用户名: 密码: 验证码:
灌水与氮肥对强筋小麦籽粒产量和品质的调控效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1追氮时期和基追比例对强筋小麦籽粒产量和品质的调控效应
     以强筋高产冬小麦品种济麦20号为试验材料,采用大田试验研究了施氮量为240 kgN/hm2条件下,不同追氮时期和基追比例对小麦籽粒产量和品质形成的影响。
     1.1追氮时期和基追比例对籽粒产量的影响
     起身和拔节期追施氮肥处理的籽粒产量差异不显著,追氮时期由拔节期后移至孕穗和开花期,籽粒产量显著下降。在起身和拔节期追施氮肥,增加追施氮肥比例可以提高产量,在孕穗和开花期追施氮肥,增加追施氮肥比例导致产量降低。
     1.2追氮时期和基追比例对成熟期小麦籽粒蛋白质含量和质量的影响
     1.2.1追氮时期和基追比例对籽粒蛋白质含量的影响在基追比为1:1和3:7条件下,拔节期追施氮肥的籽粒蛋白质含量最高,当基追比为3:17时,孕穗期追施氮肥的籽粒蛋白质含量达到最高。在起身和拔节期追施氮肥,增加追施氮肥比例导致籽粒蛋白质含量降低;在孕穗期和开花期追施氮肥,增加追施氮肥比例使籽粒蛋白质含量显著提高。
     1.2.2追氮时期和基追比例对籽粒蛋白质组分的影响
     在基追比1:1条件下,拔节期追施氮肥处理的谷蛋白含量显著高于起身期追施氮肥处理,追氮时期由拔节期后移至孕穗期和开花期,谷蛋白含量显著降低;在基追比3:7和3:17条件下,不同追氮时期处理的谷蛋白含量差异不显著。
     在一定的基追比条件下,拔节期追施氮肥处理的可溶性谷蛋白含量显著高于起身期追施氮肥处理,追氮时期由拔节期后移至孕穗期和开花期,可溶性谷蛋白含量显著降低。
     在起身期和拔节期追施氮肥,清球蛋白和醇溶蛋白含量随追氮比例增加均呈下降趋势;孕穗期和开花期追施氮肥,清球蛋白和醇溶蛋白随追氮比例增加呈上升趋势。
     1.2.3追氮时期和基追比例对不溶性谷蛋白组分含量和比例的影响
     在一定基追比条件下,起身、孕穗和开花期追施氮肥处理的HMW不溶性谷蛋白、不溶性谷蛋白含量均显著高于拔节期追施氮肥处理,孕穗期和开花期追施氮肥间差异不显著。
     在起身期追施氮肥,随追氮比例的增加,HMW不溶性谷蛋白、不溶性谷蛋白含量呈下降趋势;在拔节期追施氮肥,随追氮比例增加,HMW不溶性谷蛋白含量呈下降趋势;不溶性谷蛋白含量无显著差异;在孕穗和开花期追施氮肥,随追氮比例的增加,HMW不溶性谷蛋白、不溶性谷蛋白含量呈上升趋势。
     LMW不溶性谷蛋白和不溶性谷蛋白总量变化趋势基本一致。
     在一定基追比条件下,拔节期追施氮肥处理的HMW不溶性谷蛋白/不溶性谷蛋白比值显著高于起身追施氮肥,追氮时期由拔节期后移至孕穗和开花期,HMW不溶性谷蛋白/不溶性谷蛋白比值降低。
     1.2.4追氮时期和基追比例对醇溶蛋白组分和谷蛋白亚基的影响
     醇溶蛋白各组分变化趋势基本一致,在起身和拔节期追施氮肥,各醇溶蛋白组分随追氮比例的增加呈下降趋势,在孕穗和开花期追施氮肥,各醇溶蛋白组分含量随追氮比例的增加呈上升趋势。
     在基追比1:1条件下,拔节期追施氮肥处理的各醇溶蛋白组分含量显著高于起身期追施氮肥处理,追氮时期自拔节期后移至孕穗和开花期,各醇溶蛋白组分含量下降;在基追比为3:7和3:17时,随着追氮时期后移,各醇溶蛋白组分含量增加,孕穗期追施氮肥处理的各醇溶蛋白组分含量达到最高。
     在各追氮时期,增加追氮比例可以提高HMW-GS含量。在一定的基追比条件下,拔节期追施氮肥处理的HMW-GS含量高于起身期追施氮肥处理,追氮时期自拔节期后移至孕穗和开花期,HMW-GS含量显著降低。LMW-GS和HMW-GS含量的变化趋势基本一致。
     1.2.5追氮时期和基追比例对谷蛋白大聚合体体积和表面积的影响在起身期追施氮肥,增加追氮比例可以增加D(4, 3)(谷蛋白大集合体的加权平均体积);在拔节、孕穗和开花期追施氮肥,D(4, 3)随追氮比例增加呈下降趋势。在一定的基追比条件下,拔节期追施氮肥处理的D(4, 3)显著高于起身期追施氮肥处理,追氮时期由拔节期后移至孕穗期和开花期, D(4, 3)显著降低。D(4, 3)和D(3, 2)(谷蛋白大集合体的加权平均表面积)变化趋势基本一致。
     1.3追氮时期和基追比例对小麦面团品质指标的影响
     在起身和开花期追施氮肥,面团稳定时间随追氮比例增加呈上升趋势;在拔节和孕穗期追施氮肥,面团稳定时间随追氮比例增加呈下降趋势。
     在一定基追比条件下,拔节期追施氮肥的面团稳定时间显著高于起身期追施氮肥处理,追氮时期自拔节期后移至孕穗和开花期,面团稳定时间显著降低。在基追比为1:1和3:7条件下,拔节期追施氮肥处理的面团形成时间高于起身、孕穗、开花期追施氮肥处理;在基追比为3:17时,孕穗期追施氮肥处理的面团形成时间达到最高。
     在起身期和拔节期追施氮肥,面团形成时间随追氮比例增加呈下降趋势;在孕穗期和开花期追施氮肥,面团形成时间随追氮比例增加呈上升趋势,湿面筋含量和面团形成时间变化趋势基本一致。
     1.4蛋白质各组分与面团品质的相关分析
     可溶性谷蛋白含量、HMW-GS含量、HMW不可溶谷蛋白/不可溶谷蛋白比值、D(4, 3)和D(3, 2)均与面团稳定时间呈显著或极显著正相关。粗蛋白、谷蛋白、可溶性谷蛋白、醇溶蛋白各组分含量均与面团形成时间呈显著或极显著正相关。
     1.5追氮时期和基追比例对淀粉品质的影响
     在起身期追施氮肥,增加追氮比例提高直链淀粉含量;在拔节、孕穗和开花期追施氮肥,增加追氮比例降低直链淀粉含量。在各个追氮时期,支链淀粉和总淀粉含量均表现为随追氮比例的增加呈下降趋势。
     在一定的基追比条件下,拔节期追施氮肥处理的淀粉各组分含量高于起身期追施氮肥处理,追氮时期自拔节期后移至孕穗和开花期,淀粉各组分含量显著降低。在起身、拔节和孕穗期追施氮肥,基追比1:1处理的高峰黏度、稀懈值、低谷黏度和最后黏度均显著高于基追比3:7、3:17处理;在开花期追施氮肥,不同氮肥基追比处理的淀粉黏度指标差异不显著。各淀粉黏度指标均表现为拔节期追施氮肥最高,追氮时期自拔节期后移至开花期,各淀粉黏度指标显著降低。
     相关分析表明,支链淀粉和总淀粉含量均与最后黏度、稀懈值、低谷黏度和高峰黏度呈极显著正相关,直/支比与稀懈值呈显著负相关。
     2灌水频次对强筋小麦籽粒产量和品质的调控效应
     以强筋冬小麦品种济麦20号、藁城8901和烟农15为试验材料,采用大田试验研究了施氮量为168 kgN/hm2条件下,不同灌水频次对小麦籽粒产量和品质形成的影响。
     2.1灌水频次对产量的影响
     济麦20和藁城8901的籽粒产量表现为随灌水次数增加先升高后降低趋势,灌水次数在0~2范围内,籽粒产量随灌水次数增加而增加,在灌水次数增加到3次时,籽粒产量较灌2水处理下降。烟农15的籽粒产量随灌水次数的增加显著提高。
     2.2灌水频次对籽粒蛋白质组分的影响
     济麦20和藁城8901的粗蛋白、醇溶蛋白、清球蛋白和谷蛋白含量随灌水次数的增加均呈上升趋势,烟农15的粗蛋白、醇溶蛋白、清球蛋白和谷蛋白含量均随灌水次数的增加呈下降趋势。济麦20和藁城8901的谷蛋白/醇溶蛋白比例随灌水次数增加呈下降趋势,烟农15的谷蛋白/醇溶蛋白比例随灌水次数增加呈先上升后下降趋势。
     2.3灌水频次对籽粒不溶性谷蛋白组分及比例的影响
     济麦20和藁城8901的不溶性谷蛋白、可溶性谷蛋白各组分含量及HMW不溶性谷蛋白/不溶性谷蛋白比例随灌水次数的增加均呈上升趋势;随灌水次数的增加,烟农15的不溶性谷蛋白和可溶性谷蛋白各组分含量均呈下降趋势,HMW不溶性谷蛋白/不溶性谷蛋白比例呈先上升后下降趋势。
     2.4灌水频次对籽粒醇溶蛋白组分和谷蛋白亚基的影响
     随灌水次数增加,济麦20的各醇溶蛋白组分、HMW-GS和LMW-GS含量及HMW-GS/LMW-GS比值均呈上升趋势;烟农15的各醇溶蛋白组分、HMW-GS和LMW-GS含量呈下降趋势,HMW-GS/LMW-GS比值不同灌水处理间差异不显著。藁城8901的各醇溶蛋白组分、HMW-GS和LMW-GS含量及HMW-GS/LMW-GS比值均表现为在0~2水范围内随灌水次数增加呈上升趋势,再增加灌水则不同程度的降低。
     2.5灌水频次对谷蛋白大集合体粒度的影响
     济麦20和藁城8901的谷蛋白大聚合体的加权平均体积和加权平均表面积随灌水次数增加均呈上升趋势,烟农15的谷蛋白大聚合体的加权平均体积和加权平均表面积随灌水次数增加均呈下降趋势。
     2.6灌水频次对面团品质、面包品质的影响
     随灌水次数增加,济麦20和藁城8901的湿面筋、面团形成时间和稳定时间、面包体积和面包总评分均呈上升趋势。烟农15的灌1水处理面团稳定时间最高,再增加灌水,面团稳定时间显著降低;而面包体积和面包总评分在灌0~2水范围内随灌水次数的增加呈上升趋势,灌3水处理的面包体积和面包总评分较灌2水处理显著降低。
     2.7蛋白质品质和面团、面包品质的相关分析
     不可溶谷蛋白、HMW不可溶谷蛋白、HMW不可溶谷蛋白/不可溶谷蛋白比值均与面团稳定时间和面包总评分达到显著或极显著正相关。D(4, 3)和D(3, 2)均与面包体积呈极显著正相关。
     3水氮耦合对强筋小麦籽粒产量和品质的调控效应
     以强筋冬小麦品种济麦20号为试验材料,采用大田试验和15N微区示踪试验相结合的方法,研究了0~240 kgN/hm2范围内不同施氮量、施肥方式、灌水次数、及水氮互作对小麦籽粒产量和品质形成的影响,水氮耦合对冬小麦氮肥的吸收利用及生育后期土壤硝态氮累积迁移的影响。本试验主要研究结果如下:
     3.1水氮耦合对强筋小麦产量的调控效应
     小麦生育期间灌2次水达最高产量,再增加灌水会降低产量,进一步增加灌水虽然提高了穗粒数,但是千粒重显著下降,最终导致产量的降低。施氮处理的籽粒产量均显著高于不施氮处理,但施氮处理间差异不显著。
     3.2水氮耦合对强筋小麦蛋白质品质的调控效应
     相同施氮水平下,各灌水处理的籽粒蛋白质含量、单体蛋白含量均显著低于不灌水处理,但不同灌水处理间无显著差异。随灌水次数增加,谷蛋白组分产生了显著的变化,其中不溶性谷蛋白(高分子量谷蛋白)含量呈下降趋势,可溶性谷蛋白(低分子量谷蛋白)含量呈上升趋势,谷蛋白聚合指数(不溶性谷蛋白含量/谷蛋白总量)降低,粉质仪参数(面团稳定时间和形成时间)也相应降低,表明灌水次数增加导致籽粒品质变劣的主要原因是不溶性谷蛋白积累减少。施氮168㎏/hm2条件下,氮肥拔节期全量追施处理的籽粒产量不降低,而其籽粒品质显著优于分次施肥处理(50%基施、50%拔节期追施),且与240㎏ N/hm2分次施用处理差异不显著。
     3.3水氮耦合对强筋小麦淀粉品质的调控效应
     在不施氮肥条件下,随灌水次数增加,支链淀粉和总淀粉含量呈上升趋势;施氮条件下,各灌水处理(W1、W2、W3)的总淀粉和支链淀粉含量均显著高于不灌水处理(W0),但各灌水处理间差异不显著。随灌水次数增加,直链淀粉含量和直/支比均呈下降趋势。施氮在低灌水频次(W0、W1)条件下促进支链淀粉的合成,同时降低直链淀粉含量和直/支比;高灌水频次(W2、W3)条件下则相反。黏度仪指标(峰值黏度、稀澥值)均呈上升趋势.相关分析表明,支链淀粉含量与峰值黏度、稀澥值和反弹值均达显著或极显著正相关;直链淀粉含量和直/支比均与峰值黏度、稀澥值和反弹值呈显著或极显著负相关。
     3.4水氮耦合对氮肥利用率、水氮生产效率及土壤中硝态氮迁移的影响
     在一定氮肥水平下,不灌水处理的氮肥利用率高于各灌水处理,各灌水处理的氮肥利用率随灌水次数增加呈上升趋势;增加灌水次数,氮肥耕层残留量和残留率显著降低,氮肥损失量和损失率则明显增加。在一定的灌溉水平上,随施氮量(0~240 kg/hm2)增加,植株总吸氮量、氮肥吸收量、氮肥耕层残留量、氮肥损失量以及损失率均呈上升趋势,而氮肥利用率和耕层残留率呈下降趋势。灌水生产效率随灌水次数增加显著下降。在一定灌溉水平上,施氮量由168 kg/hm2增至240 kg/hm2,氮素收获指数和氮肥生产效率显著降低。灌水促进了分次施氮处理(N168,N240)中土壤硝态氮向下迁移,从开花到收获0~100 cm土层中部分硝态氮迁移到了100~200 cm土层。灌水次数是导致收获期0~100 cm土层残留NO3--N累积量变化的主导因素;水氮互作效应是决定收获期100~200 cm土层残留NO3--N累积量变化的主导因素,且灌水效应大于施氮效应。
1 Regulatory effect of nitrogen fertilizer topdressing stage and ratio of base and topdressing on grain yield and quality of strong gluten winter wheat
     When N fertilizer application amount was 240 kg N /hm2, effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on grain yield and quality of Jimai 20 (a winter wheat cultivar with strong gluten) were studied.
     1.1 Effects of N fertilizer topdressing stage and ratio of base and topdressing on grain yield
     Grain yield had no significant difference topdressing N fertilizer at rising and jointing. The grain yield of topdressing nitrogen fertilizer at flagging and anthesis was significantly lower than that of topdressing nitrogen fertilizer at jointing. The grain yield of topdressing nitrogen fertilizer at anthesis was the lowest. Grain yield was increased by increasing topdressing nitrogen fertilizer rate at rising and jointing, but grain yield was decreased by increasing topdressing nitrogen fertilizer rate at flagging and anthesis.
     1.2 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on grain protein content and quality at maturity
     1.2.1 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on grain protein content
     When the topdressing nitrogen fertilizer was 50% and 70% of total nitrogen application, grain protein content of topdressing nitrogen fertilizer at jointing was the highest. As the topdressing nitrogen fertilizer was 85% of total nitrogen application, grain protein content of topdressing nitrogen fertilizer at flagging was the highest. Increasing rate of nitrogen fertilizer topdressing at rising and jointing decreased grain protein content, but significantly increased grain protein content topdressing at flagging and anthesis.
     1.2.2 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on grain protein composition
     As the topdressing nitrogen fertilizer was 50% of total nitrogen application, the grain glutenin content of topdressing nitrogen fertilizer at rising, flagging and anthesis were all significantly lower than that of topdressing nitrogen fertilizer at jointing, and that of topdressing nitrogen fertilizer at anthesis was the lowest. As topdressing nitrogen fertilizer was 70% and 85% of total nitrogen application, the glutenin content of topdressing nitrogen fertilizer at all stages had no significant difference.
     The soluble glutenin content of topdressing nitrogen fertilizer at rising, flagging and anthesis were significantly lower than that of topdressing nitrogen fertilizer at jointing, and that of topdressing nitrogen fertilizer at flagging was significantly higher than that of topdressing nitrogen fertilizer at anthesis.
     The content of albumin, globulin and gliadin of topdressing nitrogen fertilizer at rising and jointing were decreased by increasing the rate of topdressing nitrogen, but these of topdressing nitrogen fertilizer at flagging and anthesis were increased by increasing the rate of topdressing nitrogen.
     1.2.3 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on the insoluble glutenin composition content and ratio
     The HMW insoluble glutenin and insoluble glutenin content of topdressing nitrogen fertilizer at rising and flagging were significantly higher than these of topdressing nitrogen fertilizer at jointing, and the HMW insoluble glutenin and insoluble glutenin content of topdressing nitrogen fertilizer at anthesis had no significantly difference with that of topdressing nitrogen fertilizer at flagging.
     As increasing topdressing nitrogen rate, the HMW insoluble glutenin and insoluble glutenin content decreased as topdressing nitrogen fertilizer at rising, but increased as topdressing nitrogen fertilizer at flagging and anthesis. As topdressing nitrogen fertilizer at jointing, the HMW insoluble glutenin content was decreased and insoluble glutenin content had no significantly difference by increasing topdressing nitrogen fertilizer rate.
     The LMW insoluble glutenin content had the same trend with the insoluble glutenin content. The ratio of HMW insoluble glutenin content and insoluble glutenin content of topdressing nitrogen fertilizer at rising and flagging were significantly lower than that of topdressing nitrogen fertilizer at jointing, and that of topdressing nitrogen at anthesis was significantly lower than that of topdressing at flagging.
     1.2.4 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on gliadin composition and glutenin subunit
     The gliadin composition (ω5-gliadin,ω1, 2-gliadin,α-gliadin,γ-gliadin) content changed uniformly. The gliadin composition content decreased with increasing the rate of topdressing nitrogen fertilizer at rising and jointing, and increased with increasing the rate of topdressing nitrogen fertilizer at flagging and anthesis. As the topdressing nitrogen fertilizer was 50% of total nitrogen application, the gliadin composition content of topdressing nitrogen fertilizer at jointing were significantly higher than that of topdressing nitrogen fertilizer at rising, and flagging, and that of topdressing nitrogen fertilizer at flagging were higher than that of topdressing nitrogen fertilizer at anthesis. As topdressing nitrogen fertilizer was 70% and 85% of total nitrogen application, all gliadin composition content increased with the topdressing nitrogen fertilizer stage postponed and that of topdressing nitrogen fertilizer at flagging was higher than that of topdressing nitrogen fertilizer at rising, flagging and anthesis.
     At the different topdressing nitrogen fertilizer stage, the HMW-GS content was increased by increasing the rate of topdressing nitrogen fertilizer. the HMW-GS content of topdressing nitrogen fertilizer at rising, flagging were lower than that of topdressing at jointing, and that of topdressing nitrogen fertilizer at flagging was significantly higher than that of topdressing at anthesis. The LMW-GS content had the similar trend with the HMW-GS content.
     1.2.5 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on glutenin macro-polymer volume and surface area
     Increasing the rate of topdressing nitrogen fertilizer, D(4, 3) was increased as topdressing nitrogen fertilizer at rising and was decreased as topdressing at jointing, flagging and anthesis stage. The D(4, 3) of topdressing nitrogen fertilizer at jointing was significantly higher than that of topdressing at rising, flagging, and that of topdressing at anthesis was significantly lower than that of topdressing at flagging. The D(3, 2) changed similarly with D(4, 3).
     1.3 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on dough quality
     The dough stability time was increased with increasing the rate of topdressing nitrogen fertilizer at rising and anthesis, and was decreased with increasing the rate of topdressing nitrogen fertilizer at jointing and flagging.
     The dough stability time of topdressing nitrogen fertilizer at rising and flagging were significantly lower than that of topdressing at jointing, and that of topdressing at anthesis was significantly lower than that of topdressing at flagging. As topdressing nitrogen fertilizer was 50% and 70% of total nitrogen application, the dough development time of topdressing at rising, flagging and anthesis were significantly shorter than that of topdressing at jointing, and that of topdressing at flagging was higher than that of topdressing at anthesis. As topdressing nitrogen fertilizer was 85% of total nitrogen application, the dough development time of topdressing at flagging was longest.
     The dough development time was decreased with increasing the rate of topdressing nitrogen fertilizer at rising and jointing and was increased with increasing the rate of topdressing nitrogen fertilizer at flagging and anthesis. The flour wet gluten content changed similarly with the dough development time.
     1.4 Correlative analysis between protein composition and dough quality
     The content of soluble glutenin, HMW-GS, D(4, 3)and D(3, 2), the ratio of HMW insoluble glutenin and insoluble glutenin were all significantly and positively correlated with the dough stability time. The content of grain protein, glutenin, soluble glutenin and gliadin composition were all significantly and positively correlated with the dough development time. 1.5 Effects of nitrogen fertilizer topdressing stage and ratio of base and topdressing on starch quality
     Increasing the rate of topdressing nitrogen fertilizer at rising, the amylose content was increased, and was decreased as topdressing at jointing, flagging and anthesis. At all topdressing stage, the amylopectin content and the starch content was decreased with increasing the rate topdressing nitrogen fertilizer.
     The starch composition content of topdressing nitrogen fertilizer at rising and flagging were lower than that of topdressing at jointing, and that of topdressing at anthesis was significantly lower than that of topdressing at flagging.
     As topdressing nitrogen fertilizer at rising, jointing and flagging, the RVA indexes (peak viscosity, through viscosity, breakdown, final viscosity) of the 50% topdressing nitrogen fertilizer of total nitrogen application treatment was significantly higher than that of the 70% and 85% topdressing nitrogen fertilizer of total nitrogen application treatment, and RVA indexes between different topdressing nitrogen fertilizer rate treatment at anthesis had no difference.
     RVA indexes of topdressing at rising and flagging were lower than that of topdressing at jointing, and these of topdressing at anthesis were significantly lower than that of topdressing at flagging. Correlative analysis indicated that both amylopectin content and starch content were significantly and positively correlated with the final viscosity, break down, through viscosity and peak viscosity. The ratio of amylose and amylopectin significantly and negatively correlated with break down.
     2 Effect of irrigation frequency on the grain yield and quality of the strong gluten winter wheat
     When N fertilizer application amount was 168 kgN/hm2, effects of irrigation frequency on grain yield and quality of three winter wheat cultivar with strong gluten (Jimai 20, Gaocheng 8901, Yannong 15 ) was studied.
     2.1 Effect of irrigation frequency on grain yield
     The grain yield of Jimai 20 and Gaocheng 8901 increased with irrigation frequency added which ranged from 0 to 2 times, however, it was noted to be decreased in thrice irrigation treatment compared with twice irrigation treatment. Grain yield of Yannong 15 increased with the irrigation frequency added.
     2.2 Effect of irrigation frequency on the grain protein composition
     The content of grain protein, gliadin, albumin, globulin and glutenin of Jimai 20 and Gaocheng 8901 increased with frequency irrigation added, and these of Yannong 15 all decreased with irrigation frequency added. The ratio of glutenin and gliadin of Jimai 20 and Gaocheng 8901 decreased with irrigation frequency added, and that of Yannong 15 increased with irrigation frequency added in the range of 0~2 times irrigation then decreased in three times irrigation treatment compared with two times irrigation treatment.
     2.3 Effect of irrigation frequency on the grain insoluble glutenin composition and ratio
     The content of insoluble glutenin composition and soluble glutenin composition and the ratio of HMW insoluble glutenin and insoluble glutenin of Jimai 20 and Gaocheng 8901 increased with irrigation frequency added. The content of insoluble glutenin composition and soluble glutenin composition of Yannong 15 decreased with irrigation frequency added, but the ratio of HMW insoluble glutenin and insoluble glutenin of Yannong 15 increased with irrigation frequency increasing in the range of 0~2 times irrigation and then decreased in three times irrigation treatment compared with two times irrigation treatment.
     2.4 Effect of irrigation frequency on gliadin composition and glutenin subunit
     The content of gliadin composition, HMW-GS, and LMW-GS and the ratio of HMW-GS and LMW-GS of Jimai 20 increased with irrigation frequency added. The content of gliadin composition, HMW-GS, and LMW-GS of Yannong 15 decreased with irrigation frequency added, but the ratio of HMW-GS and LMW-GS of Yannong 15 had no significantly difference between the irrigation treatments. The content of gliadin, HMW-GS and LMW-GS and the ratio of HMW-GS and LMW-GS of Gaocheng 8901 increased with the irrigation frequency added in the range of 0 to 2 times irrigation, and then decreased in three times irrigation treatment compared with two times irrigation treatment.
     2.5 Effect of irrigation frequency on the glutenin macro-polymer particle size
     The weighted average volume and the weighted average surface area of GMP of Jimai 20 and Gaocheng 8901 were increased with irrigation frequency added, and these of Yannong 15 were decreased with irrigation frequency added.
     2.6 Effect of irrigation frequency on dough quality and bread quality
     The flour wet gluten, the dough development and stability time, the bread volume and the bread total score of Jimai 20 and Gaocheng 8901 increased with irrigation frequency added. The dough stability time of once irrigation treatment of Yannong 15 was higher than that of twice and thrice irrigation treatments. The bread volume and total score of Yannong 15 increased with the irrigation frequency increasing in the range of 0 to 2 times irrigation, and then decreased in three times irrigation treatment compared with two times irrigation treatment.
     2.7 Correlative analysis of the protein quality and the dough and bread quality
     The insoluble glutenin content, the HMW insoluble glutenin content and the ratio of HMW insoluble glutenin and insoluble glutenin were significantly and positively correlated with the dough stability time and bread total score. The D(4, 3) and D(3, 2) were significantly and positivly correlated with bread volume.
     3 Coupling effects of irrigation and nitrogen fertilizer on grain yield and quality of winter wheat
     JM20, typical cultivars of winter wheat with strong gluten potential used in local production were chosen in this study. The 15N isotope trace technique was applied in the experiment. The effects of different nitrogen application amount (0~240 kgN/hm2), fertilizer application method, irrigation frequncey, interaction of irrigation and nitrogen on the the grain yield and quality of wheat were studied in the field experiment. Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile from anthesis to maturity were also investigated. The main results were as follows:
     3.1 Coupling effects of irrigation and nitrogen fertilizer on grain yield Grain yield had increased with irrigation frequency which ranged from none to twice, however, it was noted to be decreased in thrice irrigation treatment compared with twice irrigation treatment. Although grains per ear was increased but 1000-grain weight was significantly decreased in thrice irrigation treatment compared to twice irrigation treatment, leading to yield of thrice irrigation treatment lower to yield of twice irrigation treatment. Grain yield of nitrogen application treatment was significantly higher than that of non-nitrogen treatment, but these of nitrogen application treatment had no significant difference.
     3.2 Coupling effects of irrigation and nitrogen fertilizer on protein quality
     The contents of grain protein and monomeric protein in irrigation treatments were significantly lower than these in non-irrigation treatment, but there were no significant differences among irrigation treatments. With the irrigation frequency increase, the changes of glutenin composition were not uniformed, in which soluble glutenin (low molelular weight glutenin) content was increased while insoluble glutenin (high molelular weight glutenin) content and polymerization index (insoluble glutenin/total glutenin) were reduced. In addition, both dough development time and stability time had the same tendency as insoluble glutenin and polymerization index, which suggested retarded formation and accumulation of insoluble glutenin was the major reason of worsen grain quality with added irrigation frequency.
     Compared with N split application (50% of 168 kgN/hm2 was applied at preplanting and the remainder at jointing), N fertilizer totally top-dressed at jointing led to significantly improved grain quality and similar grain yield. The grain quality of N fertilizer totally top-dressed (168 kg N /hm2) at jointing had no significant difference with the quality of N split application (50% of 240 kgN/hm2 was applied at preplanting and the remainder at jointing). Therefore, it is proposed that N fertilizer can be totally top-dressed at jointing under high yield condition for the sake of high grain yield and excellent quality.
     3.3 Coupling effects of irrigation and nitrogen fertilizer on starch quality
     Starch content and amylopectin content was increased with adding irrigation frequency in non-nitrogen treatment. Under nitrogen treatment, irrigation significant increased starch content and amylopectin content compared to non-irrigation treatment, but there were no significant difference on starch and amylopectin content between irrigation treatments. Amylose content and the ratio of amylose to amylopectin were reduced while RVA indexes (peak viscosity, breakdown) were increased with adding irrigation frequency. Nitrogen application significantly improved amylopectin content and decreased amylose content in lower frequency irrigation (W0 and W1), while amylopectin content was decreased and amylose content was improved by nitrogen application in higher frequency irrigation (W2 and W3). The amylopectin content was significantly and positively correlated with the peak viscosity, breakdown and setback. The amylose content and the ratio of amylose and amylopectin were significantly and negatively correlated with the peak viscosity, breakdown and setback.
     3.4 Coupling effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery, productive efficiency of water and nitrogen, nitrate-N movement across soil profile
     The N fertilizer recovery rate of non-irrigation treatments was found to be higher than those of irrigation treatments. It was noted that irrigation treatments increased the recovery rate along with increased irrigation frequency. Both N fertilizer residual amount and residual rate in 0~25 cm plough soil layer decreased with increased irrigation frequency, while N fertilizer loss amount and loss rate increased. N recovered by wheat plant, N fertilizer uptake by wheat plant, N fertilizer residual amount in plough soil layer, N fertilizer loss amount as well as loss rate all increased,and N fertilizer recovery rate and soil residual rate both decreased when N fertilizer application amount ranged from 0 to 240 kg/hm2.
     Water productive efficiency decreased with increased irrigation frequency. N harvest index and N fertilizer productive efficiency all significantly decreased as N fertilizer application increased from 168 to 240 kg/hm2. Irrigation accelerated NO3--N leaching in N fertilizer application treatments (N168, N240). Dimensionally, the leaching of NO3--N happened from upper soil (0~100 cm) to deeper soil (100~200 cm) during anthesis to harvest of wheat croping. Our findings suggested that the irrigation frequency was crucial to influence the residual NO3--N accumulation in 0~100 cm soil profile at harvest. The coupling effect of nitrogen fertilizer and irrigation accessed the process of residual NO3--N accumulation in 100~200 cm soil at harvest while irrigation played greater role in nitrate movement compared with N fertilizer application.
引文
1蔡大同,苑泽圣,杨桂芬,等.氮肥不同时期施用对优质小麦产量和加工品质的影响.土壤肥料,1994,(2):1214-1217
    2曹广才,王绍中.小麦品质生态.北京:中国科学技术出版社, 1994
    3戴廷波,孙传范,荆奇,等.不同施氮水平和基追比对小麦籽粒品质形成的调控.作物学报, 2005, 31(2): 248-253
    4戴晓艳,须湘成,陈恩凤.不同肥力棕壤和黑土各粒级微团聚体氮素矿化势.沈阳农业大学学报, 1990, 21(4): 327-330
    5杜金哲,李文雄,白祥和,等.春小麦籽粒蛋白质积累和产量形成规律及施氮的调节作用.东北农业大学学报, 1999, 30(1): 2-8
    6范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响.植物生态学报, 2006, 30(1): 71-77
    7范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报, 2004, 28(5): 680-685
    8高亚军,李生秀,李世清,等.施肥与灌水对硝态氮在土壤中残留的影响.水土保持学报, 2005, 19(6), 61-62
    9郭大应,熊清瑞,谢成春,等.灌溉土壤硝态氮运移与土壤湿度的关系.灌溉排水, 2001, 20(2): 66-68
    10郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应.应用生态学报, 2004, 15(3): 453-457
    11郭文善,封超年,严六零,等.小麦开花后源库关系分析.作物学报, 1995, 21(3): 334-340
    12韩晓日,邹德乙,郭鹏程,等.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用.植物营养与肥料学报, 1996, 2(1): 216-227
    13贺明荣,杨雯玉,王晓英,等.不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响.作物学报, 2005, 31(8): 1047-1051
    14胡新中,魏益民, M. I. P. Kovacs,王春.谷蛋白溶涨指数与面团特性和面条品质的关系.中国农业科学, 2004a, 37(1): 119-124
    15胡新中,魏益民,张国权,欧阳韶晖, M.I.P.Kovacs,王春.小麦籽粒蛋白质组分及其与面条品质的关系.中国农业科学, 2004b, 37(5): 739-743
    16贾效成,于振文,张永丽.氮素不同底追比例对冬小麦品质和产量的影响.山东农业科学, 6: 30-31
    17季书勤,赵淑章,等.水氮配合对强筋小麦产量和品质的影响及其相关性分析.中国农学通报, 2003, 19(1): 36-47
    18金善宝主编.中国小麦学[M],北京:中国农业科学出版社, 1996
    19姜东,于振文,李永庚,余松烈.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002, 35(2): 157-162
    20姜东,于振文,李永庚,余松烈.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报, 2003, 29(3): 462-467
    21姜东,于振文,李永庚,韩红岩,余松烈.冬小麦开花前后茎和叶鞘中贮存的碳水化合物含量的变化.植物生理学通讯, 2000, 36 (6): 507-511
    22姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报, 2004, 30(2): 175-182
    23介晓磊,韩燕来,谭金芳,等.不同肥力麦田水氮交互效应与耦合模式研究.作物学报, 1998, 24(6): 963-970
    24巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中氮素的损失途径分析.中国农业科学, 2002a, 35(12): 1493-1499
    25巨晓棠,潘家荣,刘学军,等.高肥力土壤冬小麦生长季肥料氮的去向研究.核农学报, 2002b, 16(6): 397-402
    26兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦子粒品质的影响.水土保持学报, 2004, 18(1): 193-196
    27梁东丽,同延安, Ove Emteryd,等.灌溉和降水对旱地土壤N2O气态损失的影响.植物营养与肥料学报, 2002, 8(3): 298-302
    28梁荣奇,张义荣,尤明山,等.小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系.作物学报, 2002, 28: 609-614
    29梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应.西北植物学报, 1995, 15(1): 21-25
    30李豪吉,崔雄范,崔明子,等.硝酸还原酶活力与作物耐肥性的研究Ⅲ.北方梗稻品种演变过程中硝酸还原酶活力与品种性状之间的关系,作物学报, 1988, 14(2): 163-166
    31李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质及组分含量的影响.中国粮油学报, 2001, 16(2): 6-8
    32李雁鸣,张立言,李振国.春季施肥灌水对小麦籽粒产量和品质的影响.河北农业大学学报, 1996, 19(1): 1-6
    33李亚星.麦田土壤反硝化作用动态的研究.北京农业大学硕士论文, 1993
    34李新慧.京郊良田土壤氮素损失机制与提高氮肥利用率.北京土壤学会简讯, 1999, (2): 5
    35刘传富,董海州,万本屹,候汉学.面粉面筋及其对焙烤食品影响.粮食与油脂, 2002, (1): 35-37
    36刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究.土壤学报, 2006, 43(3): 405-413
    37刘巽浩,陈阜.对氮肥利用效率若干传统观念的质疑.耕作与栽培, 1991, (1): 33-40
    38刘敏超,温小乐.氮肥施用量对冬小麦氮肥利用率及土壤剖面NO3--N动态分布的影响.湛江海洋大学学报, 2000, 20(2): 36-39
    39吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报, 1998, 4(1): 8-15
    40马军花,任理.冬小麦生育期农田尺度下土壤硝态氮淋失动态的数值模拟.生态学报, 2004, 24(10): 2289-2301
    41孟宪刚,尚勋武,张改生.不同分子量的LMW-GS对小麦加工品质的影响.西北植物学报, 2004, 24(6): 959-965
    42苗果园,高志强,等.水肥对小麦根系整体影响及其与地上部相关的研究.作物学报, 2002, 28(4): 445-450
    43莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展.植物营养与肥料学报, 2001, 7(2): 223-231
    44欧阳喜辉,朱妹青,崔晶.北京市水源保护区施肥及对水体污染控制研究.农业环境保护, 1996, 15(3): 107-110
    45潘庆民,于振文,王月福,余松烈.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响.中国农业科学, 2002 , 35(7): 771-776
    46潘庆民,于振文.追氮时期对冬小麦籽粒品质和产量的影响.麦类作物学报, 2002, 22(2): 65-69
    47潘庆民,于振文,王月福.追氮时期对小麦光合作用、14C同化物运转分配和硝酸还原酶活性的关系.西北植物学报, 2001, 21(4): 631-536
    48潘庆民,于振文,田奇卓.追氮时期对超高产冬小麦旗叶和根系衰老的影响.作物学报, 1998, 24(6): 924-929
    49彭永欣,郭文善,等.氮肥对小麦籽粒营养品质调节效应的研究.江苏农业科学, 1987(2): 9-11
    50盛婧,胡宏,郭文善,等.施氮模式对皖麦38淀粉形成与产量的效应.作物学报, 2004, 30(5): 507-511
    51石维,同延安,赵营,等.灌溉施肥对冬小麦土壤氮素盈亏的影响.麦类作物学报, 2006, 26(2): 93-97
    52孙辉,姚大年,李宝云,等.普通小麦谷蛋白大聚体的含量与烘培品质相关关系.中国粮油学报, 1998, 13: 13-16
    53汤丽玲,陈清,张宏彦,等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响.植物营养与肥料学报,2002, 8(3): 282-287
    54唐树梅,漆智平.土壤水含量与氮矿化的关系.热带农业科学, 1997, (4): 54-60
    55唐玉霞,孟春香,贾树龙,等.水分胁迫对冬小麦氮素营养效率的影响.中国生态农业学报, 2002, 10(4): 21-23
    56田纪春著.优质小麦.济南:山东科学技术出版社, 1995
    57王殿武,刘树庆,文宏达,等.高寒半干旱区春小麦田施肥及水肥耦合效应研究.中国农业科学, 1999, 32(5): 62-68
    58王月福.小麦蛋白质和核酸代谢特性及其与品质和产量的关系.山东农业大学博士论文,2001
    59王月福,于振文,李尚霞,等.土壤肥力对小麦籽粒蛋白质组分含量及加工品质的影响.西北植物学报, 2002 a, 22 (6) : 1318-1324
    60王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响.作物学报, 2002 b, 28(6): 743-748
    61王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学, 2002 c, 35 (9): 1071-1078
    62王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报, 2002d, 19(1): 7-9
    63王月福,于振文,李尚霞,余松烈.小麦子粒灌浆过程中有关淀粉合成酶的活性及其效应.作物学报, 2003, 29(1): 75-81
    64王晨阳,郭天财,彭羽,等.花后灌水对小麦籽粒品质性状及产量的影响.作物学报, 2004a, 30(10): 1031-1035
    65王晨阳,马冬云,朱云集,等.小麦不同水氮运筹对面条煮制品质的影响.中国农业科学, 2004b, 37(2): 256-262
    66王晨阳,马冬云,郭天财,等.不同水氮处理对小麦淀粉组成及特性的影响.作物学报, 2004c, 30(8): 843-846
    67王晨阳,何英,方保停,等.小麦子粒淀粉合成、淀粉特性及其调控研究进展.麦类作物学报, 2005, 25(1): 109-114
    68王立秋,曹敬山,靳占忠.水肥耦合对春小麦产量和品质的研究.干旱地区农业研究, 1997a, 15(1): 58-63
    69王立秋,靳占忠,曹敬山,王占宇.水肥因子对小麦籽粒及面包烘烤品质的影响.中国农业科学, 1997b, 30(3): 67-73
    70王立秋,靳占忠,曹敬山,等.氮肥不同追肥比例和时期对春小麦籽粒产量和品质的影响.国外农学-麦类文摘, 1996, (6): 45-47
    71王渭玲,张冀涛.旱地分期施用氮肥对小麦产量和品质的影响.西北林学院学报, 1995, 10(增): 153-156
    72王朝辉,田霄鸿,等.冬小麦生长后期地上部分氮素的氨挥发损失.作物学报.2001, 27(1): 1-6
    73王朝辉,王兵,李生秀.缺水和补水对小麦氮素吸收及土壤残留氮的影响.应用生态学报, 2004, 15(8): 1339-1343
    74位东斌,林琪,王志良等.中后期追氮对小麦叶片含氮量及子粒蛋白质含量的影响.河南职技师范学报, 1990, 18(4): 97-101
    75徐恒永,赵振东,刘爱锋,等.氮肥对优质专用小麦产量和品质的影响,Ⅱ氮肥对小麦品质的影响.山东农业科学, 2001, (2): 13-17
    76徐志祥,董海州.小麦加工品质与面包烘焙品质关系的研究.西部粮油科技, 2002(4): 16-17
    77许振柱,于振文,王东,张永丽.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响.作物学报, 2003a, 29(5): 682-687
    78许振柱,于振文,张永丽.强筋小麦高产优质高效灌溉方案的研究.山东农业科学, 2002, 1: 20-22
    79许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报, 2003b, 29(4): 595-600
    80杨金,张艳,何中虎,等.小麦品质性状与面包和面条品质关系分析.作物学报, 2004, 30 (8): 739-744
    81印莉萍,柴晓清,刘祥林,等.叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响.植物学报, 1994, 36(8): 597-602
    82印莉萍,刘祥林,吴晓强,等.小麦谷氨酰胺合成酶的器官分布及光照对GS基因表达的影响.首都师范大学学报, 1993, 14(4): 35-40
    83袁新民,同延安,杨学云,等.有机肥对土壤NO3 --N累积的影响.土壤与环境, 2000, 9(3): 197-200
    84袁新民,王周琼.硝态氮的淋洗及其影响因素.干旱区研究, 2000, 17(4): 46-51
    85于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报,2002, 28(5): 577-585
    86翟丙年,李生秀.冬小麦产量的水肥耦合模型.中国工程科学, 2002, 4(9): 69-74
    87翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响.植物营养与肥料学报, 2003, 9(1): 26-32
    88赵广才,何中虎,刘利华,等.肥水调控对强筋小麦中优9507品质与产量协同提高的研究.中国农业科学, 2004, 37(3): 351-356
    89赵广才,张保明,王崇义.应用15N研究小麦各部位氮素分配利用及施肥效应.作物学报, 1998, 24(6): 854-858
    90赵广才,常旭虹,陈新民,等.不同施肥灌水处理对不同小麦品种产量和品质的影响.植物遗传资源学报, 2007, 8 (4) : 447-450
    91赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报. 2000, 34(3): 298-251
    92赵惠贤,段惠,梁亮,郭蔼光.不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报, 2003, 23 (5): 755-758
    93赵俊晔,于振文.不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响.生态学报, 2006, 26(3): 815-822
    94赵淑章,季书勤.水氮运筹与强筋小麦产量和品质关系研究.土壤肥料, 2005(6): 23-26
    95张宝军,蒋纪芸.施氮时期对小麦不同种子粒蛋白质品质的影响.西北农业大学学报, 1996, 24(l): 33-36
    96张夫道.长期施肥条件下土壤养分的动态和平衡对土壤氮的有效性和腐殖质氮组成的影响.植物营养与肥料学报, 1996, 2(1): 439-485
    97张国梁,章申.农田氮素淋失研究进展.土壤,1998, (6): 291-297
    98张明泉,高洪宣,吴克俭.兰州马滩水源地硝态氮污染环境条件分析.环境科学, 1990, 11(5): 79-82
    99张树兰,同延安,梁东丽,吕殿青, Ove Emteryd.氮肥用量及施用时间对土体中硝态氮移动的影响.土壤学报, 2004, 41(2): 270-277
    100张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝态氮污染的调查.植物营养与肥料学报, 1995, 1(2): 80-87
    101张玉铭,曾江海,董文旭,陈德立.小麦-玉米轮作体系中土壤氮素的硝化-反硝化损失.氮素循环与农业和环境学术研讨会论文摘要集, 2001,厦门
    102周顺利,张福锁,王兴仁,等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究.土壤肥料, 2000, 6: 20-24
    103周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究.Ⅰ冬小麦.生态学报, 2001, 21(11): 1782-1789
    104周顺利,张福锁,王兴仁.冬小麦不同氮营养品种对氮反应吸收与土壤硝酸盐耗竭的研究.中国农业科学, 2002, 35(6): 667-672
    105朱金宝,刘广田,张树棒,孙辉.小麦籽粒高低分子量麦谷蛋白亚基及其与品质关系的研究.中国农业科学, 1996 29: 34-39
    106朱小乔,刘通讯.面筋蛋白及其对面包品质的影响.粮油食品科技, 2001, 4: 18-21
    107朱新开,周正权,胡宏,周君良,郭文善.土壤氮素与小麦产量和品质关系及在施氮推荐中的应用.天津农学院学报, 2002, 29(3): 53-56
    108朱新开,郭文善,周君良等.氮素对不同类型专用小麦营养和加工品质调控效应.中国农业科学, 2003, 36(6): 640-645
    109朱兆良.关于土壤氮素研究中的几个问题.土壤学进展, 1989, 2: 1-9
    110朱兆良.中国土壤氮素.江苏科技出版社,南京. 1991
    111邹汉法,张玉奎,卢佩章.高效液相色谱法.北京:科学出版社.1998
    112 Alan M., Myers. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989-997
    113 Andrews J L, Skerritt J H. Wheat dough extensibility screening using a two-site enzyme-linked immunosorbent assay (ELISA) with antibodies to low molecular weight glutenin subunits (1) . Cereal Chemistry, 1996, 73(5): 650-657
    114 Arber S A. Adiffusion and mass flow concept of soil nutriet availability. Soil Sci., 1962, 93: 34-39
    115 Barber J S, Tessop R S. Facters affecting yield and quality in irrigated wheat. J. Agric. Sci. Camb, 1987, 109: 19-26
    116 Belton P. S., Colquhoun I. J., Field J. M., et al. Ftir and NMR Studies On the Hydration of a High Mr Subunit of Glutenin Int. J Biol Macromol, 1995, 17: 74-80
    117 Blacklow W M, Incoll L D. Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during filling . Aust. J. Plant Physiol., 1981, 8: 191-200
    118 Bloksma H.A. Dough structure, dough rheology and baking quality. Cereal Foods World, 1990, 35: 237-243
    119 B S Khatkar Fido, R J, et al. Functional properties of wheat gliadins I Effcct on mixing charactcristics and bread making quality. Cereal Sci., 2002, 35: 299-306
    120 Branlard G., Dardcvcl et al. Diversity of grain protein and bread wheat quality. II .Correlation between HMW-GS and flour quality characteristics. Cereal Sci., 1985, (3): 345-354
    121 Burkart M R, Kolpin D W, James D E. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US. Wat. Sci. Tech. , 1999,39: 103-112
    122 Byrnes B H. Fertilizer research, 1990, 26: 209-215
    123 Capocchi A., Galleschi L., Saviozzi F. Isolation of wheat high molecular weight glutenin subunits from durum wheat. Cereal Chemistry, 2000, 72 (2): 105-106
    124 Carceller J.L., Aussenac T. Accumulation and changes in molecular size distribution of polymeric proteins in developing grains of hexaploid wheats: role of the desiccation phase. Australian Journal of Plant Physiology, 1999, 26: 301-310
    125 Carceller J. L., Aussenac T. Size characterization of glutenin polymers by HPSEC-MALLS. Crop Science, 2001, 33(2): 131-142
    126 Caceller J L, Aussenac T. SDS-insoluble glutenin polymer formation in developing grains of hexaploid wheats: the role of the ratio of high to low molecular weight glutenin subunits and drying rate during riping. Aust. J plant phsiol , 2001, 28: 193-201
    127 Champigny M L. Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynth Res., 1995, 46: 117-127
    128 Champigny M L, Foyer Ch. Nitrate activation of cytosotic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Plant Physiol., 1992, 100: 7-12
    129 Chaney K. Effect of nitrogen fertilizer rate on soil nitrate-nitrogen content after harvesting winter wheat. Agric. Sci., 1990, 114: 171-176
    130 Ciafti M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chem., 1996a, 73: 346-351
    131 Darusman, Stone L. R., Whitney K. A., Soil properties after twenty years of fertilization with different nitrogen sources. Soil Science Society of America Journal. 1991, 55(4): 1097-1106
    132 Diez J A, Caballero R, Roman R, et al. Intergrated fertilizer and irrigation management to reduce nitrate leaching in central Spain. Journal of Environment Quality, 2000, 29: 1539-1547
    133 Don C., Lichtendonk W., Plijter J.J., Hamer R.J. Glutenin macropolymer: a gel formed by glutenin particles. Journal of Cereal Science, 2003, 37: 1-17
    134 Don C., Lichtendonk W., Plijter J. J., Hamer R. J. Understanding the link between GMP and dough from glutenin particles in flour towards developed dough. Journal of Cereal Science, 2003, 38: 157-165
    135 Edwards N. M., Mulvaney S. J., Scanlon M. G., Dexter J. E. Role of gluten and its components in determining durum semolina dough viscoelastic properties. Cereal Chemistry, 2003, 80(6): 755-763
    136 Elrick D E, French L K. Miscible displacement patterns on disturbed and undisturbed soil cores. Soil Sci. Soc.. Amer. Proc., 1966, 30: 153-156
    137 Finney K F, Miyer J W. Effect of foliar spraying of pawnee wheat with urea solution on yield, protein content and protein quality. Agron. J. 1957, 49: 341-347
    138 Fido R J , Beke, et al. Effcct ofα-,β-,γ-,ω-gliadins on the dough mixing properties of whcat flour. Cereal Sci., 1997, 26, 271-277
    139 Forde B. G., Cullimore J. V., Mifflin B. J. The molecular biology of glutamine synthetase in higher plants. In Oxford Surveys of Plant Molecular and Cell Biology. Vol 6. Oxford University Press, 1989, 247-296
    140 Frazier P. J., Daniels N. W. R. and Eggitt P. W. R.. Lipid-protein interactions during dough development. Sci. Food Agric., 1981, 32: 877-897
    141 Gianibelli M. C., Larroquc, et al. Biochcmical genetic and molecular characterization of wheat endospem protein. Cereal Chem., 2001, 78(6): 635-646
    142 Gianibelli M C, Echaide M, Larroque O R., Carrillo J M, Dubcovsky J. Biochemical and molecular characterisation of Glu-1 loci in Argentinean wheat cultivars. Euphytica, 2002, 128: 61-73
    143 Gupta R B, Bekes F, Wrigley C W. Prediction of physical dough properties from glutenin subunit composition in bread wheats: Correlation studies. Cereal Chem., 1991, 68: 328-333
    144 Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci., 1993, 18: 23-41
    145 Gupta R. B., Shepherd et al. Two step one-dimen-sional SDS-PAGE analysis of LMW-GS I variation and genetic control of the subunits in hcxaploid wheat.Thcor. Appl. Genel., 1990, 80: 65-74
    146 Herbert Wieser, Susanne Antes, Werner Seilmeier. Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chemistry, 1998, 75(5): 644-650
    147 Hober S C, Huber J L, Kaider W M. Differential response of nitrate reductase and sucrose phosphate synthase activation to inorganic and organic salts, in vitro and in situ. Plant Physiol, 1994, 92: 302-310
    148 Huppe L P, Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal calls. Ann Rev Plant Physiol Plant Mol Biol, 1994, 45: 577-607
    149 Huang D Y, Khan K.Characterization and quantification of native glutenin aggregates by multistacking sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) procedures. Cereal Chem., 1997a, 74: 229-234
    150 Ingwersen J., K. Butterbach-Bahl, R. Gasche, et al. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci. Soc. Am. J., 1999, 63: 117-128
    151 Jia Y Q, Masbou V, Aussenac T et al. Effects of nitrogen fertilization and maturation conditions on protein aggregates and on the breakmaking quality of soissons, a common wheat cultivar. Cereal Chemistry, 1996, 73(1): 123-130
    152 Johansson E., Prieto-linde M. L., Jonsson J. O. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chemistry, 2001, 78(1): 19-25
    153 Keeney D R, Follett R F.. Sources of nitrate to groundwater. In: Nitrogen management and groundwater protection developments in agricultural and managed-forest ecology 21. New York: Elsevier, 1989. 23-34
    154 King B. J. et al. Studies of the uptake of nitrate in barley, V. Estimation of root cytoplasmic nitrate concentration. Using nitrate reductase activity-implication for nitrate influx. Plant Physiol., 1992, 99: 1582-1589
    155 Kleinhofs A, Warmer R. L, Mifflin B J, Lea P J. Advances in nitrogen assimilation in intermediary nitrogen metabolism, San Dieqo: Academic,1991: 89-120
    156 Kolster P, Krechting C F, Van fielder W M J. Quantification of individual high molecular weight glutenin subunits using SDS-PAGE and scanning densitometry. J Cereal Sci., 1992, 15: 49-61
    157 Kuhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. J. Plant Physiol., 1989, 134: 243-250
    158 Lefebvre J., Popineau Y., Deshayes G., Lavenant L. Temperature-induced changes in the dynamic rheological behavior and size distribution of polymeric proteins for glutens from wheat near-isogenic lines differing in HMW glutenin subunit composition. Cereal Chemistry, 2000, 77(2): 193-201
    159 Liang B C, MacKenzie A F. Changes of soil nitrate-nitrogen and denitrification as affected by nitrogen fertilizer on two Quebec soils. Journal of Environmental Quality, 1994, 23(3): 521-525
    160 Masi P., Cavella S. and Sepe M. Characterization of dynamic viscoelastic behavior of wheat flour dough at different moisture contents. Cereal Chemistry, 1998, 75: 428-432
    161 Menge L K., Braunschweig Von L C. The effect of soil moisture upon the availability of potassium and its influence on the growth young maize plants(Zeamays L.). Soil Sci., 1972 : 114
    162 Menkovska M., Knezevic D., Ivanoski M. Protein allelic composition, dough rheology and baking characteristics of flour streams from wheat cultivars with known and varied baking qualities. Cereal Chemistry, 2002, 79(5): 720-725
    163 Nancy M E, James E D. The use of rheological techniques to elucidate durum wheat dough strength propertics. Tccnica Molitoria, 2002, 5: 553-560
    164 Nakamura T, Yamaori M, Hirano H, Hidaka S. Decrease of Waxy (Wx) protein in two common wheat cultivars with low amylose content. Plant Breeding, 1993, 111: 99-105
    165 Nye P H. The measurement and mechanism ofion diffusion in soil. The relation between self diffusion and bulk diffusion. J. Soil Sci., 1966, 17: 16-23
    166 Ohm J.B., Chung O.K. Gluten, pasting, and mixograph parameters of hard winter wheat flours in relation to breadmaking. Cereal Chemistry, 1999, 76(5): 606-613
    167 Omebro J. Absorption ofα-,β-,γ-,ω- gliadins onto hydrophobic surfaces J. Cereal Sci., 1999,30: 105-114
    168 Orin M and Lazzaro B. Effects of water table management on nitric nitrogen leaching in lysimeters planted with maize. April 1996.1995, 55-60
    169 Partridge M. A. K., Jiang Y, Skerritt J. H., Schaich K. M. Immunochemical and electrophoretic analysis of the modification of wheat proteins in extruded flour products. Cereal Chemistry, 2003, 80(6): 791-798
    170 Patra D. D. Seasonal changes of soil microbial in anarable and grass-land soil which have been under uniform management for many years. Soil Boil. Biochem., 1990, 22(6): 739-742
    171 Payne P I. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol, 1987, 38: 141-153
    172 Payne P I, Jackson et al. The association betweenγ-gliadin 45 and gluten strength in durum wheat varieties A direct causal effect or the result of genetic link-age. Cereal Sci., 1984, 2: 73-81
    173 Payne P I, Law C N, Mudd E E. Control by homoeologous group 1 chromosomes of the high-molercular-weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet., 1980, 58: 113-120
    174 Payne P I, Nightingale M A, Krattiger A F, Holt L M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric., 1987, 40: 51-65
    175 Pechanek U, Karger A, Groger S, Charvat B, Schoggl G. Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat. Cereal Chemistry, 1997, 74(6): 800-805
    176 Pheloung P C, Siddique K H M. Gibberllins and Reproductive development in seed plants, Ann Rev. Plant Physiol., 1985, 36: 517-568
    177 Peillet F., Omarait-mouh. The role of LMW proteins in the detemination of cooking quality of pasta products. Cereal Chem., 1989, 66(1): 26-30
    178 Rasmussen P E, Rohde C. R. Long-term till age and nitrogen fertilization effects on organic nitrogen and carboninsemiarid soil. Soil Science Society of America Journal.1988, 52 (4): 1114-1117
    179 Rasmussen P E, Rohde C R. Tillage soil depth and precipitation effects on wheat response to nitrogen. Soil Sci. Soc. Am. J., 1991, (55): 121-124
    180 Rego T J. Comparison of the effect of continiuos and relieved water stress on nitrogen nutrition of grains orghum. Aust. J. Agric. Res., 1988, 39: 773-782
    181 Robertson G.H., Cao T. K. Effect of processing on functional properties of wheat gluten prepared by cold-ethanol displacement of starch. Cereal Chemistry, 2003, 80(2): 212-217
    182 Robertson G. H., Cao T. K., Ong I. Wheat gluten swelling and partial solubility with potential impact on starch from gluten separation by ethanol washing. Cereal Chemistry, 1999, 76(6): 843-845
    183 Robertson G. H., Cao T. K., Wood D.F. Effect of morphology of mechanically developed wheat flour and water on starch from gluten separation using cold ethanol displacement. Cereal Chemistry, 2000, 77(4): 439-444
    184 Russell J S. Nitrogen fertilizer and wheat in semiarid environment. Aust. J. Exp. Agric. and An. Husb., 1967, (7): 453-462
    185 Sapirstein H D, Fu B X. Intercultivar variation of thequantity of monomeric proteins, soluble and insolubleglutenin, and residue protein in wheat flour andrelationships to breadmaking quality. Cereal Chemistry, 1998, 75(4): 500-507
    186 Shewry P. R., Tatham, et al. Biotechnology of wheat quality. Sci Food Agric, 1997, 73: 397-406
    187 Singh N K, Donovan G R, Batey I L, MacRitchie F. Use of size-exclusion high-performance liquid chromatography in the study proteins. I. Dissolution of total proteins in the absence of reducing sonication and of wheat flour agents. Cereal Chem., 1990, 67: 150-161.
    188 Sliwinski E. L., Kolster P., Prins A., Vliet T.V. On the relationship between gluten protein composition of wheat flours and large deformation properties of their doughs. Journal of Cereal Science, 2004, 39: 247-264
    189 Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48(6): 67-87
    190 Spalding R F, Exner M E. Occurrence of nitrate in groundwater-A review. Journal of Environmental Quality,1993, 22(3): 392-402
    191 Spiertz J H J. Grain growth and distribution of dry matter in the wheat lant as influenced by temperature, light energy and ear size. Netherlands J. Agr. Scu., 1974, 22: 207-220
    192 Spiertz J H J, Ellen J. Effects of nitrogen on crop development and grain growth of winter wheat in relation to assimilation and utilization of assimilates and nutrients. Netherlands J. Agr. Scvi., 1978, 26: 210-231
    193 Strong W M, Barry G. The availability of soil and fertilizer phosphorus to wheat and rapeat differerent water regimes. Aust. J. Soil Res., 1980, 18: 353-362
    194 Streit. L., Feller. U. Changing actives of nitrogen assimilation enzymes during growth and senescence of dwarf beans (phaseolus vulgaris.L). Pflanzenphysiol, 1982, 108: 273-281
    195 Sun H., Yao D. N., Liu G. T. Study on correlation ship between the content of glutenin macropolymer and baking quality of common wheat. J. of the Chinese Cereals and Oils Associationm, 2001, 16(2): 27-29
    196 Tronsmo K. M., Fergestad E. M., Longva A., Schofield J. D., Magnus E. M. A study of how size distribution of gluten proteins surface properties of gluten and dough mixing properties relate to baking properties of wheat flours. Journal of Cereal Science, 2002, 35: 201-214
    197 Tronsmo K. M., Magnus E. M., Fergestad E. M., Schofield J. D.. Relationships between gluten rheological properties and hearth loaf characteristics. Cereal Chemistry, 2003, 80(5): 575-586
    198 Tronsmo K. M., Magnus E. M., Baardseth P., Schofield J. D., Aamodt A., Fergestad E. M. Comparison of small and large deformation rheological properties of wheat dough and gluten. Cereal Chemistry, 2003, 80(5): 587-595
    199 Uthayakumaran S, Gras, et al. Effect of gliadin fraclions on functional properties of wheat dough depending on molecular size and hydrophoSicity. Cereal Chemistry, 2001, 78(2): 138-141
    200 Wang C, Kovacs MIP. Swelling index of glutenin test I.Method and comparison with sedimentation, gel-protein, and insoluble glutenin tests. Cereal Chemistry, 2002, 79 (2): 183-189
    201 Wang C, Kovacs MIP. Swelling index of glutenin test II. Application in predication of dough properties and end-use quality. Cereal Chemistry, 2002, 79(2): 190-196
    202 Wang C, Kovacs MIP. Swelling index of glutenin test forpredication of durum wheat quality. Cereal Chemistry, 2002, 79(2): 197-202
    203 Wardlaw I. F. The early stages of grain development in wheat: Response to water stress in a single variety. Aust. J. Biol. Sci., 1971, 24: 1047-1055
    204 Wardlaw I. F., Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheat between heading and grain maturity: The relation to sucrose synthase and sucrose-phosphate synthase. Aust. J. Plant Physiol., 1994, 21: 251-271
    205 Weegels P L, Orsel R, Van De Pijpekamp A M, Lichtendonk W J, Hamer R J, Schofield J D. Functional properties of low Mr wheat proteins. II. Effects on dough properties. J. Cereal Sci., 1995, 21: 117-126
    206 Wieser H, Lelley T, Kieffer R. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J. Sci. Food Agric., 2000, 80: 1640-1647
    207 Winzeler M, Dubois D, Nosberger J. Absence of fructan degradation during fructan accumulation in wheat stems. J. Plant Physiol., 1990, 136: 324-329
    208 Wrigley C W. Protein mapping by combined gel electro-focusing and electrophoresis application to the study of genotypic variations in wheat gliadins. Bio. Chem. Genel, 1970, 4: 509-516
    209 Yan Y, Surlan-Momirovic G, Prodanovic S, Zoric D, Liu G. Capillary zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica, 1999, 105: 197-204
    210 Yan Y, Yu J Z, Jiang Y, Hu Y, Cai M, Hsam S L K, Zeller F J. Capillary electrophoresis separation of high molecular weight glutenin subunits in breed wheat and related species with phosphate-based buffers. Electrophoresis, 2003, 24: 1429-1436
    211 Yong-Qing Jia, Veronique Masbou, Thierry Aussenac, Jean-Luc Fabre, Philippe Debaeke. Effects of nitrogen fertilization and maturation conditions on protein aggregates and on the breakmaking quality of soissons, a common wheat cultivar. Cereal Chemistry, 1996, 73(1): 123-130
    212 Zhao H.X., Hu S.W., Ji W.Q.. Study on relationship between the size distribution of polymeric protein and wheat flour mixing properties. Scientia Agriculture Sinica, 2001, 16(2): 475-479
    213 Zhu J, Khan K. Effects of genotype and environment on glutenin polymers and bread making quality. Cereal Chem., 2001, 78: 125-130
    214 Zhu J, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chem., 2002, 79: 783-786

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700