990,2(1):17-19,35.
    [23]王小琳.加拿大草原地区的残茬覆盖管理[J],土壤肥料,1996,(2):34-37.
    [24]樊润威,崔志祥,张三粉等.内蒙古河套灌区盐碱土覆膜对土壤生态环境及作物生长的影响[J].土壤肥料,1996,(3):10-12.
    [25]毛学森.水泥硬壳覆盖对盐渍土水盐运动及作物生长发育的影响[J].中国农业气象,1998,19(1):26-29.
    [26]赵炳锌,徐宫安.结构改良剂及麦杆覆盖对麦地蒸散的影响[J].土壤,1992,24(3).
    [27]巫东堂,王久志.土壤结构改良剂及其应用[J].土壤通报,1990,21(3):140-142.
    [28]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002,(6):449-455
    [29]一种土壤改良剂.中国农业网[EB/OL],2004-2-10.
    [30]“禾康”盐碱土壤改良剂.中国农业网[EB/OL],2004-2-10.
    [31]康地宝作用机理及使用技术.中国农业网[EB/OL],2004-11-3.
    [32]孟义江,宋占书,.玉米耐盐基因型的筛选[J]河北农业科学,2000,12:22-25.
    [33]刘孟雨等.苜蓿改良的盐碱土壤施肥对小麦的效应研究[J].生态农业研究,1998,6:30-32
    [34]杨瑞珍,毕于运.我国盐碱化耕地的防治[J].干旱区资源与环境,1996,10(3):22-30.
    [35]江香梅,黄敏仁,王明庥.植物抗盐碱耐干早基因工程研究进展[J].南京林业大学学报,2001,57-62.
    [36]郭善利,王秀芝.植物抗盐性及其遗传工程[J].聊城师院学报(自然科学版),1998,11(2):53-58
    [37]任昱坤,吴雪峰,谢亚军.植物抗盐性研究进展[J].宁夏农学院学报,1995,16(4):60-64
    [38]Hongxia Zhang,Eduardo blumwald.Transgenic salt-tolerant tomato plants accumucate salt in foliage but not in fruit[J].Nature biotechnology.2001.8
    [39]高峻岭,王应求等.不同种植制度改良盐碱土效果的研究[J].土壤肥料,1989(6):10-15
    [40]保雄,韩庆宪.民勤县绿洲沙漠化盐渍化成因及其治理途径[J].中国水土保持,1989,7:23-27
    [41]孟义江,宋占权等.玉米耐盐基因型的筛选[J].河北农业科学,2000,12.:22-25
    [42]康贻军,胡健,杨小兰等.盐碱地土壤微生物对不同改良方法的响应[J].微生物学杂志,2008,28(5):102-105.
    [43]雷志栋,尚松浩,杨诗秀,等.新疆叶尔羌河平原绿洲洼地早排作用的初步分析[J].灌溉排水学报,1998(3):3-6.
    [44]赵丹,邵东国,代涛.干旱灌区水盐动态模拟与实验研究[J].灌溉排水学报,2004(2):43-46.
    [45]王仰仁,康绍忠.基于作物水盐生产函数的咸水灌溉制度确定方法[J].水利学报,2004(6):48-53.
    [46]Kenneth H,Solomon.Water-Salinity-Production Function[J].ASAE,1985,38(6).
    [47]Dinar A.Production Function Relating Crop Yield Water Quality and Quantity[J].Soil Salinity andDrainage Volume,Agri.W.M,1991.
    [48]艾尔斯R S,等.农用水质[M].北京:农业科技出版社,1988.
    [49]许越先,刘昌明,沙和伟.农业用水有效性研究[M].北京:科学出版社,1992.
    [50]张展羽,郭相平.作物水盐动态响应模型[J].水利学报,1998(12):67-71.
    [51]颜宏.碱地肤抗盐碱生理生态机制研究[D].2006:6-10.
    [52]梁一刚,杨新元,黄增强.向日葵出苗阶段耐盐性的测定[J].中国油料作物学报,1988,2:70-73.
    [53]Gorham J,Wyn Jones R.G,McDonnell E.Some mechanisms of salt tolerance in crop plants.Plant and Soil,1985,(89):15-40.
    [54]孙建昌,王兴盛,杨生龙.植物耐盐性研究进展[J].干旱地区农业研究,2008,26(1):226-229
    [55]陆静梅,李建东.一种新型的植物盐腺[J].东北师大学报(自然科学版),1994,(3):88-91.[
    56]陆静梅1中国野生大豆盐腺的发现[J].科学通报,1998,43(19):2074-2078.
    [57]Macfarlane G.R,M D Burchettl.Cellular distribution of copper,lead and Zinc in the grey mangrove,Avicennia marina(Forsk)Vierh[J].Aquatic botany,2000(68):45-59.
    [58]王厚麟,缪绅裕.大亚湾红树林及海岸植物叶片盐腺与表皮非腺毛结构[J].台湾海峡,2000,19(3):372-378.
    [59]Ramadan T.Dynamics of salt secretion by sporobolus spicatus(Vahl) Kuntn from sites of differing salinity[J].Annals of botany,2001(87):259-266.
    [60]Weis P,L.Windham,D.J Burke,et al.Release into the environment of metals by two vascular salt marsh plants[J].Marine Environmental Research,2002(54):325-329.
    [61]杨洪兵,丁顺华,念伟等.耐盐性不同的植物根和茎结合部的拒盐作用[J].植物生理学报,2001,27(2):179-185.
    [62]Yeo A.R,Flowers T.J.Accumulation and localization of sodium ions within the shoots of rice differing in salinity resistance[J].Physiol Plant Copenhagen,1982(56):343-348.
    [63]王宝山,邹琦,赵可夫.NaCI胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26(6):855-850.
    [64]Kingsbury R.w,Epstein E.Seelection for salt-resisitant spring wheat[J].Crop Sci,1984(24):310.
    [65]Oertli J.Extractra salt accumulation,a possible mechanism of salt injury in plants[J].Agrichimical,1968(12):461-469.
    [66]Bowler C,Slooten L,Vandenbranden S,et al.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants.EMBO J,1991(10):1723-1732.
    [67]Foyer C.H,Descourvieres P,Kunert K.T.Protection against oxygen radicals:an important defense mechanism studied in transgenic plants.Plant Cell Environ,1994(17):507-523.
    [68]Foyer C.H,Souriau N,Perret S,et al.Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar stress. Plant Physiol,1995(109):1047-1057.
    [69]Allen R.D.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiol,1995(107):1049-1054.
    [70]Boston R.S,Viitanen P.V,Vierling E.Molecular chaperoners and protein folding in plants.Plant Mol Biol,1996,32(1-2):191-222.
    [7l]王波,宋凤斌等.植物耐盐性研究进展[J].农业系统科学与综合研究,2007,23(2):214.
    [72]白宝璋,徐克章等.植物生理学[M].北京:中国农业科技出版社,1996.
    [73]柯玉琴,潘延国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    [74]陈京,叶姜瑜,王之槐.渗透胁迫对甘薯叶绿体超微结构及膜质过氧化的影响[J].西南师范大学学报(自然科学版),1997,2(22):169-176.
    [75]郑文菊,王勋陵,沈禹颖.几种盐地生植物同化器官的超微结构研究[J].电子显微学报,1999,5(18):507-512.
    [76]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.《海南大学学报(自然科学版)》,2003,2:84-89.
    [77]Cheeseman J M.Mechanism of salinity tolerance in plants.Plant Physiol,1988,87:547-550
    [78]陈淑芳.嫁接番茄幼苗耐盐机理研究.2006,博士论文
    [79]朱新广,张其德.NaCI对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    [80]Allakhverdiev S I,Sakamoto A,Nishiyama Y,et al.Ionic and osmotic effects of NaCl-induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp.Plant Physiol,2000,123:1047-1056
    [81]Suleyman I,Allakhverdiew.Ionic and osmotic effects of NaCl induced inactivation of photosystemsⅠand Ⅱ in synechococcus SP[J].Plant physiology,2000(123):1047-1056.
    [82]王仁雷,华春,罗庆云等.盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降[J].植物生理与分子生物学报,2002,28(5):385-390.
    [83]姜卫兵,高光林,戴美松等.盐胁迫对不同砧穗组合梨幼树光合日变化的影响[J].园艺学报,2003,30(6):653-657.
    [84]张川红,沈应柏,尹伟伦等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,38(2):27-31.
    [85]Brownell P.E,Crosslane C.J.Growth responses to sokium by Bryophyllum tubiflorum under conditions inducing Crassulaccean acid metabolism.Plant Physiol,1974(54):416-417.
    [86]Serrano R,Gaxiola R.Microbial models and salt stress tolerance in plants.Cret Rev Plant Sci,1994,13(2):12-1138.
    [87]Sanada Y,Veda H,Kuribayashi K,et al.Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes(Hordeum vulgare L.and Triticum aestivum L.) leaves and roots under salt stress.Plant Cell Physiol.1995,36(6):965-970.
    [88]Lin C.C,Kao C.H.Proline accumulation is associated with inhibition of rice seeding root growth caused by NaCl.Plant Sci,1996(114):121-128.
    [89]Sarvesh A,Anuradha M,Pulliah T,et al.Salt stress and antioxidant response in high and low praline producing cultivars of niger,Guizatia abyssinica(L.f) Cass.Indian J Exp Biol.1996(34):252-256.
    [90]Santa-Cruz A,Acosta M,Rus A,et al.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.Plant Physiol Biochem,1999,37(1):65-71.
    [91]Apse M.P,Aharon G.S,Snedden W.A,et al.Overexpression of a vacuolar Na+/H+ antiport confers salt tolerance in Arabidopsis.Science,1999(285):1256-1258.
    [92]Zhang H.X,Hodson J,Williams J.P,et al.Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Proc Natl Acad Sci USA,2001(98):12832-12836.
    [93]Zhang H.X,Blunwald E.Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits.Nature biotechnology,2001(19):765-768.
    [94]Maurel C.Aquaporins and water permeability of plant membranes.Annu Rev Plant Physiol Plant Mol Biol,1997(48):399-429.
    [95]Yamada S,Katsuhara M,Kelly W.B,et al.A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant.The Plant Cell,1995(7):1129-1142.
    [96]Gerhard R(o|¨)bbelen,R.Keith Downey,Amram Ashri.Oil Crops of the World[M].New York:McGraw-Hill Publishing Company.1989:301-312.
    [97]曾云.向日葵在中国的传播及其影响[J].古今农业,2005(1):71-79.
    [98]安玉麟.中国向日葵产业发展的问题与对策[J].内蒙古农业科技,2004(4):1-4.
    [99]中华人民共和国农业部.中国农业统计资料[M].北京:中国农业出版社,2004.
    [100]刘公社,彭克敬,王树年.杂交油葵高产栽培技术问答[M].北京:科学普及出版社,1997.
    [101]李梅,王军义.厚皮甜瓜套种向日葵高效栽培技术[J].内蒙古农业科技,2005(3):47-49.
    [96]李庆文等编著.向日葵及其栽培[M].北京:农业出版社,1991.
    [102]黄敏玲.切花向日葵栽培技术[J].福建农业科技,2003(2):11.
    [103]王德芹,樊亚娟.总结出食用向日葵夏播高产途径[J].天津农林科技:2003(3):11-13.
    [104]高瑞春.食用向日葵栽培技术[J].中国种业,2004(4):49.
    [105]曹凤刚.食用向日葵栽培技术[J].新疆农业科技,2004(4):37.
    [106]李君,盖春英.向日葵高产、稳产栽培技术[J].内蒙古农业科技.2003(2):44.
    [107]殷旭红.盐碱地向日葵的关键栽培技术[J].现代农业,1999(3):15.
    [108]阎海苹.种植向日葵能改良盐碱地[J].农副产品加工,2002,11(6):39.
    [109]梁一刚,杨新元,黄增强.向日葵出苗阶段耐盐性的测定[J].中国油料作物学报,1988,2:70-73.
    [110]颜宏,赵伟,陈文静等。不同盐溶液浸种对向日葵种子萌发的影响[J].种子,2007,26(2):69-71.
    [111]王桂芹,段亚军.向日葵不同品种耐盐碱性与解剖结构比较研究[J].昭乌达蒙族师专学报,2002,23(6):343-346.
    [112]郑青松,刘兆普,刘友良,刘玲.盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应[J].南京农业大学学报,2004,27(2):16.
    [113]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[C]//余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1998:752-769.
    [114]Munns R.Comparative physiology of salt and water stress[J].Plant Cell and Environment,2002,25:239-250.
    [115]郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330.
    [116]张俊莲,张国斌,王蒂.向日葵耐盐性比较及耐盐生理指标选择[J].中国油料作物学报,2006,28(2):176-179.
    [117]高波.油葵耐盐机理及耐盐极限的研究[J].陕西农业科学,2006(2):36-37.
    [118]王冀川,徐雅丽,姜莉.盐胁迫对油葵种子活力和幼苗生理生化特性的影响[J].种子,2004,(23)5:18-20.
    [119]肖雯,贾恢先,蒲陆梅等.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [120]汤章城.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通讯,1984,(1):15-21.
    [121]汤章城,王育启,吴亚华等.不同抗旱品种高粱苗中脯氨酸积累的差异[J].植物生理学报,2002,12(2):154-162.
    [122]Moftah A E,MichelB E.The effect of sodium choloride on solute potential and p roline accumulation in soybean leaves[J].Physiol Plant,1987,83:238-240.
    [123]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238.
    [124]罗庆云,於丙军.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(30):177-182.
    [125]殷旭红,张俊兰.浅析河套灌区盐碱士形成的主要原因及改良的有效措施[J].1997(11):17-18.
    [126]李清,张胜国,王学端,陈桂贤.向日葵高效栽培技术[J].吉林农业,2005(8):14-15.
    [127]梁一刚,彭德敬,杨新元.向日葵高产栽培技术问答[M].北京:气象出版社,1993:46-47.
    [128]季静,王军军,王平等.油用向日葵含油量的遗传分析[J].作物杂志,2000(4):10-11.
    [129]白城地区农业科学研究所.向日葵栽培[M].北京:农业出版社,1982:18-19.
    [130]洁谷,高华.半干旱偏旱区施肥对向日葵水分影响的研究[J].中国油料作物,1999(12):57-60.
    [131]张凤华,方向坤,赖先齐等.春播与复播油葵籽粒形成期生理特性的初步研究[J].石河子大学学报(自然科学版),2000,4(3):173-176.
    [132]曹俊仪,韦祖明,黄小枝.气候条件对油茶籽含油量、出油率的影响[J].广西农业科学,1984,4:38-40.
    [133]王鹏冬,杨新元.油葵杂交种含油率与地理位置的关系研究[J].中国油料作物学报,2002,24(4):38-42.
    [134]颜宏,赵伟,陈文静等.不同盐溶液浸种对向日葵种子萌发的影响[J].种子,2007,26(2):69-71.
    [135]Levitt J.Responses of plants to environmental stress.Vol.2nded.New York:Acadamic press,1980.
    [136]万贤崇,宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛的影响[J].南京林业大学学报,1995,19(3):16-20
    [137]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,24(4):1-7
    [138]方升佐,曹福亮,戴蒲英.不同种子预处理方法对提高三树种幼苗耐盐性的效应[J].植物资源与环境,1997,6(1):35-40
    [139]王建华,等.超氧化物歧化酶(sOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1987.(1):1-7
    [140]刘海龙,郑桂珍,关军锋,等.干旱胁迫下玉米根系活力和膜透性的变化[J].华北农学报2002,17(2):20-22.
    [141]袁晓华,杨中汉主编.植物生理生化实验[M].北京:高等教育出版社,1983,128-133
    [142]罗庆云,於丙军.大豆苗期耐盐性鉴定指标的检验[J]大豆科学,2001,20(30):177-182
    [143]YanagawaH,WatanabeK,NakamuraM.Application of the feeding redients for lives tocktoan artificial diet by using polyphagous strain of the silkworm[J].J.Seric.Sc.iJpn.1989,58(5):401-406
    [144]张志良主编.植物生理学实验指导[M].第二版.北京:高等教育出版社,1990,59-64
    [145]Strogonov B P.Structure and function of plant cell in saline habitats[M].New York:Halsted Press,1973:78-83.
    [146]Romero Aranda R,Sofia T,Cuartero J.Tomato plant-water uptake and plant-water relationship s under saline growth conditions[J].Plant Science,2001,160:265-272.
    [147]王羽梅,任安祥,潘春香等.长时间盐胁迫对苋菜叶片细胞结构的影响[J].植物生理学通讯,2004,40(3):289-292.
    [148]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993:24-27,230-231.
    [149]王学征,韩文灏,于广建.盐分胁迫对番茄幼苗生理生化指标影响的研究[J].北方园艺,2004,3:48-49.
    [150]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993
    [151]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825
    [152]唐奇志,刘兆普,陈铭达,陆国兴,海水处理对向日葵幼苗生长及叶片一些生理特性的影响.植物学通报,2004,21(6):667-672
    [153]Divate M R,Pandey R M.Salttolerance in grapes I.Effect of salinity on chlorophyll photosynthesis and respiration[J].indian J Piant physiol,1981,24(1):74.
    [154]孔东,史海滨,陈亚新,张丽辉,李延林,王长生,水盐胁迫对向日葵幼苗生长发育的影响[J].灌溉排水学报.2004,10;23(5):86-90
    [155]梁一刚,彭德敬,杨新元.向日葵高产栽培技术问答[M].北京:气象出版社,1993.46-47.
    [156]白城地区农业科学研究所.向日葵栽培[M].北京:农业出版社,1982.18-19.
    [157]张凤华,方向坤,赖先齐,等.春播与复播油葵籽粒形成期生理特性的初步研究[J].石河子大学学报(自然科学版),2000,4(3):173-176
    [158]王飞燕,胡启林,贾作忱,等.气候条件对油用向日葵籽实含油率的影响[J].西北农业学报,1996,5(1):63-66
    [159]王鹏冬,杨新元,白冬梅,等.油葵杂交种含油率与地理位置的关系研究[J].中国油料作物学报,2002,24(4):38-41
    [160]谢宗铭,李万云,陈寅初,等.油葵自交系子实含油率性状配合力的鉴定[J].新疆农业科学,2003,40(3):145-147
    [161]Syed M A.Nutrient uptake by plants under stress conditions[A]In:Mohammad pessarakli.Handbook of plant and cropstress[M].New York:Marcel Dekker,Inc.1999.295-296.
    [162]Edward P Glenn,Brown J ed J.Effects of soil salt levels on the growth and water use efficiency of at riplex canescens(Che-nopdiaceae) varieties in drying soil[J].American Journal of Botany,1998,85(1):10-16.
    [163]Drew M C, Lauchli A. Oxygen dependent exclusion of sodium ions f rom shoots by root of zea mays in relation to salinity damage[J ]. Plant Physiol ,1985 ,79 :171-176。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700