用户名: 密码: 验证码:
地下水硝酸盐原位生物修复固相碳源及磷源性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水硝酸盐污染正在逐年加剧,严重制约了地下水作为饮用水水源的使用。生物反硝化法是去除地下水中硝酸盐的有效方法,本研究立足于解决地下水硝酸盐反硝化处理过程中碳源、磷源不足的问题,通过批实验及柱实验研究固相碳源、固相磷源对反硝化的促进作用。在此基础上研究进水硝酸盐浓度、温度等因素对反硝化的影响,同时解析反硝化菌群的组成结构,确定优势细菌,为地下水硝酸盐原位修复提供重要的理论依据。主要成果如下:
     麦秆、锯末、可生物降解塑料均可作为地下水硝酸盐生物处理中的固相碳源,使硝酸盐有效去除,其中可生物降解塑料本身释放的含氮化合物最少,所维持的反硝化反应中硝酸盐氮去除率最高,且亚硝酸盐氮积累量少,是最合适的反硝化固相碳源。温度对反硝化作用有显著的影响,当实验温度由25±2℃降低到16±2℃时,反硝化柱出水硝酸盐氮浓度急剧上升。同时,反硝化系统内亚硝酸盐氮积累严重。另外实验发现,进水硝酸盐浓度对反硝化有重要的影响。当进水硝酸盐浓度为50、60、70、80、90mgNO3--N/L时,硝酸盐氮去除率高,亚硝酸盐氮积累量少,反硝化能彻底进行,而当进水硝酸盐浓度提高到100mgNO3--N/L时,硝酸盐氮去除率明显降低,同时伴有严重的亚硝酸盐氮积累现象。温度为20±2℃时,磷矿石对反硝化有明显的促进作用,磷矿石含量分别为1500g及750g的反硝化柱内反硝化能彻底的进行,硝酸盐氮去除率大于97%,无明显的亚硝酸盐氮积累现象;而磷矿石含量为500g以及不含磷矿石的反硝化柱,反硝化不能彻底进行,出水硝酸盐氮浓度大,且亚硝酸盐氮积累现象明显。将环境温度升高至25±2℃,此时磷矿石含量分别为1500g、750g、500g以及不含磷矿石的反硝化柱内反硝化都能彻底进行,磷对反硝化作用的限制得以相对缓解。同时实验发现,在进水流量较大的情况下,添加磷矿石可在一定程度上提高反硝化效果。取反硝化柱内生物样品分析反硝化菌群结构,发现proteobacteria(变形杆菌门),特别是β-proteobacteria(β-变形杆菌纲)为反硝化系统内最优势菌群,且环境条件对反硝化菌群的结构有一定的影响。
Groundwater is an important freshwater resource accessible for human use.However, nitrate contamination of groundwater aquifers has been an increasingproblem. Recently, biological denitrification is considered to be the best option forremoving nitrate from groundwater because of its efficiency and moderate cost. Thepurpose of this study was to solve the problem of the lack of carbon source andphosphorus source for biological denitrification in in-situ groundwater remediation. Inthis study, wheat straw, sawdust and biodegradable plastic were selected as carbonsources and phosphate rock was selected as phosphorus source to evaluate theircapacity for the promotion of denitrification. And then, the effect of nitrateconcentrations, influent flow and temperature on denitrification rate was investigated.The species composition of denitrifying bacteria in denitrification system was alsoinvestigated by molecular biological methods.
     From this study, it was concluded that biodegradable plastic, sawdust and wheatstraw can be used as carbon source for biological denitrification in groundwaterremediation, and biodegradable plastic showed the best effect for the promotion ofdenitrification owing to the lower amount of nitrogen compounds released, higherdenitrification efficiency and lower accumulation of nitrite. The ambient temperaturehas a great influence on denitrification.When the ambient temperature decreased from25±2°C to16±2°C, nitrate breakthrough occurred, and the nitrite accumulatedsignificantly. Additionally, the influent nitrate concentration appeared to have someinfluence on denitrification. When the influent nitrate concentrations were50,60,70,80,90mgNO_3~--N/L, complete nitrate reduction was achieved. However, when theinfluent nitrate concentration increased to100mgNO3--N/L, a breakthrough of nitratewas observed and nitrite accumulation became serious. Phosphate rock has thepotential to provide phosphorus for denitrifying bacteria. The nitrate removalefficiency of the columns containing1500g or750g phosphate rock was over97%when temperature was20±2°C, at the same time, the nitrite concentrations were lowerthan0.1mgNO_2~--N/L. On the contrary, the nitrate removal efficiency in columnscontaining500g or0g phosphate rock was low, and the nitrite accumulation wasserious. Consequently, phosphate rock can provide sufficient phosphorous fordenitrifying bacteria and support denitrification thoroughly. When the ambienttemperature increased to25±2°C, complete denitrification was achieved in thecolumns containing1500g,750g,500g,0g phosphate rock. Additionally, the influent flow appeared to have some influence on denitrification. When the influent flowincreased to3.6ml/min, the effluent nitrate concentration increased sharply withseriously nitrite accumulation. However, nitrate removal efficiency of columnscontaining1500g or750g phosphate rock was better than the columns containing500g or0g phosphate rock. So it can be concluded that phosphate rock wasapplicable for further use as a filling phosphorus source for in-situ nitrate-pollutedgroundwater remediation.
     Biological samples were collected from the columns and analysised for theirbacteria phase. The results indicated that proteobacteria, especially-proteobacteria,were the predominant microorganisms.
引文
Akunna J C, Bizeau C, Moletta R. Nitrate and nitrite reductions with anaerobic sludge usingvarious carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. WaterResearch,1993,27(8):1303-1312.
    Almasri M N. Nitrate contamination of groundwater: A conceptual management framework.Environmental Impact Assessment Review,2007,27(3):220-242.
    Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation. Microbiological Reviews,1995,59(1):143-169.
    Aslan S, Cakici H. Biological denitrification of drinking water in a slow sand filter. Journal ofHazardous Materials,2007,148(1-2):253-258.
    Aslan S, Turkman A. Simultaneous biological removal of endosulfan (alpha plus beta) and nitratesfrom drinkingwaters using wheat straw as substrate. Environment International,2004,30(4):449-455.
    Bedessem M E, Edgar T V, Roll R. Nitrogen removal in laboratory model leachfields withorganic-rich layers. Journal of Environmental Quality,2005,34(3):936-942.
    Bhatti Z I, Sumida K, Rouse J D, et al. Characterization of denitrifying granular sludge treatingsoft groundwater in an upflow sludge-blanket reactor. Journal of Bioscience andBioengineering,2001,91(4):373-377.
    Blaszczyk M. Effect of medium composition on the denitrification of nitrate by Paracoccusdenitrificans. Applied and Environmental Microbiology,1993,50(11):3951-3953.
    Boley A, Müller W R, Haider G. Biodegradable polymers as solid substrate and biofilm carrier fordenitrification in recirculated aquaculture systems. Aquacultural Engineering,2000,22(1-2):75-85.
    Bouchard D C, Williams M K, Surampalli R Y. Nitrate contamination of groundwater; sourcesand potential health effects. Journal of the American Water Works Association,1992,84(9):85-90.
    Brettar I, Sanchez-Perez J, Trémolières M. Nitrate elimination by denitrification in hardwoodforest soils of the Upper Rhine floodplain–correlation with redox potential and organicmatter. Hydrobiologia,2002,469(1):11-21.
    Buttiglieri G, Malpei F, Daverio E, et al. Denitrification of drinking water sources by advancedbiological treatment using a membrane bioreactor. Desalination,2005,178(1–3):211-218.
    Cantafio A W, Hagen K D, E L G. Pilot-scalese-lenium bioremediation of San Joaquin drainagewater with Thauera selenatis. Appliedand Environmental Microbiology,1996,62:3298-3303.
    Centi G, Perathoner S. Remediation of water contamination using catalytic technologies. AppliedCatalysis B: Environmental,2003,41(1–2):15-29.
    Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review.Bioresource Technology,2008,99(10):4044-4064.
    Costa J L, Massone H, Mart n ez“D, et al. Nitrate contamination of a rural aquifer andaccumulation in the unsaturated zone. Agricultural Water Management,2002,57(1):33-47.
    De Vet W W J M, Van Loosdrecht M C M, Rietveld L C. Phosphorus limitation in nitrifyinggroundwater filters. Water Research,2012,46(4):1061-1069.
    Delong E F, Wickham G S, Pace N R. Phylogenitic stains: ribosomal RNA-based probes for theIdentification of single cells. Science,1989,243:1360-1363.
    Dodla S K, Wang J J, Delaune R D, et al. Denitrification potential and its relation to organiccarbon quality in three coastal wetland soils. Science of The Total Environment,2008,407(1):471-480.
    Etchebehere C, Errazquin M I, P D, et al. Community analysis of a denitrifying reactor treatinglandfill leachate. FEMS Microbiology Ecology,2002,40:97-106.
    Fernández-Nava Y, Mara ón E, Soons J, et al. Denitrification of wastewater containing highnitrate and calcium concentrations. Bioresource Technology,2008,99(17):7976-7981.
    Ge S, Peng Y, Wang S, et al. Nitrite accumulation under constant temperature in anoxicdenitrification process: the effects of carbon sources and COD/NO3-N. BioresourceTechnology,2012, in press.
    Gelfand I, Yakir D. Influence of nitrite accumulation in association with seasonal patterns andmineralization of soil nitrogen in a semi-arid pine forest. Soil Biology and Biochemistry,2008,40(2):415-424.
    Gibert O, de Pablo J, Luis Cortina J, et al. Chemical characterisation of natural organic substratesfor biological mitigation of acid mine drainage. Water Research,2004,38(19):4186-4196.
    Gibert O, Pomierny S, Rowe I, et al. Selection of organic substrates as potential reactive materialsfor use in a denitrification permeable reactive barrier (PRB). Bioresource Technology,2008,99(16):7587-7596.
    Glass C, Silverstein J. Denitrification kinetics of high nitrate concentration water: pH effect oninhibition and nitrite accumulation. Water Research,1998,32(3):831-839.
    Gómez M A, González-López J, Hontoria-Garc a“E. Influence of carbon source on nitrate removalof contaminated groundwater in a denitrifying submerged filter. Journal of HazardousMaterials,2000,80(1-3):69-80.
    Gómez M A, Hontoria E, González-López J. Effect of dissolved oxygen concentration on nitrateremoval from groundwater using a denitrifying submerged filter. Journal of HazardousMaterials,2002,90(3):267-278.
    Greenan C M, Moorman T B, Kaspar T C, et al. Comparing carbon substrates fordenitri cation of subsurface drainage water. Journal of Environment Quality,2006,35:824-829.
    Hamilton P A, Helsel D R. Effects of Agriculture on Ground-Water Quality in Five Regions of theUnited States. Ground Water,1995,33(2):217-226.
    Hanaki K, Zheng H, Matsuo Z. Production of nitrous oxide gas during denitrification ofwastewater. Water Science and Technology,1992,26(5-6):1027-1036.
    Haugen K S, Semmens M J, Novak P J. A novel in situ technology for the treatment of nitratecontaminated groundwater. Water Research,2002,36(14):3497-3506.
    H yrynen K, Pongrácz E, V is nen V, et al. Concentration of ammonium and nitrate from minewater by reverse osmosis and nanofiltration. Desalination,2009,240(1–3):280-289.
    Hekmatzadeh A A, Karimi-Jashani A, Talebbeydokhti N. Modeling of nitrate removal for ionexchange resin in batch and fixed bed experiments. Desalination,2012,284(4):22-31.
    Hell F, Lahnsteiner J, Frischherz H, et al. Experience with full-scale electrodialysis for nitrate andhardness removal. Desalination,1998,117(1–3):173-180.
    Hesselmann R P X, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of abacterium that performs enhanced biological phosphate removal in activated sludge.Systematic&Applied Microbiology,1999,22:454-465.
    Hien T, Park H, Jo H, et al. Influence of Different Substrates in Wetland Soils on Denitrification.Water, Air,&Soil Pollution,2011,215(1):549-560.
    Hiraishi A, Khan S T. Application of polyhydroxyalkanoates for denitrification in water andwastewater treatment. Applied Microbiology and Biotechnology,2003,61(2):103-109.
    Hiscock K M, Lloyd J W, Lerner D N, et al. An engineering solution to the nitrate problem of aborehole at Swaffham, Norfolk, U.K. Journal of Hydrology,1989,107(1–4):267-281.
    Hong S, Feng C, Zhang J. Nitrate removal from groundwater using Maifan Stone and activatedcarbon as biofilm carrier. Energy Procedia,2011,11:4481-4487.
    Hunter W J. Accumulation of nitrite in denitrifying barriers when phosphate is limiting. Journal ofContaminant Hydrology,2003,66(1-2):79-91.
    Israel S, Engelbrecht P, Tredoux G, et al. In Situ Batch Denitrification of Nitrate-RichGroundwater Using Sawdust as a Carbon Source—Marydale, South Africa. Water, Air,& Soil Pollution,2009,204(1):177-194.
    Jiménez E, Giménez J B, Ruano M V, et al. Effect of pH and nitrite concentration on nitriteoxidation rate. Bioresource Technology,2011,102(19):8741-8747.
    Kapoor A, Viraraghavan T. Nitrate Removal From Drinking Water—Review. Journal ofEnvironmental Engineering,1997,123(4):371-380.
    Kesser&P, Kiss I, Bihari Z, et al. Biological denitrification in a continuous-flow pilot bioreactorcontaining immobilized Pseudomonas butanovora cells. Bioresource Technology,2003,87(1):75-80.
    King D, Nedwell D B. The influence of nitrate concentration upon the end-products of nitratedissimilation by bacteria in anaerobic salt marsh sediment. FEMS Microbiology Letters,1985,31(1):23-28.
    Koenig A, Liu L H. Use of limestone for pH control in autotrophic denitrification: continuousflow experiments in pilot-scale packed bed reactors. Journal of Biotechnology,2002,99(2):161-171.
    Kootstra A, Beeftink H, Scott E, et al. Optimization of the dilute maleic acid pretreatment ofwheat straw. Biotechnology for Biofuels,2009,2(1):1-14.
    Kruithof J C, van Bennekom C A, Dierx H A L, et al. Nitrate removal from groundwater bysulphur/limestone filtration. Water Supply,1988,6(3):205-217.
    Labbé N, Parent S, Villemur R. Addition of trace metals increases denitrification rate in closedmarine systems. Water Research,2003,37(4):914-920.
    Lei L, Li X, Zhang X. Ammonium removal from aqueous solutions using microwave-treatednatural Chinese zeolite. Separation and Purification Technology,2008,58(3):359-366.
    Li M, Feng C, Zhang Z, et al. Electrochemical reduction of nitrate using various anodes and aCu/Zn cathode. Electrochemistry Communications,2009,11(10):1853-1856.
    Liu B B, Zhang F, Feng X X, et al. Thauera and Azoarcus as functionally important genera in adenit rifying quinoline-re-moval bioreactor as revealed by microbial community structurecomparison. FEMS Microbiology Ecology,2006,55:274-286.
    Liu R, Yu H, Huang Y. Structure and morphology of cellulose in wheat straw. Cellulose,2005,12(1):25-34.
    Lu S, Hu H, Sun Y, et al. Effect of carbon source on the denitrification in constructed wetlands.Journal of Environmental Sciences,2009,21(8):1036-1043.
    Luk G K, Au-Yeung W C. Experimental investigation on the chemical reduction of nitrate fromgroundwater. Advances in Environmental Research,2002,6(4):441-453.
    Menkouchi Sahli M A, Annouar S, Mountadar M, et al. Nitrate removal of brackish undergroundwater by chemical adsorption and by electrodialysis. Desalination,2008,227(1–3):327-333.
    Moorman T B, Parkin T B, Kaspar T C, et al. Denitrification activity, wood loss, and N2Oemissions over9years from a wood chip bioreactor. Ecological Engineering,2010,36(11):1567-1574.
    Müller H W, Tr sch W. Screening of white-rot fungi for biological pretreatment of wheat strawfor biogas production. Applied Microbiology and Biotechnology,1986,24(2):180-185.
    Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA. Applied and Environmental Microbiology,1993,59(3):695-700.
    Ogilvie B G, Rutter M, Nedwell D B. Selection by temperature of nitrate-reducing bacteria fromestuarine sediments: species composition and competition for nitrate. FEMS MicrobiologyEcology,1997,23(1):11-22.
    Pabich W, Valiela I, Hemond H. Relationship between DOC concentration and vadose zonethickness and depth below water table in groundwater of Cape Cod, U.S.A. Biogeochemistry,2001,55(3):247-268.
    Park H I, Kim J S, Kim D K, et al. Nitrate-reducing bacterial community in a biofilm-electrodereactor. Enzyme and Microbial Technology,2006,39(3):453-458.
    Patterson B M, Grassi M E, Davis G B, et al. Use of Polymer Mats in Series for SequentialReactive Barrier Remediation of Ammonium-Contaminated Groundwater: LaboratoryColumn Evaluation. Environmental Science&Technology,2002,36(15):3439-3445.
    Prosnansky M, Sakakibara Y, Kuroda M. High-rate denitrification and SS rejection bybiofilm-electrode reactor (BER) combined with microfiltration. Water Research,2002,36(19):4801-4810.
    Rezania B, Oleszkiewicz J A, Cicek N. Hydrogen-dependent denitrification of water in ananaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system.Water Research,2007,41(5):1074-1080.
    Robertson W D. Nitrate removal rates in woodchip media of varying age. Ecological Engineering,2010,36(11):1581-1587.
    Robertson W D, Blowes D W, Ptacek C J, et al. Long-Term Performance of In Situ ReactiveBarriers for Nitrate Remediation. Ground Water,2000,38(5):689-695.
    Robinson-Lora M A, Brennan R A. The use of crab-shell chitin for biological denitrification:Batch and column tests. Bioresource Technology,2009,100(2):534-541.
    Rocca C D, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-richdrinking water with a sand filtration post-treatment. Water SA,2005,31(2):229-236.
    Ro i üM, Cerjan-Stefanovi ü, Kurajica S, et al. Ammoniacal nitrogen removal from water bytreatment with clays and zeolites. Water Research,2000,34(14):3675-3681.
    Sakakibara Y, Nakayama T. A novel multi-electrode system for electrolytic and biological watertreatments:: electric charge transfer and application to denitrification. Water Research,2001,35(3):768-778.
    Sandor J, Kiss I, Farkas O, et al. Association between gastric cancer mortality and nitrate contentof drinking water: Ecological study on small area inequalities. European Journal ofEpidemiology,2001,17(5):443-447.
    Schipper L A, Barkle G F, Hadfield J C, et al. Hydraulic constraints on the performance of agroundwater denitrification wall for nitrate removal from shallow groundwater. Journal ofContaminant Hydrology,2004,69(3–4):263-279.
    Schipper L A, Vojvodi ü-Vukovi üM. Nitrate removal from groundwater and denitrification ratesin a porous treatment wall amended with sawdust. Ecological Engineering,2000,14(3):269-278.
    Schubert C, Knobeloch L, Kanarek M S, et al. Public response to elevated nitrate in drinkingwater wells in Wisconsin. Archives of Environmental Health,1999,54(4):242-247.
    Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, et al. Chemolithotrophic denitrification withelemental sulfur for groundwater treatment. Water Research,2007,41(6):1253-1262.
    Sirivedhin T, Gray K A. Factors affecting denitrification rates in experimental wetlands: Field andlaboratory studies. Ecological Engineering,2006,26(2):167-181.
    Smith R L, Buckwalter S P, Repert D A, et al. Small-scale, hydrogen-oxidizing-denitrifyingbioreactor for treatment of nitrate-contaminated drinking water. Water Research,2005,39(10):2014-2023.
    Soares M I M, Abeliovich A. Wheat straw as substrate for water denitrification. Water Research,1998,32(12):3790-3794.
    Spalding R F, Exner M E. Occurrence of nitrate in groundwater--A review. Journal ofEnvironmental Quality,1993,22(3):392-402.
    Sunger N, Bose P. Autotrophic denitrification using hydrogen generated from metallic ironcorrosion. Bioresource Technology,2009,100(18):4077-4082.
    Tallec G, Garnier J, Billen G, et al. Nitrous oxide emissions from denitrifying activated sludge ofurban wastewater treatment plants, under anoxia and low oxygenation. BioresourceTechnology,2008,99(7):2200-2209.
    Tomonori I, Wataru S, Akane N, et al. The degradability of biodegradable plastics in aerobic andanaerobic waste landfill model reactors. Chemosphere,2004,54(3):225-233.
    Torrentó C, Urmeneta J, Otero N, et al. Enhanced denitrification in groundwater and sedimentsfrom a nitrate-contaminated aquifer after addition of pyrite. Chemical Geology,2011,287(1–2):90-101.
    Townsend M A, Young D P. Assessment of Nitrate—Nitrogen Distribution in KansasGroundwater,1990–1998. Natural Resources Research,2000,9(2):125-134.
    Van Rijn J, Tal Y, Barak Y. Influence of Volatile Fatty Acids on Nitrite Accumulation by aPseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor. Applied andEnvironmental Microbiology,1996,62(7):2615-2620.
    Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment: Opportunities andlimitations. Ecological Engineering,1999,12(1–2):5-12.
    Volokita M, Belkin S, Abeliovich A, et al. Biological denitrification of drinking water usingnewspaper. Water Research,1996,30(4):965-971.
    Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems.Current Opinion in Biotechnology,2002,13(3):218-227.
    Wang Q, Feng C, Zhao Y, et al. Denitrification of nitrate contaminated groundwater with afiber-based biofilm reactor. Bioresource Technology,2009,100(7):2223-2227.
    Ward M H, Dekok T M, Levallois P, et al. Workgroup Report: Drinking-Water Nitrate andHealth—Recent Findings and Research Needs. Environmental Health Perspectives,2005,113(11):1607-1614.
    Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns. Water Research,2003,37(8):1818-1830.
    World Health Organization. Guidelines for drinking-water quality, incorporating first and secondaddenda, Volume1, Recommendations. Geneva,2008.
    Yang C, Wu D, Chang C. Nitrate in drinking water and risk of death from colon cancer in Taiwan. Environment International,2007,33(5):649-653.
    Yang G C C, Lee H. Chemical reduction of nitrate by nanosized iron:kinetics and pathways. Water Research,2005,39(5):884-894.
    Yang X, Wang S, Zhou L. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresource Technology,2012,104:65-72.
    Yoshinaga Y, Akita T, Mikami I, et al. Hydrogenation of Nitrate in Water to Nitrogen over Pd-Cu Supported on Active Carbon. Journal of Catalysis,2002,207(1):37-45.
    Zhou W, Sun Y, Wu B, et al. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. Journal of Environmental Sciences,2011,23(11):1761-1769.
    Zumft W G. Cell biology and molecular basis of denitrification. Environmental Impact Assessment Review,1997,61(4):533-552.
    白东明.可降解高分子塑料的发展与应用.辽宁化工.2011,40(7):712-714.
    柏耀辉,孙庆华,温东辉,等.分子生态技术在微生物硝化及反硝化研究中的应用.北京大学学报(自然科学版).2011,47(2):378-384.
    毕二平,张翠云,张胜,等.地下水硝酸盐污染原位微生物修复技术研究进展.水资源保护.2009,25(3):1-5.
    曹成立,孟秀敬.长春市浅层地下水动态监测分析.吉林水利.2010(6):58-61.
    曹国民,盛梅,迟峰,等.反渗透法脱除地下水中硝酸盐的中试试验.净水技术.2011,30(5):7-10.
    曹敬华.萃取膜生物反应器去除地下水硝酸盐研究:[博士学位论文].青岛:中国海洋大学,2006.
    曹敬华,郑西来,潘明霞,等.萃取膜生物反应器去除地下水硝酸盐.西安建筑科技大学学报(自然科学版).2006,38(4):574-579.
    常苏娟,朱杰勇,刘益,等.世界磷矿资源形势分析.化工矿物与加工.2010(9):1-5.
    常玉梅,杨琦,郝春博,等.城市污水厂活性污泥强化自养反硝化菌研究.环境科学.2011(4):1210-1216.
    车轩,罗国芝,谭洪新,等.脱氮硫杆菌的分离鉴定和反硝化特性研究.环境科学.2008(10):2931-2937.
    陈干,罗继红.合肥市滨湖新区硝酸盐污染研究.河北农业科学.2009,13(3):90-91.
    陈立强,郑寿荣,许昭怡,等.催化加氢法脱除水中硝酸盐的研究进展.化学研究与应用.2006(1):5-8.
    崔宝臣,张富,徐胜利,等.催化还原法去除饮用水中硝酸盐氮研究进展.应用化工.2008(9):1081-1085.
    邓熙,林秋奇,顾继光.广州市饮用水源中硝酸盐亚硝酸盐含量与癌症死亡率联系.生态科学.2004,23(1):38-41.
    丁怡,宋新山,严登华.反硝化碳源在人工湿地脱氮中的应用及其研究进展.环境污染与防治.2011(12):65-69.
    董发开.西安市地下水氮污染的环境水文地质探讨.环境科学.1984(2):35-38.
    董军,赵勇胜,赵晓波,等.PRB技术处理污染地下水的影响因素分析.吉林大学学报(地球科学版).2005(2):226-230.
    杜连凤,赵同科,张成军,等.京郊地区3种典型农田系统硝酸盐污染现状调查.中国农业科学.2009,42(8):2837-2843.
    范振兴,赵璇,王建龙.利用辐照预处理麦秆作为反硝化固体碳源的研究.环境科学.2009(4):1090-1094.
    付时丰,罗雪梅,杜立宇,等.沈阳市农业污染现状的初步调查.环境保护科学.2002,28(110):31-32.
    顾元凯,陶德明,胥永忠,等.食管癌高低发区饮水类型和硝酸盐、亚硝酸盐的测定.四川肿瘤防治.1996,9(4):1-2.
    国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    郝志伟,李亮,马鲁铭.零价铁还原法脱除地下水中硝酸盐的研究.中国给水排水.2008,24(17):36-39.
    洪璇,刘彬彬,张晓君,等.喹啉与吲哚驯化的反硝化反应器的微生物群落结构分析比较.微生物学报.2008(4):503-507.
    郇环,王金生,翟远征,等.北京平原区永定河冲洪积扇地下水水化学特征与演化规律.地球学报.2011(3):357-366.
    黄民生,景有海,王永华.具反硝化能力的氢细菌特性及其应用.上海环境科学.1997,16(1):36-37.
    江曙光.中国水污染现状及防治对策.水产科技情报.2010,37(4):177-181.
    姜昕,马鸣超,李俊,等.污水处理系统中活性污泥细菌多样性研究.地学前缘.2008(6):163-168.
    蒋亚萍,陈余道,刘汉乐,等.乙醇在地下水硝酸盐原位去除中的可利用性.自然资源学报.2011,26(8):1446-1452.
    金明兰,尹军PCR-DGGE分析技术在环境科学研究中的应用.吉林建筑工程学院学报.2010,27(5):37-40.
    金赞芳,李文腾,潘志彦,等.地下水硝酸盐去除方法.水处理技术.2006,32(8):34-37.
    金赞芳,王飞儿,陈英旭,等.城市地下水硝酸盐污染及其成因分析.土壤学报.2004,41(2):252-258.
    康海彦.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究:[博士学位论文].天津:南开大学,2007.
    孔繁鑫,朱端卫,范修远,等.脱氮沟对农业面源污染中地下水硝酸盐的去除效果.农业环境科学学报.2008,27(4):1519-1524.
    黎慧娟,彭静静.水稻土中铁还原菌多样性.应用生态学报.2011,22(10):2705-2710.
    李兵,林炜铁.1株好氧反硝化芽孢杆菌的脱氮特性研究.水生态学杂志.2009,2(3):48-52.
    李建婷,纪树兰,刘志培,等16SrDNA克隆文库方法分析好氧颗粒污泥细菌组成.环境科学研究.2009,22(10):1219-1223.
    李杰.吡啶缺氧降解动力学与过程控制因素研究:[硕士学位论文].上海:同济大学,2006.
    李胜业,金朝晖,金晓秋,等.还原铁粉反应柱去除地下水中硝酸盐氮的研究.农业环境科学学报.2004,23(6):1203-1206.
    李铁龙,刘海水,金朝晖,等.纳米铁去除水中硝酸盐氮的批试验.吉林大学学报(工学版).2006,36(2):264-268.
    李妍,赵琳娜,何宗均,等.反硝化细菌的筛选及应用研究.天津农业科学.2008,14(5):43-44.
    李晔,章旻,陈家宏,等.污水反硝化脱氮的固态有机碳源选择实验研究.武汉理工大学学报.2010,32(6):27-31.
    连英立,张光辉,聂振龙,等.西北内陆张掖盆地地下水温度变化特征及其指示意义.地球学报.2011(2):195-203.
    刘伯业,陈复生,何乐,等.可生物降解材料及其应用研究进展.塑料科技.2010,38(11):87-90.
    刘江霞,罗泽娇,靳孟贵,等.地下水有氧反硝化的固态有机碳源选择研究.生态环境.2008,17(1):41-46.
    刘江霞,罗泽娇,靳孟贵,等.以麦秆作为好氧反硝化碳源的研究.环境工程.2008,26(2):94-96.
    刘开朗,王加启,卜登攀,等.环境微生物群落结构与功能多样性研究方法.生态学报.2010,30(4):1074-1080.
    刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析.水科学进展.2002,13(3):313-320.
    刘玉林,何杰,谢同凤.离子交换树脂去除饮用水中硝酸盐的改进研究.淮南工业学院学报.2001,21(4):56-58.
    陆彩霞.氢自养反应器去除饮用水中高浓度硝酸盐的研究:[博士学位论文].天津:天津大学,2009.
    陆彩霞,顾平.氢自养反硝化去除饮用水中硝酸盐的试验研究.环境科学.2008,29(3):671-676.
    罗宁,罗固源,吉方英,等.新型双泥生物反硝化除磷脱氮系统中微生物的组成.给水排水.2003(8):33-35.
    马万里.土壤微生物多样性研究的新方法.土壤学报.2004,41(1):103-107.
    毛跃建,张晓君,张宝让,等.专一性PCR和变性梯度胶电泳协助从焦化废水处理装置中分离优势功能菌Thauera属菌株.微生物学报.2008(12):1634-1641.
    牟洁,孙宝盛,陈谊.利用PCR-DGGE研究膜生物反应器中微生物的群落结构.环境科学学报.2010,30(4):729-734.
    庞朝晖,张敏,张帆.电极生物膜处理地下水中的硝酸盐氮实验研究.水处理技术.2010,36(5):93-95.
    乔俊莲,郑广宏,闫丽,等.零价铁修复硝酸盐污染水体的研究进展.水处理技术.2009,35(6):6-10.
    乔雪琴,衡卫清.北京城近郊区地下水—水质预测.环境保护.1987(2):17-19.
    曲久辉,范彬,刘锁祥,等.电解产氢自养反硝化去除地下水中硝酸盐氮的研究.环境科学.2001,22(6):49-52.
    邵留,徐祖信,金伟,等.以稻草为碳源和生物膜载体去除水中的硝酸盐.环境科学.2009,30(5):1414-1419.
    宋秀杰,丁庭华.北京市地下水污染的现状及对策.环境保护.1999(11):44-47.
    苏俊峰,马放,高珊珊,等.异养型同步硝化反硝化处理氨氮废水及群落结构分析.浙江大学学报(农业与生命科学版).2007(6):685-690.
    苏彤,范铮.以聚羟基脂肪酸酯为固体碳源去除地下水中的硝酸盐.北方环境.2011,23(6):138-141.
    孙根年,吴晓娟.20年来西安城区地下水污染的时空变化分析.陕西师范大学学报(自然科学版).2005,33(2):110-114.
    孙猛,董莉莉,孙明正.长春市地下水中氮污染分析.长春工程学院学报(自然科学版).2008,9(1):58-61.
    孙彦富,刘晖,刘洁萍,等.同步反硝化短程除硫功能菌群的变化及鉴定.化工学报.2010(7):1852-1858.
    田建强,李咏梅.以喹啉或吲哚为单一碳源时反硝化过程中亚硝酸盐的积累.环境科学学报.2009(1):68-74.
    童桂华,彭昌盛,贾永刚,等.离子交换树脂去除水中硝酸盐的研究.工业用水与废水.2008,39(4):73-76.
    涂丛慧,王晓琳.电渗析法去除水体中无机盐的研究进展.水处理技术.2009,35(2):14-18.
    万东锦,刘会娟,雷鹏举,等.硫自养反硝化去除地下水中硝酸盐氮的研究.环境工程学报.2009,3(1):1-5.
    王峰,徐灿华,刘易,等.启动条件对活性污泥变形菌群落的影响.同济大学学报(自然科学版).2007(7):949-953.
    王海燕,曲久辉,雷鹏举.电化学氢自养与硫自养集成去除饮用水中的硝酸盐.环境科学学报.2002,22(6):711-715.
    王金永,赵有斌,林亚玲,等.淀粉基可降解塑料的研究进展.塑料工业.2011,39(5):13-17.
    王敏,尚海涛,郝春博,等.饮用水深度处理活性炭池中微生物群落分布研究.环境科学.2011(5):1497-1504.
    王旭明,从二丁,罗文龙,等.固体碳源用于异养反硝化去除地下水中的硝酸盐.中国科学(B辑:化学).2008,38(9):824-828.
    王允,张旭,张大奕,等.用于地下水原位生物脱氮的缓释碳源材料性能研究.环境科学.2008,29(8):2183-2188.
    温成林,宋武昌,刘建广.不同温度下反硝化除磷工艺ORP变化规律研究.水科学与工程技术.2009(2):21-23.
    吴未红,袁兴中,曾光明,等.电极—生物膜法去除地下水中硝酸盐氮.水处理技术.2005,31(5):55-57.
    席北斗,于会彬,马文超,等.湖岸缓冲带反硝化作用的研究进展.环境工程学报.2009,3(10):1729-1734.
    夏军,翟金良,占车生.我国水资源研究与发展的若干思考.地球科学进展.2011(9):905-915.
    夏四清,钟佛华,张彦浩.氢自养反硝化去除水中硝酸盐的影响因素研究.中国给水排水.2008,24(21):5-8.
    肖晶晶,郭萍,霍炜洁,等.反硝化微生物在污水脱氮中的研究及应用进展.环境科学与技术.2009,32(12):97-102.
    辛明秀,赵颖,周军,等.反硝化细菌在污水脱氮中的作用.微生物学通报.2007,34(4):773-776.
    邢林,汪家权.生物反硝化墙去除地下水中硝酸盐的研究.合肥工业大学学报(自然科学版).2008,31(10):1561-1564.
    杨琰,蔡鹤生,刘存富,等.NO3中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用-以河南林州食管癌高发区研究为例.中国岩溶.2004,23(3):206-212.
    殷芳芳,王淑莹,昂雪野,等.碳源类型对低温条件下生物反硝化的影响.环境科学.2009,30(1):108-113.
    殷士学,沈其荣.缺氧土壤中硝态氮还原菌的生理生化特征.土壤学报.2003,40(4):624-630.
    于娟,张翼龙,王文中,等.新安镇南浅层地下水平面温度分布及影响因素.安徽农业科学.2012(3):1668-1671.
    张斌,邱志刚,金敏,等.污泥好氧颗粒化过程中微生物群落结构的演变与分析.环境工程学报.2011,5(10):2369-2374.
    张大奕,李广贺,王允,等.缓释碳源材料释碳与脱氮性能.清华大学学报(自然科学版).2009,49(9):75-79.
    张立辉,曹国民,盛梅,等.地下水硝酸盐去除技术进展.净水技术.2010,29(5):4-10.
    张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析.长江流域资源与环境.2009(2):116-120.
    张胜,张云,张翠云,等.河北平原地下水N03污染的原位微生态修复.地质通报.2006,25(5):609-615.
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报.1995,1(2):82-89.
    张晓琳,蒙格平,孙美,等.北京市大兴区浅层地下水水质时空变化分析.中国农村水利水电.2011(12):22-25.
    张星星,孟凡生,王业耀,等.零价铁修复硝酸盐污染地下水的影响因素.环境工程.2010(S1):70-73.
    张彦浩,刘建广,郭忠云,等.中空纤维膜生物反应器去除地下水中硝酸盐的效能.中国给水排水.2011,27(11):33-36.
    张彦浩,杨宁,谢康,等.自养反硝化技术研究进展.化工环保.2010,30(3):225-229.
    张云,张胜,刘长礼,等.氮污染地下水的原位修复试验研究.中国给水排水.2007,23(11):8-12.
    赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报.2007,26(2):779-783.
    赵新锋,陈法锦,陈建耀,等.城市地下水硝酸盐污染及其成因分析——以珠海香洲区为例.水文地质工程地质.2008(3):87-92.
    赵秀春,王成见,孟春霞.青岛市地下水中硝酸盐氮的污染及其影响因素分析.水文.2008,28(5):94-96.
    郑兰香,鞠兴华.温度和C/N比对生物膜反硝化速率的影响.西南给排水.2006,27(2):31-33.
    周贵忠,孙静,张旭,等.地下水生物反硝化碳源材料研究.环境科学与技术.2008,31(7):4-6.
    周海红,王建龙.利用可生物降解聚合物同时作为反硝化微生物的碳源和附着载体研究.中国生物工程杂志.2006,26(2):95-98.
    周玲,李铁龙,全化民,等.还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报.2006,25(2):368-372.
    朱秋华.电渗析法脱盐试验研究.化学工程与装备.2011(1):45-50.
    朱文优,张忠刚.分子生物学技术在环境微生物研究中的应用.宜宾学院学报.2009,9(6):88-90.
    朱艳芳,金朝晖,方悦,等.催化还原脱除地下水中硝酸盐的研究.环境科学学报.2006,26(4):567-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700