用户名: 密码: 验证码:
低比转速无过载排污泵优化设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低比转速排污泵广泛应用于城市排污及一些国家重大战略工程。但由于传统排污泵存在效率低、污物通过能力弱及容易过载等问题,严重制约着行业的发展。因此,本文在国家“863”计划项目资助下,基于理论分析、数值计算与实验研究相结合的方法,对低比转速无过载排污泵的设计方法与内部流场结构进行了系统的研究。本文的主要研究内容和取得的主要创造性成果有:
     1.通过对低比转速离心泵的设计理论、无过载离心泵及排污泵设计方法的研究,首次分析并总结出影响低比转速无过载排污泵功率曲线的关键因素,即叶片流道进出口有效过流断面面积比。通过采用收缩型流道设计方法设计排污泵叶轮,试验表明,其效率指标超过国家标准5个百分点,且功率曲线出现了明显的极值点。
     2.设计了叶片流道进出口有效过流断面面积比F2/F1小于1、等于1和大于1的三种排污泵叶轮。同时进行了泵段改造与PIV试验台搭建。
     3.采用六面体结构化网格对全流场进行了非定常数值计算,研究了不同面积比叶轮对外特性、内部流场结构及压力脉动的影响。结果表明只有采用收缩型流道设计的叶轮取得了较好的无过载特性,但由于叶片出口排挤系数大,造成蜗壳内部压力脉动较大。
     4.外特性实验与PIV内部流场测试结果与CFD数值计算结果较为吻合。在不同叶轮与蜗壳匹配情况下,对设计工况附近叶轮内部速度分布、出口流动形式与内部脱流及旋涡做了系统的研究,并对蜗壳不同断面与隔舌附近的流场进行了详细阐述。同时,还对不同叶轮在极小流量下叶轮流道内旋涡的形成过程与成因进行了探讨。研究结果为排污泵的理论分析及优化设计提供了参考。
     5.针对采用收缩型流道设计的叶轮加剧蜗壳内部压力脉动问题,设计了三种不同基圆直径的蜗壳,并进行了数值计算与PIV实验研究。结果表明,基圆适当增加有利于减小其内部压力脉动,当基圆增加到一定程度以后,对压力脉动的影响很小,但能够增加蜗壳第九断面附近流动的均匀性与稳定性。
     6.在不同叶片出口安放角下,分别设计了五种叶片流道进出口有效过流断面面积比叶轮,在排除蜗壳影响的情况下,采用相同计算方法进行了数值模拟,对其外特性进行统计,并绘制成相应图表,形象地给出了叶片出口安放角及进出口有效过流断面面积比对泵功率曲线的影响趋势,为无过载排污泵的设计提供了参考依据。
     7.根据研究结果重新设计了两台不同设计参数的样机,并对其进行外特性实验,结果两台样机都出现明显的功率极值点,验证了研究成果的正确性及适用性。
     8.首次提出先确定子午面视图,再确定叶片骨线,并以叶片骨线为中心向两边等距离的加厚方式,通过调整叶片的厚度来控制F2/F1比值的低比转速无过载排污泵叶轮设计方法,不仅简化了设计,而且具有较优的水力性能,对工程实际具有重要的指导意义。
Low specific speed sewage pump has been widely used in urban sewage and some major national strategic projects. The traditional sewage pump restricts the development of the industry seriously due to the low efficiency, weak through capacity of dirt and easily overload, etc. Therefore, based on the combination of theoretical analysis, numerical calculation and experiment research, this paper systematically studies the design method and internal flow field structure of the low specific speed non-overload sewage pump by subsidize of the state "863"plan projects.
     The main work and the main creative achievements are listed as follows:
     1. Through studying the design theories of low specific speed centrifugal pump and the design methods of non-overload centrifugal pump and sewage pump, we analyzed and summed up the key factors that affect the power curve of low specific speed non-overload centrifugal pump for the first time, namely the effective flow section area ratio of blade passages inlets and outlets. The efficiency index exceeds national standards by5percentage points by adopting the contractive-type flow passages to design the impeller, and the power curve has an obvious extreme point.
     2. Designed sewage impellers with different effective flow section area ratios for F2/F1are less than1, equal to1and more than1, respectively. Meanwhile, the pump segment transformation was made.
     3. The unsteady numerical calculations for whole flow field were performed through using hexahedral structured grids, and investigated the effects of impellers with different area rations on external characteristic、internal flow structure as well as pressure pulsation. The results show that it can obtain better non-overload characteristic only when the impellers adopt the contractive-type flow passage, but the pressure pulsation in volute is large due to the crowding coefficient of blade outlet is large.
     4. The results of external characteristic experiments and PIV internal flow field tests agree with the CFD numerical calculation results well. In the different impeller and volute matching case, the velocity distributions、export flowing forms and internal stall and whirlpool near design condition were studied systematically, and the flow field on different cross-sections of volute and near tongue were stated in detail. Moreover, we also discussed the formation processes and causes of whirlpool within impeller passages for different impellers under the minimal flow rate condition. That provides the reference for the theoretical analysis and optimization design of the sewage pump.
     5. We designed three volutes in different base diameters for the impeller with contractive-type flow passages aggravates the pressure pulsation within volute, and carried out the numerical calculation and PIV experimental study. The results show that the appropriate increase of base circle is beneficial to reducing the pressure pulsation inside, it has small affect on pressure pulsation when the base circle increases to a certain extent, but can increase the uniformity and stability of flow near volute ninth section.
     6. Five impellers with different inlet and outlet effective flow section area ratios were designed in different setting angles of blade outlet. The numerical simulations were performed using the same calculation method in the case of eliminating volute impact, and the external characteristics were counted, also the corresponding graphs were drawn. The effect tendency of setting angles of blade outlet and inlet as well as outlet effective flow area ratios effecting on pump power curve was given figuratively, and that provides reference and basis for the designs of non-overload sewage pump.
     7. According to the research results we re-designed two prototypes with different design parameters, and carried out the external characteristic experiments, finding that the power extreme points occurs in both prototypes, verifying the correctness and applicability of the research results.
     8. Put forward to determining the meridian plane view first, and then the blade bone line, and use the blade bone line as the center to equidistant thickened to both sides. The design method for controlling F2/F1by adjusting the thickness of the blade not only simplifies the design but also can achieve better performance and it is worth promoting.
引文
[1]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [2]严敬.β2及b2值对于低比转速叶轮外径的影响[J].农牧与食品机械,1990,15-20.
    [3]徐伟幸,袁寿其.低比速离心泵叶轮优化设计进展[J].流体机械,2006,Vol.34,No.2:39-42.
    [4]陈洪海,袁寿其.低比速离心泵优化设计方法*[J].流体机械,2001,Vol.29,No.8:19-22.
    [5]杨军虎,张人会,王春龙,等.低比转速离心泵的面积比原理[J].兰州理工大学学报,2006,Vol.32,No.5:53-55.
    [6]杨军虎,张人会.低比转速离心泵加大系数的计算方法探讨[J].兰州理工大学学报,2005,Vol.31,No.3:59-61.
    [7]杨军虎,张人会.一种计算低比转速离心泵加大系数的方法*[J].机械工程学报,2005,Vol.41,No.4:203-205.
    [8]毕尚书,王文新,严敬,等.低比转速离心泵叶轮水力设计新方法综述[J].机械,2008,Vol.35,No.10:4-7.
    [9]范宗霖,刘建军,王昕.改变叶轮出口宽度扩大离心泵性能范围[J].水泵技术,2004(2):3-7.
    [10]刘厚林,王勇,袁寿其,等.叶轮出口宽度对离心泵流动诱导振动噪声的影响[J].华中科技大学学报(自然科学版),2012,Vol.40,No.1:123-127.
    [11]郭自杰,赵天成,任俭,等.叶轮流道宽度对泵性能的影响[J].水泵技术,1994(5):20-23.
    [12]曹卫东,李跃,张晓娣.低比转速污水泵叶片包角对水力性能的影响[J].排灌机械,2009,Vol.27,No.6:362-366.
    [13]汪建华,蒋文书.低比转速泵圆柱形叶片型线的研究[J].长江大学学报(自然科学版),2009,Vol.6,No.3:85-87.
    [14]汪建华.低比转速离心泵叶片型线的设计[J].机械工程师,2010(6):8-9.
    [15]刘甲凡.改善低比转数泵特性分析[J].化工设备设计,1998(35):40-42.
    [16]陈有志,李刚,王景辉.改善低比转速离心泵水力性能的几种方法[J].防爆电机,2005,Vol.40,No.3:46-48.
    [17]何希杰,朱广奇,胡金生.低比转速泵几何参数对扬程综合影响的灰色理论分析[J].排灌机械,2006,Vol.24,No.2:1-3.
    [18]何希杰.低比转速离心泵主要参数对性能综合影响和排序[J].技术与应用,2004(1):63-65.
    [19]齐学义,刘永明,胡家旺,等.提高超低比转速离心泵效率的方法[J].水电能源科学,2011,Vol.29,No.2:118-120.
    [20]刘元义,王广业.低比转速冲压多级泵叶轮内三维流动数值模拟[J].农业机械学报,2006,Vol.37,No.1l:60-62.
    [21]张德胜,施卫东,陈斌,等.低比转速离心泵内部流场分析及试验[J].农业工程学报,2010,Vol.26,No.11:108-112.
    [22]史佩琦,崔宝玲,陈洁达,等.低比转速离心泵内部流场数值模拟[J].浙江理工大学学报,2012,Vol.29,No.4:575-579.
    [23]王洋,张翔.低比转速离心泵蜗壳第八断面面积确定新方法[J].排灌机械,2008,Vol.26,No.1:29-32.
    [24]陈次昌,杨昌明,熊茂涛.低比转速离心泵叫‘轮内固液两相流的数值分析[J].排灌机械,2006,Vol.24,No.6:1-3.
    [25]杨从新,钱晨.低比转速离心泵圆盘损失的计算[J].兰州理工大学学报,2012,Vol.38,No.3:56-60.
    [26]陈红勋,刘卫伟,见文,等.基于流动控制技术的低比转速离心泵叶轮研发[J].排灌机械工程学报,2011,Vol.29,No.6:465-470.
    [27]蒋婷.高效无过载潜水排污泵水力优化设计及内部流动稳定性研究[D].江苏大学:2011
    [28]长沙水泵厂.获得低比转数叶轮的一些设想[J].水泵技术,1977(2):9-18.
    [29]博山水泵厂.低比转数离心泵的试验研究[J].水泵技术,1972(8):1-22.
    [30]沈阳水泵研究所.低比转数模型试验研究[J].水泵技术,1972(8):23-33.
    [31]木田和夫.离心泵叶轮形状对稳定性能的影响[J].水泵技术,1974(4):48-55.
    [32]张俊生,孟昭明,王旭.减小或消除离心泵扬程曲线驼峰的途径[J].水泵技术,1981(4):1-9.
    [33]王耀红.低比速泵试验与研究[J].农业机械学报,1982,13(3):76-81.
    ]34]罗崇来,袁义初.低比速离心泵中的效率和驼峰问题[J].水泵技术,1983(3):20-27.
    [35]刘甲凡,林瑾忠,王能秀.改善小型锅炉给水泵性能的试验研究之一—提高效率的途径[J].水泵技术,1985(1):1-4.
    [36]李世煌,刘树洪.低比速离心泵圆盘摩擦损失的试验研究[J].水泵技术,1988(3):21-25.
    [37]骆大章,刘树洪.低比转数离心泵圆盘摩擦损失试验研究[J].排灌机械,1989,7(3):4-7.
    [38]袁寿其,曹武陵.用正交试验法设计无过载离心泵[J].水泵技术,1991(3):11-16.
    [39]袁寿其.面积比对无过载离心泵性能的影响—江苏省首届青年学术年会论文集[c].北 京:中国科学技术出版社,1992:293-297.
    [40]Yuan Shouqi, Cao Wulin, Li Shiying et al. Theory and design method of non-overload centrifugal pumps[J]. Chinese Journal of Mechanical Enginering(English Edition).1992, 5(4):252-260.
    [41]Yuan Shouqi, Chen Cichang, Cao Wuling et al. Design method of obtaining stable head-flow cuives of centrifugal pumps[C]. Proceedings of the Second ASME Pumping Mac-hinery Symposium. Washington, U. S. A.1993, June.
    [42]严敬,辜迎佳.低比转速叶轮无过载设计新方法[J].水动力学研究与进展,2000,15(1):67-73.
    [43]汪建华,明燕,赵子传.无过载泵优化设计[J].江汉石油学院学报,2000,22(2):36-37.
    [44]施卫东,曹卫东,刘厚林,等.无过载潜水排污泵的设计与试验[J].农业机械学报,2003,34(1):54-56.
    [45]王洋,何文俊.基于FLUENT的无过载离心泵改型及性能预测[J].排灌机械,2009,Vol.40,No.9:115-118.
    [46]王洋,何文俊.基于Fluent的无过载离心泵改型设计*[J].农业机械学报,2009,Vol.27,No.2:85-88.
    [47]刘剑军.无过载设计方法在低比转数多级离心泵上的成功实践[J].开发与设计,2006,No.10:54-56.
    [48]刘剑军.无过载设计方法在低比转速多级离心泵上的应用[J].水泵技术,2008,No.5:27-29.
    [49]丛小青,袁寿其,袁丹青,等.无过载双流道排污泵性能预测研究[J].排灌机械,2006,Vol.24,No.2:4-6.
    [50]丛小青,袁寿其,袁丹青.无过载排污泵止交实验研究*[J].农业机械学报,2005,N0.10:66-69.
    [51]丛小青,袁寿其,袁丹青,等.无过载排污泵理论与设计方法研究*[J].农业机械学报,2003,Vol.34,No.6:77-80.
    [52]丛小青,袁寿其,袁丹青,等.无过载排污泵水力设计方法[J].排灌机械,2003,Vo1.21,No4:5-7.
    [53]Pfleiderer C.叶片泵与透平压缩机[M].奚启棣译.北京:机械工业出版社,1983.
    [54]Sano Y, Yoshida Y, Tsujimoto Y, Nakamura Y, Matsushima T. Numerical study of rotating stall in a pump vaned diffuser[J]. ASME Journal of Fluids Engineering,2002,124: 363-371.
    [55]Yoshida Y, Murakami Y, Tsurusaki T, Tsujimoto Y. Rotating stalls in centrifugal impeller/vaned diffuser systems[C]. Proceedings of First ASME/JSME Joint Fluids Engineering Conference, Portland, FED-107,125-130.
    [56]Sinha M, Pinarbasi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump[J]. ASME Journal of Engineering for Power,2001,123:490-499.
    [57]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-Ⅰ:on flow structure and turbulence. ASME J. Fluid Eng,2000,122:97-107.
    [58]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-II:addressing passage-average and large eddy simulation modeling issues in tubo-mahchinery flows. ASME J. Fluid Eng,2000,122:108-166.
    [59]Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions - Part I:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [60]Krause N, Zahringer K, Pap E. Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump[J]. Experiments in Fluids,2005,39:192-201.
    [61]Stefan Berten, Maher Kayal, Philippe Dupont, et al. Experimental investigation of flow instabilities and rotating stall in a high-energy centrifugal pump stage[C]. ASME Fluids Engineering Division Summer Meeting (FEDSM2009), Vail, CO, USA, August,2-5, 2009.
    [62]Wang H, Tsukamoto H. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions [J]. ASME Journal of Fluids Engineering,2003,125: 767-777.
    [63]杨琳消除离心泵特性曲线的驼峰*[J].新疆大学学报(自然科学版),2002(19):32-34.
    [64]袁寿其,张玉臻,王家斌.三种消除离心泵扬程曲线驼峰的特殊叶轮*[J].农业机械学报,1998,Vol.29,No.2:171-173.
    [65]袁寿其,陈次昌.离心泵叶轮和泵体形状对扬程曲线驼峰的影响[J].流体工程,1993(6):12-15.
    [66]牟介刚,王乐勤.离心泵性能曲线驼峰判据的探讨[J].农业机械学报,2004,Vol.35,No.4:74-76.
    [67]牟介刚,张生昌,郑水华,等.离心泵性能曲线产生驼峰的机理及消除措施[J].农业机械学报,2006,Vol.37,No.4:56-59.
    [68]陈茂庆,王顺利,方晓斌.离心泵H-Q曲线呈驼峰状的影响因素的正交实验[J].流体工程,1993,Vol.21,No.8:11-13.
    [69]赵家新.关于消除泵的驼峰现象的试验[J].流体工程,1992(9):11-14.
    [70]宋青松,陈晶晶.低比转速离心泵消除驼峰的研究[J].通用机械制造,2011(1):110-111.
    [71]李学兰.低比转速多级泵驼峰和效率问题探讨[J].水泵技术,1996(2):30-32.
    [72]王焕茂,吴刚,吴伟章,等.低比转速水泵水轮机驼峰区数值模拟及分析[C].2009,全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集:107-115.
    [73]韩建宇.低比转速离心泵性能曲线驼峰问题的研讨[J].水泵技术,2004(4): 24-27.
    [74]邢白俊,王红哲.低比转速多级离心泵消除驼峰的试验研究[J].水泵技术,2001(6):20-23.
    [75]赵啸冰,许洪元,王晓东,等.水力机械蜗壳的研究进展[J].农业机械学报,2003,34(2):136--140.
    [76]Jose Gonzalez, Joaquin Fernandez, Eduardo Blanco, et al. Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump[J]. Transactions of the ASME,2002,124(2):348-355.
    [77]Miguel Asuaje, Farid Bakir, Smaine Kouidri, et al. Numerical Modelization of the Flow in Centrifugal Pump:Volute Influence in Velocity and Pressure Fields [J]. International Journal of Rotating Machinery,2005(3):244-255.
    [78]Esch B P M, Kruyt N P. Hydraulic Performance of a Mixed-Flow Pump:Unsteady Inviscid Computations and Loss Models [J]. Transactions of ASME,2001,123(2):256-264.
    [79]Stepanoff A J. Centrifugal and axial flow pumps-Theory design and application [M].2nd ed. NY:Wiley,1975:283-302.
    [80]任轶,李家文,唐飞.带扩压叶片的蜗壳流场计算与分析[J].航空发动机,2009,35(3):32-35.
    [81]Dong.R, Chu.S, Katz.J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump. ASME Journal of Fluids Engineering 119,506-515.
    [82]Chu.S, Dong.R, Katz.J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump-Part A: use of PDV DATA to compute the pressure field[J]. ASME J. Fluids Eng.,1995(117):24-29.
    [83]Chu.S, Dong.R, Katz.J. Relationship between unsteady flow, pressure fluctuation, and noise in a centrifugal pump-Part B: effects of blade tongue interactions[J]. ASME J. Fluids Eng., 1995(117):30-35.
    [84]Benra.F.K. Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller[J]. ASME J. Fluids Eng.,2006(128):783-793.
    [85]Benra.F.K, Hans Josef Dohmen. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation [J], Proceedings of IPC 2007, PVP 2007-26149.
    [86]Chu S, Dong R, Katz J. Relationship between unsteady flow, Pressure pulses, and Noise in a Centrifugal Pump-Part A: Use of PDV Data to Compute the Pressure Field [J]. ASME Journal of Fluids Engineering,1995(117):24-29.
    [87]Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure pulses, and noise in a centrifugal pump-part B:effects of blade-tongue interactions [J]. ASME Journal of Fluids Engineering.1995(117):30-34.
    [88]陈斌,施卫东,张华,等.超厚叶片离心泵叶轮与蜗壳之间性能匹配的研究[J].水泵技术,2011(6):26-29.
    [89]刘厚林,杨东升,谈明高,等.双叶片离心泵内动静干涉的三维PIV测量[J].排灌机械工程学报,2012,Vol.30,No.4:384-389.
    [90]黄国富,常煜,张海民.基于CFD的船用离心泵动力振动噪声源分析[C].第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集:2008.
    [91]黄国富,常煜,张海民,等.低振动噪声船用离心泵的水力设计[J].船舶力学,2009,13(2):313-318.
    [92]何希杰,于禧民.离心泵水力设计对振动的影响[J].水泵技术,1995(1):17-21.
    [93]刘建瑞,刘亮亮,张立胜.离心泵非定常计算中叶轮转动位置对性能影响的数值计算[J].中国农村水利水电,2012(4):74-79.
    [94]郭鹏程,罗兴锜,刘胜柱.离心泵内叶轮与蜗壳间耦合流动的三维紊流数值模拟[J].农业工程学报,2005,Vol.21,No.8:1-5.
    [95]张振山,张艳伟,杨玉敏,等.离心泵蜗壳对叶轮内部流动的影响研究[J].水泵技术,2007(2):15-18.
    [96]高江永,郭振苗.离心泵叶轮与蜗壳设计几何参数的优化设计[J].水泵技术,2007(4):6-9.
    [97]许晓瑜,刘光宗.离心式叶轮机械蜗壳流场的计算与分析[J].水利电力机械,1992(8):4-8.
    [98]Johnson M W, Moore J. The Influence of Flow Rate on the Wake in a Centrifugal Impeller[J]. Trans ASME, J of Eng for Power,1983,105:33-39.
    [99]Bwalya A C, Johnson M W. Experimental Measurements in a Centrifugal Pump Impeller[J]. Trans ASME, J of Fluid Eng,1996,118:692-697.
    [100]张德胜,施卫东,关醒凡,等.轴流泵叶轮进出口流场的测量[J].排灌机械,2009,27(4):210-214.
    [101]张德胜.轴流泵叶轮非线性环量分布理论及实验研究[D].江苏大学:2010.
    [102]黄建德.离心泵叶轮参数对进口回流的影响[J].工程热物理学报,1998,19(4):449-453.
    [103]黄建德.离心泵进口回流的发生机理及预估[J].上海交通大学学报,1998,32(7):5-9.
    [104]仇宝云,黄季艳,袁寿其,等.轴流泵出水管内部流动水力特性研究[J].农业机械学报,2005,36(12):47-50.
    [105]仇宝云,黄季艳,袁寿其,林海江,冯晓莉,高朝辉.轴流泵出水管断面水流能量测定研究[J].水力发电学报,2005,24(6):104-109.
    [106]仇宝云,黄季艳,袁寿其,林海江,冯晓莉.轴流泵出水管道水力损失试验研究[J].机械工程学报,2006,42(5):39-44.
    [107]李忠,杨敏官,王春林.轴流泵叶轮出口流场实验农业机械学报[J].2009,40(9):94-97.
    [108]李忠,杨敏官,王晓坤.导叶对轴流泵性能影响的试验[J].排灌机械,2009,27(1):15-18.
    [109]Howard J H G, Kittmer C W. Measured Passage Velocities in a Radial Impeller with Shrouded and Unshrouded Configurations[J]. Trans ASME, J of Eng for Power,1975, 97:207-213.
    [110]Moore J. A Wake and an Eddy in a Rotating Radial Flow Passage Part I:Experimental Observations[J]. Trans ASME, J of Eng for Power,1973,95:205-212.
    [111]Adler D, Levy Y. A Laser-Doppler Investigation of the Flow Inside a Backswept, Closed, Centrifugal Impeller[J]. J of Mech Eng Sci,1979,21(1):1-9.
    [112]Paone N. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989,7: 371-378.
    [113]Kadambi J R, Charoenngam P, Subramanian A. Investigations of Particle Velocities in a Slurry Pump Using PIV: Part 1:the Tongue and Adjacent Channel Flow[J]. J of Energy Resources Technology,2004,126(4):271-278.
    [114]Stoffel B, Ludwig G, Weiss K. Experimental Investigations on the Structure of Part-Load Recirculations in Centrifugal Pump Impellers and the Role of Different Influence[J]. Proc of 16th IAHR Symp,1992,445-454.
    [115]Miner S M, Beaudion R J, Flack R D. Laser Velocimeter Measurements in a Centrifugal Flow Pump[J]. Trans ASME, J Turbomachinery,1989,111:205-212.
    [116]Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry[J]. ASME Journal of fluids engineering, 1994,116:538-544.
    [117]Oldenburg M. Velocity measurement in the impeller and in the volute of a centrifugal pump by particle image displacement velocimetry[C]. Proceedings of the 8th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon,1996.
    [118]Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions-Part I:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [119]Dong R. Quantitative visualization of the flow with the volute of a centrifugal pump - Part A [J]. Journal of Fluids Engineering,1992,114:390-395.
    [120]Feng J, Benra F, Dohmen H J. Time-resolved particle image velocity(PIV) measurements in a radial diffuser pump[C]. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting/FEDSM2009-78297, August 2-6,2009, Colorado, USA.
    [121]Shepherd I C, La Fontaine R F, Welch L W, et al. Velocity measurement in fan rotors using particle image velocimetry[C]. Laser Anemometry 1994:Advances and Applications ASME FED, New York:1994,191:179-183.
    [122]Stickland M T, Scanlon T J, Fernandez-Francos J, et al.A numerical and experimental analysis of flow in a centrifugal pump[J].American Society of Mechanical Engineers, Fluids Engineering Division,2002,257(2B):703-708.
    [123]陈斌,张华,施卫东,等.超厚叶片低比转速无过载排污泵数值计算与PIV实验*[J].农业机械学报,2012,Vol.43,No.5:74-48.
    [124]赵斌娟,袁寿其,刘厚林,等.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-88.
    [125]赵斌娟,袁寿其,刘厚林,等.双流道及双叶片式叶轮内流场的PIV测量与比较[J].农业机械学报,2008,39(12):82-85.
    [126]王凯,刘厚林,袁寿其,等.零流量工况下双叶片泵内部流场三维PIV测量[J].农业机械学报,2011,42(7):61-65.
    [127]Wang Kai, Liu Houlin, Yuan Shouq, et al. Numerical simulation and stereo PIV test of inner flow in a double blades pump[C]. Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011/AJK2011-06062, July 24-29,2011, Hamamatsu, Japan.
    [128]邵春雷,顾伯勤,黄星路,等.低比转数泵叶轮流道内部流动的PIV实验[J].航空动力学报,2010,25(9):2091-2096.
    [129]邵春雷,顾伯勤,陈晔.PIV测量用模型泵的设计及测量中的误差分析[J].流体机械,2007,35(12):39-42.
    [130]朱宏武,薛敦松,董守平.用PIV技术研究离心泵扩散段第八断面内流场[J].工程热物理学报,1995,16(4):440-443.
    [131]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [132]孙荪,刘超,汤方平等.PIV在半开式离心泵内部流场测量中的应用[J].中国农村水利水电,2004(1):65-67.
    [133]万毅,严敬,杨小林.离心泵叶轮内水流相对速度的实验研究[J].机械设计,2005,22(6):38-41.
    [134]邵杰,刘树红,张桂英,等.大出口角离心泵内部流动的PIV测量分析[J].水泵技术,2010(2):1-7.
    [135]邵杰,刘树红,吴玉林.离心泵叶轮变转速工况的内部流动测量[J].水泵技术,2011(2):11-15.
    [136]杨敏官,刘栋,顾海飞,等.盐析固-液两相流场的PIV测量方法[J].江苏大学学报(自然科学版),2007,28(4):324-327.
    [137]刘栋,杨敏官,高波.离心泵叶轮内部伴有盐析流场的PIV实验[J].农业机械学报,2008,39(11):55-58.
    [138]杨华,刘超,汤方平,等.采用PIV研究离心泵转轮内部瞬态流场[J].水动力学研究与进展,2002,17(5):547-552.
    [139]杨华,刘超,汤方平.离心泵有盖板叶轮内部流场的PIV测量[J].农业机械学报,2003,34(2):27-29.
    [140]李文广.大出口角离心泵叶轮内部清水流动测量[J].农业机械学报,1999,30(2):54-59.
    [141]陈松山,周正富,葛强,等.低比转数离心泵叶轮内部流动的测量[J].扬州大学学报(自然科学版),2006,9(1):74-78.
    [142]袁辉靖,邵杰,刘树红,等.小流量工况下微小型泵内部流场数值模拟及LIF-PIV实验研究[J].工程热物理学报,2008,29(11):1852-1856.
    [143]杨波,许友谊,刘栋,等.离心泵叶轮内流场PIV研究[J].水泵技术,2006(4):12-14.
    [144]李学兰.低比转数多级泵驼峰和效率问题探讨[J].水泵技术,1996(2):30-32.
    [145]牟介刚,张生昌,郑水华,等.离心泵性能曲线产生驼峰的机理及消除措施[J].农业机械学报,2006,37(4):56-59.
    [146]韩建宇.低比速离心泵性能曲线驼峰问题的研讨[J].水泵技术,2004(4):24-27.
    [147]杨琳.消除离心泵特性曲线的驼[J].新疆大学学报(自然科学版),2002,19(6):32-34.
    [148]Tan Minggao, Liu Houlin, Yuan Shouqi, et al. Effects of Blade Outlet Width on Flow Field and Characteristic of Centrifugal Pumps[C]. Proceedings of the ASME Fluids Engineering Divison Summer Conference, Vail, USA,2009:51-60.
    [149]斯捷潘诺夫著.离心泵和轴流泵理论、设计和应用[M].北京:机械工业出版社,1980.
    [150]Bernd Durrer, Frank Hendrik Wurm. Noise sources in centrifugal pumps [C]. Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22,2006:203-207
    [151]Lighthill M J. On sound generated aerodynamically:I. General theory [C]. Proc. R. Soc. London Ser. A,1952,211:564-87.
    [152]李超华,张吉辉.离心泵出口管路设置对泵噪振的影响[J].安装,2008(6):26-28.
    [153]邵杰,陈铁军,刘树红,等.轴流式原型和模型水轮机的压力脉动相似性分析[J].水力发电学报,2009,28(4):166-170.
    [154]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009.
    [155]Tamura T. Ono Y. LES analysis on aeroelastic instability of prisms in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(12):1827-1846.
    [156]施法佳,陈红勋.轴流泵内部流动数值模拟中湍流模式可用性的研究[J].上海大学学报(自然科学版),2006,12(3):273-277.
    [157]叶建平.离心泵振动噪声分析研究.LMS首届用户大会论文集.2006.
    [158]Di Mare L. Jones W. P. LES of turbulent flow past a swept fence[J]. International Journal of Heat and Fluid Flow,2003,24(4):606-615.
    [159]倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D].[博士学位论文],江苏大学,2008.
    [160]M.A.Langthjem, N.Olhof. Optimum design of the volute tongue against flow-induced noise in a centrifugal pump. Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization (CD-ROM), Dalian, China,2001.
    [161]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6):60-64.
    [162]杨昌明,许丽丽,陈次昌.混流式转轮与导叶相互干涉的非定常数值模拟[J].农业机械学报,2008,39(2):67-70.
    [163]裴吉.基于流固耦合的离心泵流动诱导振动特性数值研究[D].[硕十学位论文],江苏大学,2009.
    [164]Kato.C, Yamade.Y, Wang Hong, et al. Prediction of the noise from a multi-stage centrifugal pump[C].ASME FEDSM2005, PART B:1273-1280.
    [165]Choi J S, Dennis K M, Donald E T. Experiments on the unsteady flow field and noise generation in a centrifugal pump impeller [J]. Journal of Sound and Vibration,2003, 263(3):493-514.
    [166]To C W S, Doige A G. A transient testing technique for the determination of matrix parameters of acoustic system-Part II:Experimental procedures and results [J]. Sound and Vibration,1979,62(2):223-233.
    [167]冯涛.离心泵流动诱导噪声的测量研究[D].北京:中科院声学所,2003.
    [168]Langthiem.M.A. A numerical study of flow-induced noise in a two-dimensional centrifugal pump, Part I:hydrodynamics[J]. J. Fluid and Structures,2004,19 (3):349-368.
    [169]薛菲.离心泵内部流动诱导噪声的数值研究[D].江苏大学:2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700