用户名: 密码: 验证码:
太阳能光合细菌连续制氢试验系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家“863”计划项目“中小型太阳能光合生物制氢系统及生产性运行研究”(项目编号:2006AA05Z119)、国家自然科学基金项目“光合生物制氢体系的热效应及其产氢机理研究”(项目编号:50676029)的资助下完成。
     化石能源的日渐枯竭及其使用所带来环境污染问题迫使人们开发新的清洁可再生能源以满足社会可持续发展的需要,氢能因能量密度高、燃烧无污染且利用形式多样而被公认为未来主要的能源载体形式,以氢能使用为核心的“氢能经济”和“氢能社会”发展模式是人们对未来能源使用技术的憧憬。生物制氢是利用微生物自身代谢释放氢气的过程,其产氢条件温和,环境友好且原料来源丰富而被认为是未来氢能生产的主要形式。在各类生物制氢技术中,光合细菌制氢不仅有较高的产氢能力,其还可以利用多种有机废弃物作为产氢原料,实现氢能生产和废弃物处理的双重目标而成为制氢技术研究的热点。
     光合细菌制氢是光合细菌在光照条件下将有机质转化为氢气的生理代谢过程,光合细菌制氢反应器的开发是光合细菌制氢技术研究从实验室向实际生产转化的关键环节。面对日益增长的氢能市场,开发具有连续生产能力的光合细菌制氢反应器成为实现光合细菌制氢产业化生产的基础条件。论文在总结现有光合细菌制氢反应器发展现状的基础,结合光合细菌产氢的基本特性,提出了大型光合细菌连续制氢反应器设计的技术途径,研制出了以太阳能为主光源、LED为辅助光源的太阳能光合细菌连续制氢试验系统,系统的试验运行为光合细菌连续制氢反应器的开发提供了参考和依据。
     论文的主要研究成果如下:
     (1)在对现有光合细菌制氢反应器比较研究的基础上提出了内置光源多点分布式的光合细菌制氢反应器的设计方法。内置光源形式可改变采光面作为反应器结构材料所带来的反应器容积受限和保温问题;多点分布的点光源布置形式可以解决反应器容积受限,使反应器的内部得到均匀光照;太阳能作为主光源和辅助人工冷光源的使用可有效降低反应器的运行成本。
     (2)照明光纤可以实现太阳光远距离向反应器的柔性传播,同时还可以滤除太阳光中对光合细菌生长的有害辐射。在各类照明光纤的比较中,多芯塑料聚合物光纤不仅可以满足复杂路径下光传输的要求,其还能实现反应器内多点布光的要求。
     在人工冷光源的选择试验中发现,光合细菌在黄色发光LED(Light-Emitting Diode)下的生长和产氢的效果要优于其它对照组,黄色发光LED可以用作光合细菌连续产氢的辅助光源以弥补太阳能因周期性和不稳定性变化所带来的消极影响。
     (3)反应器顶部空间中不同初始气体成分虽然会对光合细菌的生长和产氢带来一定的影响,但少量空气的存在并不会对光合细菌的产氢产生明显的抑制作用。对于连续运行的光合细菌制氢反应器的设计来说可以不使用惰性气体对顶空气体进行置换,但其顶部空间应小于反应器容积的1/3以上。
     (4)研制出了太阳能光合细菌连续制氢试验系统,该系统由反应器本体、太阳能集热换热单元、太阳能聚光传输单元、太阳能光伏转换单元、气体收集与储存单元、自动控制单元等6部分组成。
     反应器采用折流式结构设计不仅可以满足反应器内部不同空间中布光要求,同时实现反应物在流动过程中自搅拌效果。反应器本体由8个结构相同的独立隔室组成,其设计容积5.76m3,有效工作容积为5.18m3;反应器内部共布置228根玻璃布光管,满足了反应器内部均匀布光的需要;试验系统采用太阳能真空管集热器为反应器提供热量维持反应液温度恒定,太阳能真空管集热器面积为6m2,热水箱容积1.3m3;换热器采用不锈钢三角形翅片管式换热器,其基管直径为φ20mm,换热器换热面积为8.6 m2;太阳能聚光器采光面积2.7m2;太阳能电池板容量为120Wp,蓄电池容量为180Ah,满足系统2d的工作要求。
     (5)不同消泡剂对光合细菌的生长和产氢影响的试验表明:在试验所选择的消泡剂中,菜籽油对光合细菌的生长和产氢不存在抑制现象,且具有较强的消泡能力,其经济添加量为0.05%,过高则会引起产氢量下降。
     (6)太阳能光合细菌连续制氢试验系统的启动试验表明:当以纯葡萄糖为单一产氢底物时,需要补充(NH4)2SO4、NaCL、KH2PO4等基础营养物质并在进料时追加30%以上的活性菌体才能满足光合制氢反应器连续稳定产氢的要求。
     (7)以葡萄糖为底物的运行试验表明:底物浓度对反应器的稳定运行和产氢具有明显的影响,在相同试验条件下系统的总产氢量随着浓度的增加而增加,试验在3%的葡萄糖浓度下获得了最大产氢量;当进料浓度超过4%后,由于高浓度葡萄糖的快速降解导致反应器内溶液迅速酸化使产气率下降。
     (8)不同水力滞留期对光合细菌产氢的影响表明:短的水力滞留期可以减少中间产物对后继反应的抑制,但过短的水力滞留期则导致原料的利用低下降,甚至出现原料不完全降解的现象;长水力滞留期条件下虽然可以提高原料利用率,但代谢产物在局部空间中的长时间停留将会对菌体生长产生抑制,并引起产氢率下降。试验在水力滞留期为36h时获得的最高产氢率为4.225m3/m3·d。
     (9)利用不同粪便作产氢底物进行的试验表明:在试验所选择的几种畜禽粪便中,牛粪最适宜用作光合细菌产氢的底物,其在黑暗好氧条件下经过5~7d的预处理可以达到最佳产氢效果,试验在其COD为7000mg/L时得到的最大产氢率为0.56 m3/m3·d,过低的粪便浓度由于可转化物质减少导致产氢降低,过高的浓度则因光线在溶液中穿透性较差导致光合细菌无法得到足够光照而引起产氢下降。
This paper was supported by National“863”high-tech research projects "Research on small and medium-sized bio-hydrogen systems by photosynthetic bacteria with solar energy and its working characteristics" (NO. 2006AA05Z119) and National Natural Science Foundation“Research on thermo effect of bio-hydrogen systems by photosynthetic bacteria (PSB)and the mechanism of hydrogen production by PSB" (NO. 50676029).
     With the growing depletion of fossil fuel and environmental pollution caused by fossil fuel, people recognized it is necessary to search for clean renewable energy resources to meet the demands of economic development and social progress. Hydrogen is considered as a clean and efficient energy carrier because it has high energy density, produces only water after combustion and can be used as different forms, (such as combustion directly, fuel cell). It is dreamed to develop "hydrogen economy" and "hydrogen society" under widespread use of hydrogen as main energy source in the future.
     At present, hydrogen production mainly comes from fossil fuels, which is a high energy consumption process and easily causes environmental pollution. It is inevitable that the depletion of fossil fuel will put it to an end. However, bio-hydrogen production is considered to be the main approach to get hydrogen in the future because as a process of microbial metabolism it can be run in normal temperature and has rich source of raw materials. Among the various technologies for bio-hydrogen production, hydrogen production by PSB becomes a focus due to the use of the organic waste as substrates and high conversion yields, which serves as energy supply and waste treatment.
     PSB can convert organic matter into molecule hydrogen under anaerobic condition with light. The development of photobioreactor is the key link putting hydrogen production by PSB into market from lab research. What’s more, with the growing market demand, the development of continuous photobioreactor is the basic condition for the industrialization of hydrogen production by PSB.
     The design idea to develop continuous large-scale photobioreactor by PSB was put forward in the paper based on the survey of literatures. A continuous photo-bioreactor of hydrogen production by PSB was designed successfully, which use sunlight as the main light source and LED as the auxiliary light source.
     Main research results of the paper are as following:
     (1) Built-in illumination and multi-point light sources distribution in reactor are applied. Built-in illumination can overcome the limitation of reactor materials and light supply, which makes it easier to have heat preservation for the reactor and provide a large room as much as possible. Multi-point light sources distribution model guarantees all space in the reactor to get enough light. Meanwhile, it is an effective way to decrease the running cost using sunlight as a main light source and artificial cold light source as auxiliary light source.
     (2) The long-range transfer of sunlight to the internal reactor would be achieved by the illuminating optical fiber, by which harmful radiation to PSB in sunlight would be filtered. Compared with other types of optical fiber, the multi-core plastic polymer optical fiber has many advantages, and it could not only transmit light in complex path, but also help to realize the multi-point light distribution in reactor. It is essential to choose artificial cold light source to make up the shortcomings of solar energy resulting from its cyclical and instability to keep continuous working. From the result of experiment, light-emitting yellow LED (Light-Emitting Diode) was chosen as the auxiliary light because it is better than other treatments for the growth and hydrogen production of PSB.
     (3) Although the initial gas components in headspace of reactor would affect the growth and hydrogen production of PSB in a certain extent, a small amount of air in headspace of reactor has no significant inhabitation for hydrogen production. Thus, replacement of the air in reactor with inert gas can be ignored in the continuous photo-bioreactor design, which demands the volume of headspace should be less than 1/3 of the reactor volume.
     (4) A continuous photo-bioreactor of hydrogen production by PSB was developed, which includes the reactor, the solar heat collectors and heat exchanger unit, sunlight focus and transmission unit, solar photovoltaic unit, gas collection and storage unit and automatic control unit.
     The baffled structural of the photobioreactor can arrange the illumination in different space of the reactor, as well as realize reactant mixed and stirred during its flow. The design volume of reactor is 5.76 m3; and the working volume is 5.18 m3. 228 glass tubes were arranged in proportional spacing in reactor, which were used to keep the optical fiber and LED out of liquid. Solar vacuum tube collector, 6m2, was used to provide heat for the reactor, and the volume of heat water tank is 1.3 m3. Stainless steel finned tube heat exchanger was used in the reactor, the diameter of tube isφ20mm, and the exchange area is 8.6 m2. The surface of sunlight focus equipment is 2.7 m2. In order to provide electricity for 2days need, solar cell capacity was designed for 120Wp and battery capacity for 180Ah.
     (5) Research showed that rapeseed oil was better than other defoamers, which did not suppress the growth and hydrogen production of PSB, and had a strong anti-foaming capacity. The economy adding amount of rapeseed oil was 0.05 %, which would form a thin layer on the surface in the reactor.
     (6)The start experiment of the photobioreactor showed it was necessary to add nutrients such as (NH4)2SO4、NaCL、KH2PO4 and only if a supplement more than 30% of inoculums could keep the photo-bioreactor producing hydrogen steadily when only using glucose as a single substrate for hydrogen production.
     (7) The effect of glucose concentration on hydrogen yields and stable operation of the reactor was significant. Under the same experimental condition, the hydrogen yield increased with the increase of glucose concentration, the highest hydrogen yield was got at 3% glucose. But the phenomenon changed when the glucose concentration was more than 4%, since the rapid degradation of high concentration glucose would lead to acidification of the solution in the reactor, which is harmful to PSB and decreases the activity of Nitrogenase. However, the average content of hydrogen in the production gas was kept in the same levels with different substrate concentration, but it had changed in different apartment in the same concentration.
     (8) Different HRT tests showed that the short HRT could reduce the inhibition to the following reaction, but too short of HRT will decrease the utilization of raw materials, even cause incomplete degradation. Although extending the HRT is better for improving the utilization, the longer residence of byproduct will decline the hydrogen production rate. In the test, the maximum hydrogen production rate is 4.225m3/m3·d when the HRT was kept at 36h.
     (9) Different livestock and poultry dejecta were tested as substrates in hydrogen production; the result showed the cattle dejecta with pretreatment is suitable for producing hydrogen than pig dejecta and chicken dejecta. Cattle dejecta treated for 5~ 7days under dark and anaerobic condition can achieve the optimal results. In the test, the maximum production rate of hydrogen was 0.56 m3/m3·d at 7000mg/L COD with treated cattle dejecta. The production of hydrogen reduced when the solution at a lower concentration due to shortage of the material which can be used by PSB as substrate, but too much higher concentration will effect light penetration and prevent PSB from absorbing enough light energy to meet the demand of electron transport process.
引文
[1]周戟.传输力量的能源[M].上海:上海科学技术文献出版社.2005.5: 3-4.
    [2]毛宗强.氢能—21世纪的绿色能源[M].北京:化学工业出版社.2005.1:1,19-20,70,187.
    [3]王革华.能源与可持续发展[M].北京:化学工业出版社.2005.1:22,119-133.
    [4]马克思.资本论第一卷[M].北京:人民出版社,1975:204.
    [5]黄镇江,刘凤君.燃料电池及其应用[M].北京:电子工业出版社.2005,831-37
    [6]UNFCCC. United Nations Framework Convention on Climate Change[QL]. 1992.6. http://unfccc.int/2860.php.
    [7]联合国.京都议定书[QL]. 1998. http://www.un.org/chinese/climatechange/ docs/ kpchinese.pdf.
    [8]BP中国.BP世界能源统计2008[QL]. 2008.6. http://www.bp.com/multipleimagesection.do? categoryId=4728&contentId=7047099.
    [9]冯骥如.论“氢经济”产业革命——中国和平发展的能源战略[J].世界经济与政治.2005(1):1-12.
    [10]鄂勇,伞成立.能源与环境效应[M].北京:化学工业出版社.2006.7:11.
    [11]雪峰.布什政府着手绘制“氢经济”发展蓝图[J].全球科技经济瞭望.2003,37:37-40.
    [12]毛宗强.氢能-我国未来的清洁能源[J].化工学报.2004,55,增刊:296-302.
    [131]United States Department of Energy. A National Vision Of America's Transition To A Hydrogen Economy—To 2030 And Beyond. Washington DC. 2002.2 [EB] .http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf.
    [14]刘娅,徐峰.世界氢能与氢经济的发展概况及不同认识[J].世界科技研究与发展.2006,28(2):101-106.
    [15]IEA. [QL] http://www.ieahia.org/.
    [16]IPHE. A vision of the hydrogen economy[QL]. http://www.iphe.net/.
    [17]United States Department of Energy. Nation Hydrogen Energy Roadmap. Washington DC. 2002.11.http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/national_ h2_roadmap.pdf.
    [18]United States Department of Energy. http://www.hydrogen.energy.gov/pdfs/hydro gen_posture_plan_dec06.pdf.
    [19] United States Department of Energy. http://www1.eere.energy.gov/hydrogenandfuelcells/.
    [20]United States Department of Energy. http://www1.eere.energy.gov/vehiclesandfuels/about/ partnerships/freedomcar.
    [21]United States Department of Energy. Hydrogen Posture Plan– An Integrated Research, Development, and Demonstration Plan. Washington DC2006.12 http://www.hydrogen.energy.gov/pdfs/hydrogen_posture_plan_dec06.pdf.
    [22]顾钢.国外氢能技术路线图及对我国的启示.国际技术经济研究.2004(7)4.
    [23]http://www.enaa.or.jp/WE-NET/contents_e.htmL.
    [24]http://www.aist.go.jp/www_e/guide/gyoumu/nss/index.htmL.
    [25]科技部.科技部2005—2006年能源工作要点落实情况总结[OL].2006.2. http://www.most.gov.cn/zfwj/zfwj2006/zf06wj/zf06bgtfh/200604/t20060414_30729.htm.
    [26]科技部.863计划先进能源技术领域2007年度专题课题申请指南[EB/OL].2007.3. http://www.most.gov.cn/tztg/200703/t20070326_42348.htm.
    [27]徐向东,陈广华.后石油时代的氢能经济浅析.市场周刊·管理探索[J]. 2005,1:14-16.
    [28]Grietus Mulder, Jens Hetland, Guido lenaers. Towards a sustainable hydrogen economy: hydrogen pathways and infrastructure. International Journal of Hydrogen Energy [J]. 2007,32:1324-1331.
    [29]Jens Hetland, Grietus Mulder. In search of a sustainable hydrogen economy: How a large-scale transition to hydrogen may affect the primary energy demand and greenhouse gas emissions[J]. International Journal of Hydrogen Energy [J]. 2007,32:736-747.
    [30]Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council, National Academy of Engineering. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs[M]. Washington DC. 2004. http://www.nap.edu/catalog.php?record_id=10922.
    [31]Kyriakos Maniatis. Pathways for the production of bio-hydrgoen: Opportunities and Challenges[J]. IEA Bioenergy. 2003,3. http://www.iea.org/textbase/work/ 2003/hydrogen/sessionii/Bioen.pdf.
    [32]N.Z.Muradov, T.N.Veziroglu. From hydrocarbon to hydrogen-carbon to hydrogen economy. International hydrogen energy[J]. 2005,30:225-237.
    [33]丁福趁,易玉峰.制氢储氢技术[M].北京:化学工业出版社.2006,1:16.
    [34]Ilgi Karpinar Kapdan, Fikret kargi. Bio-hydrgoen production from waste materials[J]. Enzyme and Microbial Technology. 2006,38:569-582.
    [35]J.R. Benemann. Feasibility analysis of photobiological hydrogen production[J]. International Journal of Hydrogen Energy.1997,22:979-987.
    [36]Patrick C.Hallenbeck, John R.Benemann. Biological hydrogen production; fundamental and limiting processes[J]. International Journal of Hydrogen Energy.2005,27:1185-1193.
    [37]U.S. DOE. A Prospectus for Biological H2 Production. 2005. http://www1.eere. energy.gov/hydrogenandfuelcells/production/pdfs/photobiological.pdf.
    [38]Kaushik Nath, Debabrata Das. Improvement of fermentative hydrogen production: various approaches[J]. Appl. Microbiol Biotechnol. 2004,65:520-529.
    [39]Filret kargi, Ilgi Karapinar Kapdan. Biohydrogen from waste materials[会议].Proceedings international hydrogen energy congress and exhibition IHEC 2005. Istanbul, Uurkey. 2005,7.]
    [40] M Sunita, Chanchal K Mitra. Photoproduction of hydrogen by photosynthetic bacteria from sewage and waste water[J]. J. Biosci. 1993,18(1):155-160.
    [41]Debabrata Das, T.Nejat Veziroglu. Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy [J]. 2001,26:13-28.
    [42]Nitai Basak, Debabrata Das.The prospect of purple non-sulfur(PNS) phtosynthetic bacteria for hydrogen production: the present state of the art[J]. World J Micobiol Biotechnol. 2007,23(1):31-42]
    [43]柯水洲,马晶伟.生物制氢研究进展(II):应用与前景[J].化工进展.2006,25(9):1006-1010.
    [44]Roger C. Prince, Haroon S. Kheshgi. The photobiological production of hydrogen: Potential Efficiency and effectiveness as a renewable fuel [J]. Critical Reviews in Microbiology. 2005,31:19-31.
    [45]杨素萍.光合细菌生物制氢研究[D].济南:山东大学.2002,5:21-23,41.
    [46]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工程.2006,40(1):27-31.
    [47]张全国,李刚.生物制氢技术现状及其发展潜力[J].农业工程技术.2007,(21):17-22.
    [48]袁权.能源化学进展[M].北京:化学工业出版社. 2005,8:216.
    [49]Berndt Esper, Adrian Badura, Matthias Rogner. Photosynthesis as a power supply for (bio-)hydrogen production[J]. Trends in Plant science. 2006.11(11) :543-549.
    [50]Roderick K. Clayton. Research on photosynthetic reaction centers from 1932 to 1987[J]. Photosynthesis Research. 2002,73:63-71.
    [51]Richard Cogdell, Alastair T.Gardiner. Light harvesting by purple bacteria: a circular argument[J]. Microbiology Today. 2001:28(1)120-122.
    [52]Gerhart Drews. Forty-five years of devepmental biology of photosynthetic bacteria[J]. photosynthesis reaerach. 1996,48:325-352.
    [53]姜月顺,李铁津.光化学[M].北京:化学工业出版. 2005.1:324-340.
    [54]Radhey S. Gupta. Evolutionary relationships among photosynthetic bacteria[J]. Discoveries in Photosynthesis.2005,1087-1097.
    [55]Terrance E. Meyer, Michael A.Cusanovich. Discovery and characterization of electron transfer proteins in the photosynthetic bacteria[J]. Photosynthesis Reseach. 2003,76:111-126.
    [56] Chun-Yen Chen, Wei-bin Lu, Ji-fang Wu, Jo-shu Chang. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design[J]. International Jouranl Hydrogen Energy.2007,32:940-949.
    [57] Radhey S. Gupta. Evolutionary relationships among photosynthetic bacteria[J]. Discoveries in Photosynthesis.2005:1087-1097.
    [58]朱瑞艳.光合细菌深红红螺菌放氢的研究[D].中国农业大学博士论文.2006.5:22.
    [59]朱建良,冯有智.固氮类微生物产氢机理研究进展[J].南京工业大学学报.2003,25(1).
    [60]Howard Gest. A serendipic legacy: Erwin Esmarch’s isolation of the first photosynthetic bacterium in pure culture[J]. photosynthesis Research. 1995,46:473-478.
    [61]Macler B A, Pelroy R A, Bassbam J A. Hydrogen formation in nearly stoichiometric amounts by a Rhodopseudomonas sphaeroides [J] mutant. J Bacterial.1978,138(2):446-452.
    [62]Kern M, Klipp W, Klemme J H. Increased nitrogenase dependent H2 production by hup mutants of Rhodospirillum rubrum[J]. Appl. Envi. Microbiol. 1994,60(6):1786-1774.
    [63]Ooshima H, Takakuwa S. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus[J]. J Ferment Bioeng. 1998,85(5):470-475.
    [64]Toshihiko Kondo, Masayasu Arakawa, Toshiro Hirai, Tatsuki Wakayama, Jun Miyake.Enhancement of hydrogen production by a photosynthetic bacterium Mutant with reduced pigment[J]. Joural of bioscience and bioengineering.2002,93(2):145-150.
    [65]Eui-Jin Kim, Ju-Sim Kim, Mi-Sun Kim, ,et,al.. Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen [J]. International Journal of Hydrogen Energy. 2006,31:531-538.
    [66] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from fraction of municipal solid waste [J]. Water research. 1999,33:2579-2586.
    [67] Akiko Ike, Tomoko Murakawa, Hideo Kawaguchi,,et,al.. Photoproduction of hydrogen from Raw starch using a Halophilic bacterial community[J]. Journal of bioscience and bioengineering.1999,88(1):72-79.
    [68] Herbert H.P., Hong Liu, Tong Zhang. Phototrophic hydrogen production from acetate and butyrate in wastewater [J]. International Jouranl Hydrogen Energy. 2005,30:785-793.
    [69] Xian-Yang Shi, Han-Qing Yu. Response surface analysis on the effect of cell concentrationand light intensity on hydrogen production by Rhodopseudomonas capsulate[J]. Process biochemistry. 2005,40:2475-2481.
    [70] Xian-Yang Shi, Han-Qing Yu. Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulate[J]. Process biochemistry. 2005,40:2475-2481.
    [71].Miyake J, Kawamura S. Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. International Jouranl Hydrogen Energy.1987,12:147-149
    [72] Wakayama T,Asada Y, Miyake J. Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV from hour to second range[J].Appiled biochem biotech.2000,84-86:431-440.
    [73]Pietro Carlozzi , Benjamin Pushparaj,Alessandro Degl’Innocenti,Antonella Capperucci. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency[J]. Appl Microbiol Biotechnol.(2006,73:789–795).
    [74]缪应祺.废水生物脱硫机理及技术[M].北京:化学工业出版社.2004.3:218-229
    [75] Kaushik Nath, Anish Kumar, Debabrata Das. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11[J]. Appl. Microbiol Biotechnol. 2005,68:533-541.
    [76] Chi-mei Lee, Pei-Chung Chen, Chun-Chin Wang, Yun-Chang Tung. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Jouranl Hydrogen Energy,2002,27:1309-1313.
    [77]Tae-Young Jeong, Gi_cheol Cha, IK-Keun YOO ,et,al.. Hydrogen production from waste activated sludge by using separation membrane acid fermentation reactor and photosynthetic reactor[J]. International Journal of Hydrogen Energy. 2007,32:525-530.
    [78]Herbert H.P.Fang, Heguang Zhu, Tong Zhang. Phototrophic hydrogen from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter Sphaeroides[J]. International Journal of Hydrogen Energy.2006,31:2223-2230.
    [79]邢新会,张翀.发酵生物制氢研究进展[J].生物加工过程. 2005,3(1):1-8.
    [80]李建政,汪群慧.废物资源化与余生物能源[M].北京:化学工业出版社.2004.3:13-15.
    [81]柯水洲,马晶伟.生物制氢研究进展(I)产氢机理与研究动态:应用与前景[J].化工进展.2006,25(9):1001-1006.
    [82]王继华,赵爱萍.生物制氢技术的研究进展与应用前景[J].环境科学研究.2005,18(4):129-135
    [83]Deliang He, Yann Bultel ect. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. Journal of power sources 141(2005)19-23.
    [84]杨素萍,赵春贵,曲音波等.光合细菌产氢研究进展[J].水生生物学报. 2003,23(1):85-91.
    [85]王昶,贾士儒,贾庆竹等.光合细菌生物制氢技术[J].生物加工过程. 2005,3(4):9-13.
    [86] Bernado Ruggeri. Bio-routes to hydrogen production[C].Hydrogen & fuel cell technologies.bardonecchia.2007,1.http://www.flamesofc.org/public/hyschool-bardonecchia/presentations/15_Ruggeri.pdf.
    [87] Greg Burgess, Javier G.Fernandez-Velasco. Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production [J]. International Journal of HydrogenEnergy [J]. 2007,32:1225-1234.
    [88] Semastiaan Hoekema, Martijn Bijmans, Marcel Janssen. A pneumatically agitated flat-panel photobioreactor with gas re-circulation : anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium[J]. International Journal of Hydrogen Energy.2002,27:1331-1338
    [89]Hiroo Takabatake, Kiyohiko Suzuki, In-Beom Ko ,et,al.. Characteristics of anaerobic ammonia removal by a mixed culture of hyrogen producing photosynthetic bacteria[J]. Bioresource Technology. 2004,95:151-158.
    [90] European commission. Non-Thermal Production of Pure Hydrogen from Biomass, HYVOLUTION019825 [C].Brussel.2007,10.].
    [91] E.Nakada, S.Nishikat, Y. Asada, J. Miyake. Photosynthetic bacterial hydrogen production combined with a fuel cell[J]. International Journal of Hydrogen Energy.1999,24:1053-1057]
    [92]Jun Miyake, Masato Miyake, Yasuo Asada. Biotechnological hydrogen production: research for efficient light energy conversion [J]. Journal of Biotechnology.1999,70:89-101.
    [93] Toshihiko Kondo, Masayasu Arakawa, Tatsuki Wakayama, Jun Miyake. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics[J]. International Journal of Hydrogen Energy.2002,27:1303-1308.
    [94]日本能源学会,史仲平,华兆哲(译).生物质和生物质能源手册[M].北京:化学工业出版社. 2007, 1:202.
    [95]P.A.M. Claassen, G.J.de Vrije, project participant BWPII. Hydrogen from biomass[M]. Wageningen:Agrotechnology and Food Sciences Group.2007: 1.
    [96]Chi-Mei Lee, Kuo-Tsang Hung. Hydrogen production using Rhodopseudomonas palustriesWP 3-5 with hydrogen fermentation reactor effluent[C]. 16th World Hydrogen Energy Conference (WHEC 16). Lyon France. 2006.7.
    [97] Ela Eroglu, Ufuk Gunduz, Meral Yucel ,et,al.. Photobiological hydrogen production by using olive mill wasterwater as a sole substrate source [J]. International Journal of Hydrogen Energy.2004,29:163-171.
    [98] D.B. Lata, Ramesh Chandra, Arvind Kumar. Effect of light on generation of hydrogen by Halobacterium halobium NCIM 2852 [J]. International Journal of Hydrogen Energy.2007, 32:3293-3300.
    [99] D.B. Lata, Ramesh Chandra, Arvind Kumar. Effect of light on generation of hydrogen by Halobacterium halobium NCIM 2852 [J]. International Journal of Hydrogen Energy.2007, 32:3293-3300.
    [100]Xian-Yang Shi, Han-QingYu. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas Capsulate [J]. International Journal of Hydrogen Energy.2006,31:1641-1647.
    [101]Yasuo Asada. The 11th international symposlum on phototrophic prokaryotes. TOKYO.2003,8.24-29.
    [102]周汝雁.环流罐式光合生物制氢反应器及能量传输过程研究[D].郑州:河南农业大学.2007,4.
    [103]Chun-yen,Jo-shu Chang. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and interal optical-fiber illumination[J]. Process Biochemistry. 2006,41:2041-2049.
    [104]Richard J. Cogdell, Alastair T. Gardiner, Aleksander W. Roszak2 ,et,al.. Rings, ellipses and horseshoes: how purple bacteria harvest solar energy[J]. Photosynthesis Research. 2004,81:207–214.
    [105]赵建林.光学[M].北京:高等教育出版社,2006.5:41-43.
    [106]周太明,周详,蔡伟新.光源原理与设计[M].上海:复旦大学出版社.2006.12:41-42、160-161、215-221、257、264、349-351.
    [107]姚建铨,于意仲.光电子技术[M].北京:高等教育出版社,2006.5:87-91.
    [108]江月松,李亮,钟余.光电信息技术基础[M].北京:北京航空航天大学出版社.2005.12:172.
    [109]M. Waligorska, M.Moritz, M.Laniecki. Hydrogen generation by Rhodobacter spahaeroides O.U.001: the effect of photobioreactor construction material. WHEC 16, Llyon France. 13-16 June 2006.
    [110]Berndt Esper, Adrian Badura, Matthias Rogner. Photosynthesis as a power supply for (bio-)hydrogen production[J]. Trends in Plant science. 2006.11(11) :543-549.
    [111]柯水洲,马晶伟.生物制氢研究进展(II):应用与前景[J].化工进展.2006,25(9):1006-1010.
    [112] United States Department of Energy. A prospectus for biological H2 production [OL]. http://www1.eere.energy.gov/hydrogenandfuelcells/production/pdfs/photobiological.pdf.
    [113]刘晶璘.光生物反应器光现象的理论研究[D].广州:华南理工大学.1998.
    [114]朱核光,史家樑.生物产氢技术研究进展.应用与环境生物学报.2002,8(1):98-104.
    [115]杨健,章非娟,余志荣.有机工业废水处理理论与技术[M].北京:化学工业出版社.2005,1.227-240.
    [116] Tomohisa Katsuda, Takeshi Arimoto, Koichi Igarashi ,et,al.. Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus[J]. Biochemical Engineering Journal. 2000,5:157-164.
    [117]Yasuo Asada, Jun miyake. Photobiological hydrogen production[J]. Journal of bioscience and bioengineering.1999,88(1):1-6.
    [118]朱核光,赵琦琳,史家樑.光合细菌Rhodopseudomonas产氢的影响因子试验研究[J].应用生态学报》1997《8(2):194-198.
    [119]商务部.石油消费进口齐增我对外依存度达49%.上海证券报,2007年11月23日
    [120]康铸慧.光合细菌生物产氢试验研究[D].上海:同济大学.2006,3.
    [121]Harun Koku,˙Inci Eroglu, Ufuk Gunduz, et, al. Aspects of the etabolism of hydrogen production by Rhodobacter sphaeroides [J]. International Journal of Hydrogen Energy. 2002,27:1315-1329.
    [122]M.S. Montechia, N.L. Pucheu, N.L.Kerber ,et,al.. Oxygen and light effects on the expression of the photosynthetic apparatus in Bradyrhizobium sp. C7T1 strain[J]. Photosynth Res. 2006,90:215-222.
    [123]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用生态学报.1997,8(2):194-198.
    [124]吴季芳.以淀粉为碳源基质进行生物产氢[D].台湾:台湾国立成功大学硕士论文, 2004,6:
    [125]张明,史家梁.光合细菌光合产氢机理研究进展[J].应用与环境生物学报.1999,5:25-29
    [126] Chun-Yen Chen, Wei-bin Lu, Ji-fang Wu, Jo-shu Chang. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design[J]. International Jouranl Hydrogen Energy.2007,32:940-949.
    [127]师玉忠.光合细菌连续制氢工艺及相关机理研究[D].郑州:河南农业大学.2008,5.
    [128]Biswajit Mandal, Kaushik Nath, Debabrata Das. Improvement of biohydrogen production under decreased partial pressure of H2 BY Enterobacter cloacae [J]. Biotechnol Lett. 2006,28:831-835
    [129]Suping Yang, Zheng Wu Wang, Chun Gui Zhao. Generation of hydrogen from photolysis of organic acids by photosynthetic bacteria[J]. Chinese Chemical Letters. 2002, 13(11):1111-1114.
    [130]杨素萍,曲音波.光合细菌生物制氢[J].现代化工.2003,23(9):17-21.
    [131]Ida Akkerman, Marcel Janssen, Jorge Rocha, Rene h. Wijffels. Photobiological hydrogen production: photochemical efficiency and bioreactor design [J]. International Jouranl Hydrogen Energy. 2002,27:1195-1208]
    [132]张百良.农村能源工程学[M].北京:中国农业出版社,1999.11:369.
    [133]J H Reith, R H Wijffels, H Barten. Bio-methane & Bio-hydrogen: Status and perspective of biological methane and hydrogen production[M]. Dutch Biological Hydrogen Foundation.2003. http://www.biohydrogen.nl/everyone/20804.
    [134]Harun Koku, Inci Eroglu, Ufuk Gunduz,,et,al.. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001[J]. International Jouranl Hydrogen Energy.2003,28:381-388.
    [135]张军合.太阳能光合生物制氢系统及其光谱耦合特性研究[D].郑州:河南农业大学.2006,5.
    [136]孙雨南,王茜蒨,伍剑等.光纤技术——理论基础与应用[M].北京:北京航空航天大学出版社.2006,7:53-54,78-81.
    [137]饶云江.光纤技术[M].北京:科学出版社.2006,8:22-23.
    [138]王庆有,蓝天,胡颖等.光电技术[M].北京:电子工业出版社,2006.4:131-138.
    [139]蒋芸,鲍丽莎,曹正东.发光二极管的特性研究[J].实验室研究与探索. 2007,26(6):30-33.
    [140]徐明芳,郭宝江.高效发光二极管光生物反应器的研制及光合自养螺旋藻的培养[J].中山大学学报论从. 1997,5:98-103.
    [141]吴沿友,刘建,胡永光,赵玉国,李国祥.发光二极管作为组培光源的特性分析与应用[J].江苏大学学报(自然科学版). 2007,28(2): 93-96.
    [142]崔鸿忠,李正佳,范晓红.发光二极管光源疗法在生物医学中的应用[J].激光技术.2006,30(6):638-642.
    [143]薛志成.利用发光二极管种菜[J].世界农业.2007(7):60.
    [144]张东生.橙色LED保鲜蔬菜创奇迹[J].国际化工信息.2005(1):32.
    [145]朱章玉,俞吉安,林志新等.光合细菌的研究及其应用[M].上海:上海交通大学出版社.1991,2:5.
    [146]Singh A, Pandey KD, Dubey RS. Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micells[J]. International Jouranl Hydrogen Energy.1999,24:693-698.
    [147]易明.光学[M].北京:高等教育出版社.1999,3:39-41.
    [148]吴强.光学[M].北京:科学出版社.2006,1:121-141.
    [149]沈耀良,王宝贞.废水生物处理新技术——理论与应用(第二版)[M].北京:中国环境科学出版社. 2006.3. 58-59,67.
    [150]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社2004.1:158-162.
    [151]Matsunaga, T; Hatano, T; Yamada, A, etal. Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor[J]. Biotechnology And Bioengineering. 2000,68(6): 647-651.
    [152] P Dama, J Bell, C J Brouckaert, ,et,al.. computational fluid dynamics: application to the design of the anaerobic baffled reactor. Presented at the WISA 2000 Biennial Conference, Sun City, South Africa, 28 May– 1 June 2000.
    [153] P. Dama, J. ell, K.M. Foxon,,et,al.. Pilot-scale study of an anaerobic baffled reactor for the treatment of domestic wastewater[J]. Water Science & Technology .2002,46(9): 263–270.
    [154] KM Foxon1, S Pillay, T Lalbahadur, ,et,al..The anaerobic baffled reactor (ABR):An appropriate technology for on-site sanitation[J].Water SA Vol. 2004,30(5):44-50.
    [155]Jianlong Wang, Yongheng Huang, Xuan Zhao. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology. 2004,93:205-208 .
    [156]刘宏,吴达成,杨志刚,翟永辉.家用太阳能光伏电源系统[M].北京:化学工业出版社.2007,3:107-120.
    [157]太阳能光发电协会(日),刘树民,宏伟译.太阳能光伏发电系统的设计与施工[M].北京:科学出版社. 2007,3:78-87.
    [158]曹军卫,马辉文.微生物工程[M].北京:科学出版社. 2004,1:124-128.
    [159]程玉来,田辛睿,杨玉芬.有机硅消泡剂在豆制品加工中的应用研究[J].食品工业科技.2006,(4):161-163.
    [160]覃先武,陈晖,匡金宝,肖冬光.消泡剂在面包酵母生产中的应用[J].酿酒科技科. 2006,12:87-89.
    [161]刘如林,刁虎欣,梁凤来.光合细菌及其应用[M].北京:中国农业科技出版社.1991,12.
    [162]Oskar R. Zaborsky ,Toshi Otsuki. BioHydrogen[M]. New York :Plenum Press. 1998:369-374 .
    [163]王艳锦.畜禽粪便污水光合细菌制氢技术研究[D].郑州:河南农业大学.2004,6.
    [164]尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究[D].郑州:河南农业大学.2005,5.
    [165]尤希凤,崔岩.光合细菌黑暗好氧条件下处理猪粪污水效果的影响因素研究[J].河南农业大学学报.2007,41(6):677-679.
    [166]师玉忠,张全国.猪粪污水中NH4+与产氢光合细菌的相关关系研究[J].武汉理工大学学报.2006,28(专辑II):264-267.
    [167]张军合,张全国,师玉忠等.光合细菌高效产氢菌群在猪粪污水中产氢量的研究[J].
    [168]张全国,原玉丰,李鹏鹏等.猪粪污水浓度对球形红假单胞菌光合产氢的影响[J].太阳能学报.2005,26(6):806-810.
    [169]尤希凤,周静懿,张全国等.红假单胞菌利用畜禽粪便产氢能力的试验研究[J].河南农业大学学报.2005,39(2):215-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700