用户名: 密码: 验证码:
伴生气联合循环系统全局能量优化与(火用)评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁企业伴生能源种类繁多,布局分散,品质参差不齐,加之囿于传统回收技术与方法,各项伴生能源只进行了分散回收,且利用效率偏低。鉴于此,本文从钢铁企业全局角度出发,首先对不同品位的伴生能源进行全局能量调优,然后着重对所提出的伴生气联合循环系统和耦合化学链燃烧的联合循环系统从组件层面进行(?)评价,最后阐述了伴生气联合循环系统在工程应用中的技术关键。
     本文的主要内容如下:
     首先,以夹点技术为基础,利用全局温焓曲线方法,展开对钢铁企业伴生能源全局能量优化理论研究。将在化工领域和换热器网络优化中常用的夹点技术尝试性地引入到钢铁企业余热能的利用中。以干熄焦装置为例,阐述了在钢铁企业换热设备系统中如何进行物流选择与数据提取;以某大型钢铁企业热能利用为例,通过比对分析当前工况、目标工况和需求工况的用能情况,详细论述了以全局温焓曲线对余热能进行调优的方法,研究发现,调整后可多输出电功率22.456MW;以燃用低热值高炉煤气的联合循环发电系统和烧结机冷却热废气发电系统为例,从全局角度出发,阐述两套系统整合的优化方案。
     其次,提出炼铁工序伴生气联合循环系统,并对其进行(?)、火用经济性和(?)环境影响评价。基于能量平衡、(?)平衡和能级平衡理论,通过对富余煤气燃气-蒸汽联合循环系统及整合后的炼铁工序伴生气联合循环系统的热力学性能进行比对分析,结果表明:在富余煤气初参数及余热锅炉蒸汽侧热力参数不变条件下,整合后,系统能效率及(?)效率分别较整合前提高约3.00%及1.18%,而能级差降低约27.28%。基于热经济学结构理论,考察了系统中每个组件的三个(?)经济指标、系统性能参数和设备购买成本及燃料成本等对单位产品成本的影响,分析了系统组件(?)损对环境的影响;与现有三个发电系统进行比较表明:该系统单位输出功成本最小,而单位燃料输出功最大。
     然后,提出耦合化学链燃烧的联合循环系统,并对其进行(?)、火用经济性和(?)损环境影响指标评价。在将(?)损划分为不可避免部分与可避免部分、内源性部分与外源性部分后,基于热经济学结构理论,从(?)、(?)经济性和(?)损环境影响三个角度分别详细论述了对耦合化学链燃烧的联合循环系统的评价过程,试图从系统组件层面找到效率提高与投资成本和环境影响降低的权衡点,并结合分析结果给出了系统组件相应的改造先后顺序。与所提出的伴生气联合循环系统进行性能比较后发现,该系统单位燃料输出功提高约16%,单位输出功环境影响指标降低约5.2%。
     最后,从工程应用角度出发,对伴生气联合循环系统实际操作中的一些技术关键问题进行阐述,并利用EUD图像(?)分析方法,对燃气透平、余热锅炉和补汽式蒸汽轮机等关键部件进行(?)损分析。根据钢铁企业富余煤气波动规律,完成了适宜低热值煤气用燃气透平选型研究,并分析了空气压缩机压比、空气压缩机入口空气温度、高炉煤气低位发热量对燃气透平净输出功及其排烟温度的影响;根据烧结废气显热分布规律,完成了适宜烧结低温显热高效回收的重力热管蒸汽发生器方案设计,并考察了烟气侧入口处迎风面流速、热管蒸发段长度、热管外径等参数对无量纲(?)耗散数及(?)耗散数的影响;完成了多压补汽式蒸汽轮机补汽调节控制策略与系统的可行性论证研究,提出用蒸汽蓄热器的充放热过程,并结合采用505E数字式调节器的新蒸汽前压控制与补汽调节系统,来维持补汽点处蒸汽压力及流量稳定的方法。
In an iron and steel enterprise, associated energies that were uneven levels of quality, with wide varieties in kinds, were scattered. Being confined to conventional recycling technology and method, different types of associated energies were recovered individually, and their use efficiency was lower. In view of this, firstly, in the dissertation, various-quality associated energies were integrated and optimized from the point of view on total-site level. Secondly, exergy evaluations from component level for a associated-gas combined cycle system and a combined cycle system coupled with chemical-looping combustion were conducted. Finally, some key technologies of engineering application for associated-gas combined cycle system were elaborated.
     The main contents in the dissertation are as follows:
     To start with, the theoretical research on total-site energy optimization using a total-site profile (TSP) analysis based on pinch technology was performed. The pinch technology that was commonly used in chemical industry and network optimization of heat exchanger was tentatively applied to the utilizing of waste heat. First, taking coke oven quench (CDQ) unit as an example, how to select utilities for heaters and coolers, and how to extract data from heat exchange equipments in a steel plant were described. Then, as an illustration of the method that how to optimize the employment of waste heat, three cases including current case, targeting case and demand case were compared for a large steel plant, which shows that22.456MW of power generation could be increased after optimization. Next, for a blast-furnace-gas-fired combined cycle system and a hot-waste-gas power generation system, integrated schemes of the two systems were discussed based on TSP.
     After that, a associated-gas combined cycle system in ironmaking process was proposed, and exergy, exergoeconomic and exergoenvironmental evaluations of the system were conducted, respectively. Based on the theory of energy, exergy and energy level balances, thermodynamic performances of the common surplus-gas gas-steam combined cycle system and the associtated-gas combined cycle system were analyzed. Results show that under the same conditions of initial parameters of surplus gas and thermodynamic parameters on steam side, energy and exergy efficiencies of the system after integration improve by3.00%and1.18%, respectively, than that of the system before integration, and energy difference decreases by27.28%. In accordance with structural theory of thermoeconomics, three exergoeconomic indexes of each component, and the influences of performance parameters, purchase cost and fuel cost on the unitary cost of production were investigated, and also the effects of exergy destruction of each component on the environment were examined. Results comparing with the current three power generation systems show that for the system proposed, the cost of unitary output power was lower than others', and the output power of unitary fuel higher.
     In addition, a combined cycle system coupled with chemical-looping combustion was proposed, and exergy, exergoeconomic and exergoenvironmental evaluations were carried out, respectively. After dividing exergy destruction into unavoidable and avoidable parts, and endogenous and exogenous parts, on the basis of structural theory of thermoecnomics, the performance evaluation of the combined cycle system coupled with chemical-looping combustion was studied from three aspects including exergy, exergoeconomics and exergoenvironmental impact, in order to find appropriate trade-offs between efficiency enhancement and investment cost and environmental impact reduction at the component level. And transformation sequence of components was also given according to the analysis results. In contrast with the associated-gas combined cycle system, we find that the output power of unitary fuel for the system proposed was16%higher, and the environmental impact of unitary output power about5.2%lower.
     Last but not the least, from the point of view on engineering application, some key technologies of actual operation for associated-gas combined cycle system were expounded, and the analysis of exergy destructions of gas turbine, heat recovery steam generator and supplementary-steam steam turbine was conducted with the help of energy utilization diagram (EUD). According to the fluctuation of surplus gas, the selection of gas turbine suited low-heat-value gas was finished, and the influences of pressure ratio and inlet temperature of air compressor and the low heat value of blast furnace gas on net output power and exhaust gas temperature of gas turbine were also set forth. In the light of the distribution law of sensible heat of sintering waste heat, the design of gravity-heat-pipe steam generator fitted low-temperature sensible heat, and some influence factors including the velocity of wind side at the inlet in the flue gas side of heat-pipe steam generator, the outer diameter and the length of evaporation section of heat pipe, for exergy dissipation number and entransy dissipation number were analyzed. The feasible study of regulation and control strategy for supplementary-steam steam turbine was performed, the steam pressure and flow rate in the supplementary-steam point could be kept stable by endothermic and exothermic processes of steam accumulator and control and regulation system of live steam using505E digital regulator.
引文
[1]国家能源局,国家能源科技“十二五”规划(2011-2015)[R].2011.
    [2]工业和信息化部,工业节能“十二五”规划[R].2012.
    [3]国家统计局,中华人民共和国2012年国民经济和社会发展统计公报[R].2013.
    [4]中国科学院,工业节能政策与技术调研[R].能源与科技参考,2011.
    [5]工业和信息化部,关于钢铁工业节能减排的指导意见[R].2010.
    [6]熊超,钢铁工业余热余能利用面临新挑战[N].中国冶金报,2012-06-28(B03).
    [7]熊超,程小矛,分布式能源梯级利用—钢铁工业“十二五”节能的重要方向[J].中国钢铁业,2011,(12):25-27.
    [8]X.P. Zhang, J. Zhao, W. Wang, L.Q. Cong, W.M. Feng, An optimal method for prediction and adjustment on byproduct gas holder in steel industry [J]. Expert Systems with Applications,2011,38(4):4588-4599.
    [9]钢铁企业燃气设计参考资料编写组,钢铁企业燃气设计参考资料(煤气部分)[M].北京:冶金工业出版社,1978,4-8.
    [10]董敏亚,钢铁企业副产煤气调度优化研究[D][硕士学位论文].济南:山东大学,2012,12-14.
    [11]庄正宁,曹子栋,唐桂华,沈月芬,50MW高压锅炉全燃高炉煤气的研究[J].热能动力工程,2001,16(3):271-274,348-349.
    [12]刘旭,孙明庆,钢铁厂燃用低热值煤气燃气-蒸汽联合循环发电装置探讨[J].钢铁技术,2003,(3):37-44,36.
    [13]赵林凤,陈又申,朱基木,150MW高炉煤气燃气—蒸汽轮机联合循环发电技术优化与实践[J].宝钢技术,2008,(2):11-15.
    [14]陈川,富余高焦炉煤气联合循环发电在马钢的应用[J].燃气轮机技术,2007,20(4):6-10.
    [15]张琦,蔡九菊,段国建,王建军,刘汉桥,钢铁工业系统节能方法与技术浅析[J].节能,2006,(1):35-37.
    [16]刘文宇,江宁,倪维斗,李政,焦炉煤气资源及利用系统[J].煤化工,2005,(3):711.
    [17]M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, Y. Katayama, Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas [J]. Fuel,2006, 85(2):143-149.
    [18]Y.W. Zhang, Q. Li, P.J. Shen, Y. Liu, Z.B. Yang, W.Z. Ding, X.G. Lu, Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. International Journal of Hydrogen Energy,2008,33(13):3311-3319.
    [19]李军,焦炉煤气利用应向“高深”发展[N].中国化工报,2009-10-15(006).
    [20]王太炎,焦炉煤气开发利用的问题与途径[J].燃料与化工,2004,35(6):1-3.
    [21]刘勇,杨文荣,转炉煤气在步进式加热炉上的应用[J].轧钢,2004,21(3):71-72.
    [22]刘凤芹,胡伟,蓄热式燃烧技术在唐钢二高线步进梁式加热炉的应用[J].冶金能源,2006,25(1):24-25,28.
    [23]李银河,承钢公司高线蓄热式加热炉掺烧转炉煤气实践[J].河北冶金,2011,(4):52-53,35.
    [24]王兆鹏,胡晓民,烧结余热回收发电现状及发展趋势[J].烧结球团,2008,33(1):3135.
    [25]赵斌,张尉然,路晓雯,李娜,张玉柱,烧结余热集成回收与梯级利用发电技术研究[J].烧结球团,2009,34(4):1-4.
    [26]陈永国,郭森魁,王华,钢铁企业烧结厂余热资源的回收利用[J].能源研究与利用,2001,(5):43-45.
    [27]卢红军,周长强,济钢320 m2烧结机的余热发电系统[J].冶金能源,2008,27(1):55-57.
    [28]徐国群,烧结余热回收利用现状与发展[J].世界钢铁,2009,(5):27-31.
    [29]靳志刚,杨淑敏,肖凤,邯钢400 m2烧结机烧结矿余热回收改造可行性分析[J].河北冶金,2008,(2):4-5,58.
    [30]张西鹏,周守航,高炉渣显热回收前景分析[J].世界金属导报,2010-01-19(023).
    [31]H. Takano, Y. Kitauchi, H. Hiura, Design for the 145-MW blast furnace gas firing gas turbine combined cycle plant [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,1989,111(2):218-224.
    [32]G. Bisio, First-and second-law analysis of energy recoveries in blast-furnace regenerators [J]. Energy,1996,21(2):147-155.
    [33]G. Bisio, A second-law analysis of the "hot blast stove/gas turbine" combination by applying the parameter "usable exergy" [J]. Energy Conversion and Management,1998, 39(3-4):217-227.
    [34]M. Modesto, S.A. Nebra, Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method [J]. Energy,2006,31(15): 3261-3277.
    [35]M. Modesto, S.A. Nebra, Exergoeconomic analysis of the power generation system using blast furnace and coke oven gas in a Brazilian steel mill [J]. Applied Thermal Engineering, 2009,29(11-12):2127-2136.
    [36]R.C. Orbay, M. Genrup, P. Eriksson, J. Klingmann, Off-design performance investigation of a low calorific value gas fired generic-type single-shaft gas turbine [J]. Journal of Engineering for Gas Turbines and Power-Transaction of the ASME,2008,130(3): 031504.
    [37]A. Bhatnagar, J.R. Ball, W. David, K.R. Estrada, J.R. Aiton, Low heating value fuel gas blending control [P], United States, Al,2010229524,2010.09.16.
    [38]S. Harada, Intake air heating system of combined cycle plant [P], United States, Al, 2011146225,2011.01.23.
    [39]J.M. Hall, R.T. Thatcher, S.V. Koshevets, L.L. Thomas, R.M. Jones, Development and field validation of a large-frame gas turbine power train for steel mill gases [A], Source: Proceedings of ASME Turbo Expo 2011 [C], Vancouver, British Columbia, Canada, June 6-10,2011,1:45923.
    [40]J.W. Yin, G.L. Sun, C.J. Kang, T.J. Yang, Oxygen blast furnace and combined cycle (OBF-CC) — an efficient iron-making and power generation process [J]. Energy,2003, 28(8):825-835.
    [41]李振山,蔡宁生,尹建威,整体高炉煤气联合循环(IBFGCC)发电系统性能分析[J].工程热物理学报,2004,25(2):193-196.
    [42]覃勇付,钢铁厂剩余煤气在CCPP上利用的配置优化研究[D][硕士学位论文].昆明:昆明理工大学,2007,12-13.
    [43]张兴华,高炉煤气燃气-蒸汽联合循环热力性能数学模型及优化研究[D][硕士学位论 文].长沙:中南大学,2010,7-8.
    [44]盛德仁,陈坚红,李蔚,姚华,洪荣华,炼铁生产过程伴生能源的整体梯级回收系统[P].中国,发明专利,ZL 200910155008.4,2011.07.20.
    [45]姚华,盛德仁,林张新,宋思远,陈坚红,李蔚,炼铁伴生能源联合循环系统热力学性能分析[J].浙江大学学报(工学版),2011,45(11):2008-2013,2025.
    [46]H. Yao, D.R. Sheng, J.H. Chen, W. Li, Comparative study on associated energy combined cycle system schemes in ironmaking process [A], Source:Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering [C], Melbourne, Australia, November 19-20,2011,112:605-614.
    [47]X. Ding, H.Y. Li, Environmental benefit from blast furnace gas recycling in the integrated steelworks [A], Source:Proceedings of International Conference on Computer Distributed Control and Intelligent Environmental Monitoring [C], Changsha, China, February 19 — 20, 2011:2091-2095.
    [48]W.H. Chen, M.R. Lin, T.S. Leu, S.W. Du, An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks [J]. International Journal of Hydrogen Energy,2011,36(18):11727-11737.
    [49]S.S. Hou, C.H. Chen, C.Y. Chang, C.W. Wu, J.J. Ou, T.H. Lin, Firing blast furnace gas without support fuel in steel mill boilers [J]. Energy Conversion and Management,2011, 52(7):2758-2767.
    [50]黄本元,罗自学,方庆艳,周怀春,200MW锅炉煤/煤气混烧检测试验研究[J].工程热物理学报,2010,31(6):1065-1068.
    [51]王春波,魏建国,盛金贵,李艳奇,300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟[J].中国电机工程学报,2012,32(14):14-19.
    [52]王春波,魏建国,黄江城,300MW高炉煤气与煤粉混燃锅炉热力特性及经济性分析[J].动力工程学报,2012,32(7):517-522.
    [53]张微微,张会生,苏明,混烧高炉煤气的火电机组热力系统建模与仿真分析[J].热力发电,2012,41(4):59-64.
    [54]H.N. Kong, E.S. Qi, H. Li, G. Li, X. Zhang, An MILP model for optimization of byproduct gases in the integrated iron and steel plant [J]. Applied Energy,2010,87(7):2156-2163.
    [55]张欣欣,张安强,冯妍卉,刘健,张长青,于振东,焦炉能耗分析与余热利用技术[J].钢铁,2012,47(8):1-4,12.
    [56]冶金工业规划研究院,转变观念改进技术落实政策—我国烧结余热发电发展现状及有关建议[N].中国冶金报,2012-04-12(B01).
    [57]毛虎军,张浩浩,董辉,蔡九菊,日本烧结余热回收利用技术[A],2010全国能源与热工学术年会论文集[C].中国,厦门,11.09-11.12,2010:561-564,568.
    [58]O.M. Al-Rabhghi, M. Beirutty, M. Akyurt, Recovery and utilization of waste heat [J]. Heat Recovery Systems and CHP,1993,13(5):463-470.
    [59]A.C. Caputo, G. Cardarelli, P.M. Pelagagge, Analysis of heat recovery in gas-solid moving beds using a simulation approach [J]. Applied Thermal Engineering,1996,16(1):89-99.
    [60]P.M. Pelagagge, A.C. Caputo, G. Cardarelli, Optimization criteria of heat recovery from solid beds [J]. Applied Thermal Engineering,1997,17(1):57-64.
    [61]P.M. Pelagagge, A.C. Caputo, G. Cardarelli, Comparing heat recovery schemes in solid bed cooling [J]. Applied Thermal Engineering,1997,17(11):1045-1054.
    [62]A.C. Caputo, P.M. Pelagagge, Heat recovery from moving cooling beds:transient modeling by dynamic simulation [J]. Applied Thermal Engineering,1999,19(1):21-35.
    [63]A.C. Caputo, P.M. Pelagagge, Fuzzy control of heat recovery systems from solid bed cooling [J]. Applied Thermal Engineering,2000,20(1):49-67.
    [64]A.C. Caputo, P.M. Pelagagge, Economic design criteria for cooling solid beds [J]. Applied Thermal Engineering,2001,21(12):1219-1230.
    [65]J.Y. Jang, Y.W. Chiu,3-D transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed [J]. Applied Thermal Engineering,2009,29(14-15):2895-2903.
    [66]J.C. Leong, K.W. Jin, J.S. Shiau, T.M. Jeng, C.H. Tai, Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(3):265-272.
    [67]张坤,钢铁厂烧结低温余热发电DCS及职能控制的仿真研究[D][硕士学位论文].昆明:昆明理工大学,2010,9-10.
    [68]J.J. Cai, J.J. Wang, C.X. Chen, H. Yong, Thermodynamic analysis and cascade utilization technology of residual-heat in sinter process [A], Source:Proceedings of 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology [C], REWAS 2008, Cancun, Mexico,2008,175-181.
    [69]蔡九菊,董辉,杜涛,徐春柏,周节旺,林科,烧结过程余热资源分级回收与梯级利用研究[J].钢铁,2011,46(4):88-92.
    [70]蔡九菊,董辉,烧结过程余热资源的竖罐式回收装置与利用方法[P].中国,发明专利,ZL 200910187381.8,2011.01,05.
    [71]董辉,赵勇,蔡九菊,周节旺,马光宇,烧结-冷却系统的漏风问题[J].钢铁,2012,47(1):95-99.
    [72]H. Dong, J. Li, N. Guo, H.H. Zhang, H.J. Mao, W.C. Liu, J.J. Cai, Study on gas-solid heat transfer process of cogeneration system [A], Source:Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference [C], APPEEC 2010, Chengdu, China,2010.
    [73]董辉,李磊,蔡九菊,力杰,烧结余热回收竖罐内料层传热过程数值计算[J].东北大学学报(自然科学版),2012,33(9):1299-1302.
    [74]熊永华,姜云涛,吴敏,赖旭芝,基于产热量优化的烧结余热回收操作参数设定[J].上海交通大学学报,2011,45(8):1119-1124.
    [75]胡长庆,师学峰,张玉柱,王子兵,烧结余热回收发电关键技术[J].钢铁,2011,46(1):86-91.
    [76]B. Zhao, H. Xu, X.W. Lu, N. Li, Development and research of HRSG device for power generation [A], Source:Proceedings of 2009 International Conference on Energy and Environment Technology [C], ICEET 2009, Guilin, China,2009,1:584-587.
    [77]B. Zhao, Y.Z. Zhang, C.Q. Hu, S.B. Wan, Research on the technology of integrated recovery and collaborative power generation for sintering dual waste heat source [A], Source:Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference [C], APPEEC 2010, Chengdu, China,2010.
    [78]赵斌,杜小泽,崔健,梁文龙,徐鸿,烧结旋冷机余热梯级发电技术研究[J].中国电机工程学报,2012,32(8):37-43.
    [79]刘斌,冯妍卉,姜泽毅,张欣欣,烧结床层的热质分析[J].化工学报,2012,63(5):1344-1353.
    [80]倪鲲鹏,环冷机烟气流场数值模拟及余热回收系统优化[D][硕士学位论文].长沙:长沙理工大学,2012,5-6.
    [81]A.P. Bruckner, Continuous duty solar coal gasification system using molten slag and direct-contact heat exchange [J]. Solar Energy,1985,34(3):239-247.
    [82]G. Bisio, Energy recovery from molten slag and exploitation of the recovered energy [J]. Energy,1997,22(5):501-509.
    [83]T. Shimada, V. Kochura, T. Akiyama, E. Kasai, J.I. Yagi, Effects of slag compositions on the rate of methane-steam reaction [J]. ISIJ International,2001,41(2):111-115.
    [84]S. Inaba, Y. Kimura, H. Shibata, H. Ohta, Measurement of physical properties of slag formed around the raceway in the working blast furnace [J]. ISIJ International,2004,44(12): 2120-2126.
    [85]Y. Topkaya, N. Sevinc, A. Gunaydm, Slag treatment at Kardemir integrated iron and steel works [J]. International Journal of Mineral Processing,2004,74(1-4):31-39.
    [86]H. Purwanto, T. Mizuochi, T. Akiyama, Prediction of granulated slag properties produced from spinning disk atomizer by mathematical model [J]. Materials Transactions,2005, 46(6):1324-1330.
    [87]H. Purwanto, E. Kasai, T. Akiyama, Process analysis of the effective utilization of molten slag heat by direct blast furnace cement production system [J]. ISIJ International,2010, 50(9):1319-1325.
    [88]H. Purwanto, T. Akiyama, Hydrogen production from biogas using hot slag [J]. International Journal of Hydrogen Energy,2006,31(4):491-495
    [89]Y. Kashiwaya, T. Akiyama, Y. In-nami, Latent Heat of amorphous slags and their utilization as a high temperature PCM [J]. ISIJ International,2010,50(9):1259-1264.
    [90]M. Barati, S. Esfahani, T.A. Utigard, Energy recovery from high temperature slags [J]. Energy,2011,36(9):5440-5449.
    [91]E.A. Alvarez, A.J.G. Trashorras, J.X. Bernat, J.M.S. Cuesta, Steel mill slags energy potential:the case of the steel factory of Arcelor-Mittal in Asturias (Spain) [J]. Clean Technologies and Environmental Policy,2012,14(5):869-877.
    [92]王晓娣,液态钢渣气淬过程换热分析与计算[D][硕士学位论文].唐山:河北理工大 学,2009,10-11.
    [93]H.X. Zhao, Z.F. Yuan, W.J. Wang, Y.F. Pan, S.Q. Li, A novel method of recycling CO2 for slag splashing in converter [J]. Journal of Iron and Steel Research, International,2010, 17(12):11-16.
    [94]J.X. Guo, B.J. Yang, Research on the air-cooled waste heat recovery for furnace slag [A], Source:Proceedings of 2011 Materials for Renewable Energy and Environment [C], Shanghai, China, May 20-22,2011,2:1148-1152.
    [95]F.M. Wang, X.S. Li, Y. Wang, Recovery, utilization and research of waste heat from the blast furnace water granulated slag [A], Source:Proceedings of 1st International Conference on Energy and Environmental Protection, ICEEP 2012 [C], Hohhot, China, June 23-24, 2012,512-515:1205-1211.
    [96]J.X. Liu, Q.B. Yu, P. Li, W.Y. Du, Cold experiments on ligament formation for blast furnace slag granulation [J]. Applied Thermal Engineering,2012,40:351-357.
    [97]Y.L. Qin. X.W. Lv, C.G. Bai, G.B. Qiu, P. Chen, Waste heat recovery from blast furnace slag by chemical reactions [J]. JOM,2012,64(8):997-1001.
    [98]李娟琴,胡建杭,王华,邓双辉,胡威,高温铜渣催化木屑水蒸气气化的实验研究[J].过程工程学报,2012,12(5):876-881.
    [99]赵斌,烧结余热能高效发电研究[D][博士学位论].北京:华北电力大学,2012,910.
    [100]蔡九菊,孙文强,中国钢铁工业的系统节能和科学用能[J].钢铁,2012,47(5):1-8.
    [101]蔡九菊,孙文强,创新理论、技术和管理手段—中国钢铁工业的节能进程与发展方向[N].中国冶金报,2012-11-08(B02).
    [102]Y.M. Wei, H. Liao, Y. Fan, An empirical analysis of energy efficiency in China's iron and steel sector [J]. Energy,2007,32(12):2262-2270.
    [103]J. Oda, K. Akimoto, F. Sano, T. Tomoda, Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector [J]. Energy Economics,2007,29(4):868-888.
    [104]J.L. Zhang, G.S. Wang, Energy saving technologies and productive efficiency in the Chinese iron and steel sector [J]. Energy,2008,33(4):525-537.
    [105]D.Y.L. Chan, K.H. Yang, J.D. Lee, G.B. Hong, The case study of furnace use and energy conservation in iron and steel industry [J]. Energy,2010,35(4):1665-1670.
    [106]M.T. Johansson, M. Soderstrom, Options for the Swedish steel industry — Energy efficiency measures and fuel conversion [J]. Energy,2011,36(1):191-198.
    [107]A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, T. Xu, A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry [J]. Energy,2013,50:315-325.
    [108]姚平经,全过程系统能量优化综合[M].大连:大连理工大学出版社,1995,1-2.
    [109]J.R. Tian, P.J. Zhou, B. Lv, A process integration approach to industrial water conservation: a case study for a Chinese steel plant [J]. Journal of Environmental Management,2008, 86(4):682-687.
    [110]K. Matsuda, Y. Hirochi, H. Tatsumi, T. Shire, Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants [J]. Energy,2009,34(10):1687-1692.
    [111]K. Matsuda, S. Tanakal, M. Endou, T. Iiyoshi, Saving study on a large steel plant by total site based pinch technology [J]. Chemical Engineering Transactions,2011,25:551-556.
    [112]K. Matsuda, S. Tanakal, M. Endou, T. Iiyoshi, Energy saving study on a large steel plant by total site based pinch technology [J]. Applied Thermal Engineering,2012,43:14-19.
    [113]C.E. Grip, M. Larsson, S. Harvey, L. Nilsson, Process integration, tests and application of different tools on an integrated steelmaking site [J]. Applied Thermal Engineering,2012, doi:10.1016/j.applthermaleng.2012.03.040.
    [114]修乃云,全局系统能量集成方法研究[D][博士学位论文].大连:大连理工大学,2000,6-9,24-27.
    [115]项曙光,贾小平,夏力,能量的有效利用—夹点分析与过程集成[M].北京:化学工业出版社,2010,20-22,47-48.
    [116]T.C. Hung, Waste heat recovery of organic Rankine cycle using dry fluids [J]. Energy Conversion and Management,2001,42(5):539-553.
    [117]B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis, Low-grade heat conversion into power using organic Rankine cycles-A review of various applications [J]. Renewable and Sustainable Energy Reviews,2011,15(8):3963-3979.
    [118]B.T. Liu, K.H. Chien, C.C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery [J]. Energy,2004,29(8):1207-1217.
    [119]T.Y. Wang, Y.J. Zhang, Z.J. Peng, G.Q. Shu, A review of researches on thermal exhaust heat recovery with Rankine cycle [J]. Renewable and Sustainable Energy Reviews,2011, 15(6):2862-2871.
    [120]T. Guo, H.X. Wang, S.J. Zhang, Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system [J]. Energy Conversion and Management,2011,52(6):2384-2391.
    [121]T.C. Hung, S.K. Wang, C.H. Kuo, B.S. Pei, K.F. Tsai, A study of organic working fluids on system efficiency of an ORC using low-grade energy sources [J]. Energy,2010,35(3): 1403-1411.
    [122]T.C. Hung, T.Y. Shai, S.K. Wang, A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat [J]. Energy,1997,22(7):661-667.
    [123]F. Heberle, M. Preiβinger, D. Bruggemann, Zeotropic mixtures as working fluids in organic Rankine cycles for low-enthalpy geothermal resources [J]. Renewable Energy, 2012,37(1):364-370.
    [124]吴伟,非共沸工质在水平套管内蒸发的传热窄点和最大传热温差的实验研究[D][硕士学位论文].天津:天津大学,2010,3-6.
    [125]G. Angelino, P.C.D. Paliano, Multicomponent working fluids for organic Rankine cycles (ORCs) [J]. Energy,1998,23(6):449-463.
    [126]J. Klemes, V.R. Dhole, K. Raissi, S.J. Perry, L. Puigjaner, Targeting and design methodology for reduction of fuel, power and CO2 on total sites [J]. Applied Thermal Engineering,1997,17(8-10):993-1003.
    [127]S. Bandyopadhyay, J. Varghese, V. Bansal, Targeting for cogeneration potential through total site integration [J]. Applied Thermal Engineering,2010,30(1):6-14.
    [128]M.H. Khoshgoftar Manesh, H. Ghalamib, M. Amidpoura, M.H. Hamedi, A new targeting method for combined heat, power and desalinated water production in total site [J]. Desalination,2012,307:51-60.
    [129]P.S. Varbanov, Z. Fodor, J.J. Klemes, Total Site targeting with process specific minimum temperature difference (△Tmin) [J]. Energy,2012,44(1):20-28.
    [130]A. Ghannadzadeh, S. Perry, R. Smith, Cogeneration targeting for site utility systems [J]. Applied Thermal Engineering,2012,43:60-66.
    [131]S.R.W. Alwia, N.E.M. Rozalia, Z. Abdul-Manan, J.J. Klemes, A process integration targeting method for hybrid power systems [J]. Energy,2012,44(1):6-10.
    [132]A. Khaliq, S.C. Kaushik, Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat [J]. Applied Energy,2004,78(2):179-197.
    [133]A. Cihann, O. Hacihafizolu, K. Kahveci, Energy-exergy analysis and modernization suggestions for a combined-cycle power plant [J]. International Journal of Energy Research,2006,30(2):115-126.
    [134]X.J. Shi, D.F. Che, Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system [J]. International Journal of Energy Research,2007,31(10):975-998.
    [135]M. Ameri, P. Ahmadi, S. Khanmohammadi, Exergy analysis of a 420MW combined cycle power plant [J]. International Journal of Energy Research,2008,32(2):175-183.
    [136]J.F. Wang, Y.P. Dai, L. Gao, Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry [J]. Applied Energy,2009,86(6):941-948.
    [137]S.M. Seyyedi, H. Ajam, S. Farahat, A new approach for optimization of thermal power plant based on the exergoeconomic analysis and structural optimization method: Application to the CGAM problem [J]. Energy Conversion and Management,2010, 51(11):2202-2211.
    [138]S.M. Seyyedi, H. Ajam, S. Farahat, A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems [J]. Energy,2010,35(8):3474-3482.
    [139]A. Baghernejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm [J]. Energy Conversion and Management,2011,52(5):2193-2203.
    [140]P. Ahmadi, I. Dincer, Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit [J]. Energy Conversion and Management,2011,52(5):2296-2308.
    [141]V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle [J]. Energy,2012, 47(1):271-283.
    [142]A.G. Kaviri, M.N.M. Jaafar, T.M. Lazim, Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm [J]. Energy Conversion and Management,2012,58:94-103.
    [143]L. Garousi Farshia, S.M.S. Mahmoudia, M.A. Rosen, Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems [J]. Applied Energy,2013,103:700-711.
    [144]O.K. Singh, S.C. Kaushik, Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant [J]. Applied Thermal Engineering,2013. 51(1-2):787-800.
    [145]F.A. Al-Sulaiman, I. Dincer, F. Hamdullahpur, Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles:Part I-Formulations [J]. Energy Conversion and Management,2013,69:199-208.
    [146]F.A. Al-Sulaiman, I. Dincer, F. Hamdullahpur, Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles:Part Ⅱ- Applications [J]. Energy Conversion and Management,2013,69:209-216.
    [147]M.S. Merta, O.F. Dilmac, S. Ozkan, F. Karaca, E. Bolat, Exergoeconomic analysis of a cogeneration plant in an iron and steel factory [J]. Energy,2012,46(1):78-84.
    [148]A. Valero, L. Serra, M.A. Lozano, Structural theory of thermoeconomics [A], in:1993 ASME Winter Annual Meeting-International Symposium on Thermodynamics and the Design, Analysis and Improvements of Energy Systems [C], New Orleans, LA, USA, vol.30,1993, pp.189-198.
    [149]C. Torres, L. Serra, A. Valero, M.A. Lozano, The productive structure and thermoeconomic theories of system optimization [A], in:1996 ASME International Mechanical Engineering Congress and Exposition-ASME Advanced Energy Systems Division, Atlanta [C], GA, USA, vol.36,1996, pp.429-436.
    [150]B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics [J]. Energy Conversion and Management,1999,40(15-16):1627-1649.
    [151]C. Torres, A. Valero, L. Serra, J. Royo, Structural theory and thermoeconomic diagnosis Part I:On malfunction and dysfunction analysis [J]. Energy Conversion and Management, 2002,43(9-12):1503-1518.
    [152]A. Valero, F. Lerch, L. Serra, J. Royo, Structural theory and thermoeconomic diagnosis Part II:Application to an actual power plant [J]. Energy Conversion and Management, 2002,43(9-12):1519-1535.
    [153]I. Dincer, H. AL-MUSLIM, Thermodynamic analysis of reheat cycle steam power plants [J]. International Journal of Energy Research,2001,25(8):727-739.
    [154]傅秦生,能量系统的热力学分析方法[M].西安:西安交通大学出版社,2005,194-197.
    [155]C. Torres, A. Valero, L. Serra, J. Royo, Structural theory and thermoeconomic diagnosis Part I:On malfunction and dysfunction analysis [J]. Energy Conversion and Management, 2002,43(9-12):1503-1518.
    [156]L. Serra, M.A. Lozano, A. Valero, C. Torres, On average and marginal cost in thermoeconomics [A], in:ECOS 1995-1995 International Conference on efficiency, cost, optimization, and environmental impact of energy systems [C], Estambul, Turkey,1995, pp.428-435.
    [157]S.M. Seyyedi, H. Ajam, S. Farahat, A new approach for optimization of thermal power plant based on the exergoeconomic analysis and structural optimization method: Application to the CGAM problem [J]. Energy Conversion and Management,2010, 51(11):2202-2211.
    [158]A. Bejan, G. Tsatsaronis, M. Moran, Thermal design and optimization [M], Wiley, New York,1996:355-357.
    [159]A. Valero, M.A. Lozano, L. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos, M.R.VON Spakovsky, CGAM problem:definition and conventional solution [J]. Energy,1994,19(3): 279-286.
    [160]M.A. Lozano, A. Valero, L. Serra, Theory of exergetic cost and thermoeconomic optimization [A], in:J. Szarjut, Z. Kolenda, G. Tsatasronis, A. Ziebik (Eds.), Proceedings of the International Conference Energy Systems and Ecology ENSEC 93 [C], Cracow, Poland,1993, pp.339-350.
    [161]C.A. Frangopoulos, Thermoeconomic functional analysis:a method for optimal design or improvement of complex thermal systems [PH.D. thesis], Georgia Institute of Technology, 1983:208-209.
    [162]J. Uche, Thermoeconomic analysis and simulation of a combined power and desalination plant [PH.D. thesis], University of Zaragoza,2000,136-140.
    [163]J. Uche, L. Serra, A. Valero, Thermoeconomic optimization of a dual-purpose power and desalination plant [J]. Desalination,2001,136(1-3):147-158.
    [164]J.L. Silveira, C.E. Tuna, Thermoeconomic analysis method for optimization of combined heat and power systems. Part I [J]. Progress in Energy and Combustion Science,2003, 29(6):479-485.
    [165]G. Tsatsaronis, M. Winhold, Exergoeconomic analysis and evaluation of energy conversion plants-Ⅰ:a new general methodology [J]. Energy,1985,10(1):69-80.
    [166]G. Tsatsaronis, T. Morosuk, A general exergy-based method for combining a cost analysis with an environmental impact analysis. Part Ⅰ — theoretical development [A], Proceedings of IMECE 2008,2008 ASME International Mechanical Engineering Congress and Exposition [C], Boston, Massachusetts, USA, October 31 -November 6, 2008, paper No.:67218.
    [167]G. Tsatsaronis, T. Morosuk, A general exergy-based method for combining a cost analysis with an environmental impact analysis. Part Ⅱ — application to a cogeneration system [A], Proceedings of IMECE 2008,2008 ASME International Mechanical Engineering Congress and Exposition [C], Boston, Massachusetts, USA, October 31 - November 6, 2008, paper No.:67219.
    [168]L. Meyer, G. Tsatsaronis, J. Buchgeister, L. Schebek, Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems [J]. Energy,2009, 34(1):75-89.
    [169]G. Tsatsaronis, M. Moran, Exergy-aided cost minimization [J]. Energy Conversion and Management,1997,38(15-17):1535-1542.
    [170]江泽民,对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [171]S. Linnenberg, V. Darde, J. Oexmann, A. Kather, W.J.M. van Well, K. Thomsen, Evaluating the impact of an ammonia-based post-combustion CO2 capture process on a steam power plant with different cooling water temperatures [J]. International Journal of Greenhouse Gas Control,2012,10:1-14.
    [172]Z. Amrollahi, P.A.M. Ystad, I.S. Ertesvag, O. Bolland, Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant — power plant efficiency analysis [J]. International Journal of Greenhouse Gas Control,2012,8:1-11.
    [173]Y.L. Moullec, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle [J]. Energy,2013,49:32-46.
    [174]N.S. Siefert, S. Litster, Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants [J]. Applied Energy,2013,107:315-328.
    [175]I. Vorrias, K. Atsonios, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, E. Kakaras, Calcium looping for CO2 capture from a lignite fired power plant [J]. Fuel,2013, http://dx.doi.org/10.1016/j.fuel.2012.12.087.
    [176]T. Kuramochi, A. Ramirez, W. Turkenburg, A. Faaij, Techno-economic assessment and comparison of CO2 capture technologies for industrial processes:preliminary results for the iron and steel sector [J]. Energy Procedia,2011,4:1981-1988.
    [177]D.E. Wiley, M.T. Ho, A. Bustamante, Assessment of opportunities for CO2 capture at iron and steel mills:an Australian perspective [J]. Energy Procedia,2011,4:2654-2661.
    [178]K. Tanaka, A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry [J]. Energy Policy,2012,51: 578-585.
    [179]H. Ghanbari, M. Helle, H. Saxen, Process integration of steelmaking and methanol production for suppressing CO2 emissions — a study of different auxiliary fuels [J]. Chemical Engineering and Processing:Process Intensification,2012,61:58-68.
    [180]A. Arasto, E. Tsupari, J. Karki, E. Pisila, L. Sorsamaki, Post-combustion capture of CO2 at an integrated steel mill — Part I:technical concept analysis [J]. International Journal of Greenhouse Gas Control,2012, http://dx.doi.org/10.1016/j.ijggc.2012.08.018.
    [181]E. Tsupari, J. Karki, A. Arasto, E. Pisila, Post-combustion capture of CO2 at an integrated steel mill — Part Ⅱ:economic feasibility [J]. International Journal of Greenhouse Gas Control,2012, http://dx.doi.org/10.1016/j.ijggc.2012.08.017.
    [182]金红光,张筱松,控制温室气体的革新技术—能源与环境相容协调的系统集成创新[J].前沿科学,2007,2:27-36.
    [183]金红光,洪慧,韩涛,化学链燃烧的能源环境系统研究进展[J].科学通报,2008,53(24):2994-3005.
    [184]H.J. Richter, K.F. Knoche, Reversibility of combustion processes, efficiency and costing — second law analysis of processes [J]. American Chemical Society Symposium Series, Paper No.235,1983:71-85.
    [185]M. Ishida, H.G. Jin, A new advanced power-generation system using chemical-looping combustion [J]. Energy,1994,19(4):415-422.
    [186]M Anheden, M. Ahlroth, Aspects on closed cycle gas turbines [R]. KTH, Royal Institute of Technology, Dept. of Chem. Eng. & Tech., Energy Processes,1997, Stockholm, ISSN 1104-3466, ISRN KTH/KET/R—73—SE, TRITA-KET R73.
    [187]A. Lyngfelt, B. Leckner, T. Mattisson, A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion [J]. Chemical Engineering Science,2001,56(10):3101-3113.
    [188]A. Lyngfelt, H. Thunman, Construction and 100h of operational experience of a 10-kW chemical-looping combustor [J]. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project,2005,1:625-645.
    [189]J.S. Wang, J.E. Anthony, Clean combustion of solid fuels [J]. Apply Energy,2008, 85(2-3):73-79.
    [190]洪慧,金红光,杨思,低温太阳热能与化学链燃烧相结合控制CO2分离动力系统[J].工程热物理学报,2006,27(5):729-732.
    [191]张筱松,金红光,洪慧,韩巍,基于甲醇化学链燃烧的新型燃气轮机间冷循环[J].工程热物理学报,2007,28(5):721-724.
    [192]H. Hong, H.G. Jin, B.Q. Liu, A novel solar-hybrid gas turbine combined cycle with inherent CO2 separation using chemical-looping combustion by solar heat source [J]. Journal of Solar Energy Engineering-Transactions of the ASME,2006,128:275-284.
    [193]H.G. Jin, X.S. Zhang, H. Hong, W. Han, An innovative gas turbine cycle with methanol-fueled chemical-looping combustion [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2009,131:1-8.
    [194]向文国,狄藤藤,肖军,沈来宏,新型煤气化间接燃烧联合循环研究[J].中国电机工程学报,2004,24(8):170-174.
    [195]沈来宏,肖军,张辉,肖睿,燃煤串行流化床置换燃烧分离CO2机理研究[J].中国科学E辑:科学技术,2007,37(3):422-430.
    [196]G. Tsatsaronis, M.H. Park, On avoidable and unavoidable exergy destructions and investment costs in thermal systems [J]. Energy Conversion and Management,2002, 43(9-12):1259-1270.
    [197]F. Cziesla, G. Tsatsaronis, Z.L. Gao, Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant [J]. Energy,2006,31(10-11):1472-1489.
    [198]S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis:approaches for splitting the exergy destruction into endogenous and exogenous parts [J]. Energy,2009, 34(3):384-391.
    [199]S. Kelly, Energy systems improvement based on endogenous and exogenous exergy destruction [Ph.D. Thesis]. Technische Universitat, Germany,2008:12-25.
    [200]F. Petrakopoulou, Comparative evaluation of power plants with CO2 capture: thermodynamic, economic and environmental performance [Ph.D. Thesis]. Technische Universitat, Germany,2011:70-77.
    [201]F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, A. Carassai, Conventional and advanced exergetic analyses applied to a combined cycle power plant [J]. Energy,2012,41(1):146-152.
    [202]F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, A. Carassai, Advanced exergoeconomic analysis applied to a complex energy conversion system [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME,2012,134, paper No.:03180.
    [203]F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, C. Paitazoglou, Environmental evaluation of a power plant using conventional and advanced exergy-based methods [J]. Energy, 2012,45(1):23-30.
    [204]R. Naqvi, O. Bolland, J. Wolf, Off-design evaluation of a natural gas fired chemical looping combustion combined cycle with CO2 capture [A], In:Proceedings of the 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS) [C], Trondheim, Norway,2005, pp.827-834.
    [205]F. Petrakopoulou, A. Boyano, M. Cabrera, G. Tsatsaronis, Exergoeconomic and exergoenvironmental analysis of a combined cycle power plant with chemical looping technology [J]. International Journal of Greenhouse Gas Control,2011,5(3):475-482.
    [206]H. Yao, D.R. Sheng, J.H. Chen, W. Li, A.P. Wan, H. Chen, Exergoeconomic analysis of a combined cycle system associated gases from steel production process based on structural theory of thermoeconomics [J]. Applied Thermal Engineering,2013,51(1-2):476-489.
    [207]林张新,小型燃气轮机在中国企业应用研究[D][硕士学位论文].杭州:浙江大学,2006,43-45.
    [208]宋思远,杨锐,M251S型燃气轮机工程计算及经济性分析[J].机电工程,2009,26(8):9-12.
    [209]杨承,杨泽亮,燃气-蒸汽联合循环余热制冷进气冷却的解析法研究途径[J].热力发电,2005,34(2):19-23.
    [210]A. Khaliq, I. Dincer, Energetic and exergetic performance analysis of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling [J]. Energy,2011, 36(5):2662-2670.
    [211]金红光,林汝谋,能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社,2008,236-237.
    [212]D. Zheng, Y. Uchiyama, M. Ishida, Energy-utilization diagram for two types of LNG power-generation systems [J]. Energy,1986,11(6):631-639.
    [213]G. Wall, C.C. Chuang, M. Ishida, Exergy study of the Kalina cycle [A], Proceedings of the ASME Winter Annual Meeting:Analysis and Design of Energy Systems:Analysis of Industrial Processes [C]. San Francisco, California, December 10-15,1989, AES-Vol.10-3, pp.73-77.
    [214]H. Jin, M. Ishida, M. Kobayashi, M. Nunokawa, Exergy evaluation of two current advanced power plants:supercritical steam turbine and combined cycle [J]. Journal of Energy Resources Technology-Transactions of the ASME,1997,119(4):250-256.
    [215]M. Ishida, J. Ji, Graphical exergy study on single stage absorption heat transfer [J]. Applied Thermal Engineering,1999,19(11):1191-1206.
    [216]T. Srinophakun, S. Laowithayangkul, M. Ishida, Simulation of power cycle with energy utilization diagram [J]. Energy Conversion and Management,2001,42(12):1437-1456.
    [217]庄骏,张红,热管技术及其工程应用[M].北京:化学工业出版社,2000,73-76.
    [218]Z.Y. Guo, H.Y. Zhu, X.G. Liang, Entransy — A physical quantity describing heat transfer ability [J]. International Journal of Heat and Mass Transfer,2007,50(13-14):2545—2556.
    [219]宋之平,王加璇,节能原理[M].北京:水利电力出版社,1985,236-238.
    [220]许明田,程林,郭江峰,(?)耗散理论在换热器设计中的应用[J].工程热物理学报,2009,30(12):2090-2092.
    [221]邵志祥,魏玉剑,朱奇,吴建中,蒋浦宁,55 MW联合循环双压汽轮机的设计开发[J].上海汽轮机,2002,(2):17-24.
    [222]动力工程师手册编辑委员会,动力工程师手册[M].北京:机械工业出版社,1999,90-94.
    [223]程祖虞,蒸汽蓄热器的应用和设计[M].北京:机械工业出版社,1986,91-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700